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Summary

The objective of this thesis is to present the author's main contributions to the development
of complex Finsler geometry and to the extensions of Matsumoto's slope-of-a-mountain prob-
lem through a general model of time-optimal navigation based on Riemann-Finsler geometry,
thereby establishing direct links with Zermelo's navigation problem.

In order to address some aspects related to complex Landsberg spaces, projectivity, holo-
morphic curvature, deformation, etc., di�erent techniques from real Finsler approaches are
applied, combined with the speci�c tools of complex Finsler geometry. The classic problems,
Matsumoto's slope-of-a-mountain problem (MAT) and Zermelo's navigation problem (ZNP),
presented independently in the literature, have been intensively explored within the framework
of Riemann-Finsler geometry. The key argument is that in Finsler geometry, the notion of
arc length can be interpreted as time, thus making the time-optimal paths locally the Finsler
geodesics. The modern trend toward applications requires the development of new models.
The main features of the navigation models described here are the type and range of compen-
sation of the gravity e�ects on a mountain slope, which facilitate the description of various
navigation problems and, in particular, link MAT and ZNP under the in�uence of gravity.

The thesis is divided into two parts: Part I. Di�erent aspects of complex Finsler geometry
which includes the �rst �ve chapters (Chapters 1-5) and Part II. Extensions of Matsumoto's
slope-of-a-mountain problem encompassing four chapters (Chapters 6-9). At the end, a distinct
chapter outlines some future research directions based on the topics discussed in the preceding
chapters. Below, a brief description of each part of the thesis is presented.

Part I. This part comprises a few problems that we have studied in complex Finsler geometry,
drawing heavily on our published papers [24, 25, 26, 27, 36, 23, 9, 14]. Chapter 1 brie�y
presents the main tools speci�c to complex Finsler geometry that are utilized throughout
this section. In Chapter 2, we discuss complex Landsberg and generalized Berwald spaces,
including particular instances of complex Landsberg spaces. Notable di�erences arise when
compared to real reasoning, primarily due to the presence of two distinct horizontal covariant
derivatives in complex Finsler geometry, speci�cally for Cartan tensors, one has Cij̄k|h and
Cij̄k|h̄ with respect to Chern-Finsler connection. It is worthwhile to mention that the condition
Clr̄h|k = 0 is equivalent to Clr̄h|k̄ = 0 and moreover, the horizontal coe�cients Li

jk of the Chern-
Finsler connection depend solely on the position coordinate z, in this case. This observation
likely led T. Aikou to designate the complex Finsler spaces with Li

jk = Li
jk(z) as complex

Berwald spaces [7]. However, the de�ning characteristic of a complex Berwald space is that the
horizontal coe�cients Gi

jk of a complex linear connection of Berwald type BΓ are independent
on the �ber coordinates, only within the Kähler context when Li

jk = Gi
jk. Consequently, an

unquestionable extension of complex Berwald spaces, directly linked to BΓ, is represented by
a generalized Berwald space, characterized by Gi

jk being dependent only on the position z.
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To manage complex Landsberg spaces, another complex linear connection of Rund type RΓ is
utilized alongsideBΓ, both tied to the canonical complex nonlinear connection. More precisely,

a complex Landsberg space maintains the relationship
c

Li
jk = Gi

jk, which pertains to the
horizontal coe�cients of connections RΓ and BΓ. To date, Kähler and Kähler-Berwald metrics
are necessarily complex Landsberg metrics, yet the existence of a complex Landsberg metric
(non-pure Hermitian), which is neither Kähler-Berwald nor Kähler, remains an unresolved
issue. The general theory concerning generalized Berwald spaces is complemented by some
special outcomes for the complex Randers metrics in Section 2.3. The results in this chapter
are contained in the papers [26, 27].

The discussion on projectively related complex Finsler metrics begins in Chapter 3. Section
3.2 primarily delves into the complex variants of Rapcsák's theorem and develops a complex
Finsler solution for Hilbert's fourth problem. Section 3.3 examines the projectivities of com-
plex Randers metrics, F̃ = α + |β|, presenting the necessary and su�cient conditions for the
metrics F̃ and α to be projectively related [25].

A more detailed analysis of the projective change relationship of complex Finsler metrics
in Chapter 4 allows for the establishment of the existence of projective curvature invariants of
Douglas and Weyl types. There are some formal similarities with studies from real Finsler ge-
ometry, but the di�erences between the real and complex cases are much more profound. More
precisely, in Section 4.2, exploring the projective change relationship leads to three projective
curvature invariants of Douglas type, and the vanishing of these characterizes complex Douglas
spaces. This also allows for the derivation of additional properties for Kähler-Berwald spaces.
Through a projective curvature invariant of Weyl type, a classi�cation of Kähler-Berwald
spaces of constant holomorphic curvature is achieved, whereby these spaces are either pure
Hermitian if they have a non-null constant holomorphic curvature or non-pure Hermitian if
they have null holomorphic curvature. Section 4.3 is dedicated to locally projectively �at
complex Finsler metrics. In Section 4.4, an essential detail is the possibility of rewriting the
equations of geodesic curves in a form that simpli�es the study of complex Douglas spaces
to the investigation of certain functions that arise from these equations. In Section 4.5, the
general theory of complex Douglas spaces is applied to complex Randers spaces [24, 23].

In Chapter 5, we consider a problem of Zermelo navigation on a Hermitian manifold (M,h),
and we show that the solutions are real homogeneous functions, namely R-complex Finsler
metrics of Randers type (Section 5.3). Beyond the signi�cance of the fact that Zermelo
navigation provides a concrete application for the R-complex Randers metrics, much more
important is the fact that through it, non-pure Hermitian metrics (named W -Zermelo defor-
mations) can be explicitly constructed. These are obtained by deforming the pure Hermitian
metric h through a vector �eld W. Section 5.4 presents this aspect, alongside the study of the
invariance of certain properties of the pure Hermitian metrics as a result of W -deformations,
considering particular vector �elds W [9, 14].

Part II. This part, based on the results obtained in our works [10, 20, 11, 12, 13], presents a
collection of navigation problems on a slippery mountain slope represented by a Riemannian
manifold (M,h) of arbitrary dimension (at least 2), under the in�uence of "active winds",
expressed through the gravitational wind (a gradient vector �eld) along with two traction co-
e�cients. Chapter 6 outlines several basic notions and results from Riemann-Finsler geometry,
which are necessary for the presentation of the subsequent chapters.

Before presenting Chapters 7-9, a brief description of the types of time-optimal navigation
problems studied in the literature through Riemann-Finsler geometry is necessary, consider-
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ing a particular case, speci�cally, in the presence of a gravitational wind. The concept of
gravitational wind, recently introduced in the work [10], in the context of Zermelo navigation
data [127, 45, 61], allows a uni�ed description of all the time-optimal navigation problems
presented in Chapters 7-9, including the classical ones (MAT and ZNP). The key aspect in
describing the navigation models is the type and degree of compensation of the gravity e�ect
on the mountain slope, which then characterizes the motion equations and, consequently, the
corresponding Finsler metric for each case. We refer next to the two classical problems initially
investigated by E. Zermelo and M. Matsumoto [156, 157, 106].

ZNP refers to the determination of the time-minimizing paths of a craft moving at a
maximum speed relative to a surrounding and �owing medium, between two positions at
sea, on the river or in the air, in the presence of a variable current (wind), modelled as a
perturbing vector �eldW . The problem has been reformulated and generalized to Riemannian
manifolds (M,h) of arbitrary dimension, with solutions in Finsler geometry and spacetime
[127, 71, 45, 87, 61, 124]. A gradient vector �eld can be treated as a special type of wind in
the navigation data (h,W) [20]. This aligns with the concept of gravitational wind, which is
the component GT of the gravitational �eld. Thus, the general equation of motion is given
by vZNP = u + GT , where u denotes a self-velocity and ||u||h = 1 represents the maximum
self-speed of a sailing or �ying craft. The solution is provided by a Randers metric, whose
indicatrix is the h-circle rigidly translated by GT .

MAT is also a time-minimization problem, where the objective is to determine the fastest
paths on a slope of a mountain under the e�ect of gravity, taking into account that ascending
is more exhausting than descending [106]. In this model, the transverse (lateral) component
of the gravitational wind GT (the cross-gravity additive) i.e. Proju⊥GT is always cancelled
and, therefore, has not impact on the resultant path, where u⊥ is the direction orthogonal to
the walker's self-velocity u. At the same time, the longitudinal component of GT (the along-
gravity e�ect) i.e. ProjuGT (making evident that GT= ProjuGT+ Proju⊥GT ) is considered
to act at full strength in any direction u of motion, regardless of the wind force ||GT ||h.
This leads to the equation of motion vMAT = u+ProjuGT , impling that the velocities u and
vMAT are always collinear, which contrasts with all other navigation problems described in
this part. The solution is provided by the Matsumoto metric whose indicatrix is a limaçon in
a two-dimensional model of the slope.

A direct connection between MAT and ZNP under the in�uence of a gravitational wind is
presented in Chapter 7. Both problems are generalized and studied through a slippery slope
model that incorporates a cross-traction coe�cient, expressed by a real parameter η ∈ [0, 1].
In this model (slippery slope), the longitudinal component of the gravitational wind acts
continuously, at full strength, in any direction of motion, regardless of the wind force ||GT ||h,
whereas the lateral component is subject to compensation due to traction, described by η. In
this case, the equation of motion is given by vη = u + (1 − η)Proju⊥GT+ProjuGT , and the
solution to the problem is provided by a Finsler metric called the slippery slope metric, which
belongs to the class of general (α, β)-metrics [10].

In Chapter 8, additional models for time-optimal navigation on a mountain slope are
presented. First, a model is considered in which, unlike MAT, the transverse component of
the gravitational wind is fully taken into account in the equation of motion, while the along-
gravity e�ect is reduced completely. In this model, in�uenced solely by cross-gravity impact,
referred to as cross slope (CROSS), the resultant velocity is given by v† = u+Proju⊥GT , and
the solution to the problem is again provided by a general (α, β)-metric, called the cross-slope
metric [11]. Next, the fact that each of the two components of GT can be partially reduced
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by introducing a traction coe�cient is leveraged, rather than considering them entirely as
in MAT (where only the lateral component is taken into account) or in CROSS (where only
the longitudinal component is considered). Thus, by analogy with the slippery slope model
from Chapter 7, another model, referred to as slippery cross slope, is explored in Section 8.3,
concerning the along-gravity scaling by introducing an along-traction coe�cient η̃ ∈ [0, 1]. The
equation of motion now becomes vη̃ = u+Proju⊥GT +(1− η̃)ProjuGT and the in�uence of the
two components of the gravitational wind is somewhat reversed compared to the slippery slope
model. Moreover, the slippery cross slope problem (whose solution is given by the slippery
slope cross metric) directly connects CROSS and ZNP under the in�uence of the gravitational
wind [12].

Chapter 9 provides a much more general model of navigation on the slippery slope of the
mountain, which uni�es and extends all the navigation problems developed in Chapters 7 and
8. In this case, it is now allowed for both components of the gravitational wind, relative to
any direction u of motion, to vary simultaneously in full ranges (both traction coe�cients
η, η̃ ∈ [0, 1] are now included in the general equation of motion). This scenario re�ects the
impact of both types of traction on the slippery slope, giving a much broader meaning to the
problem of time-optimal navigation on the mountain slope [13].

A common characteristic of all the navigation problems studied in Chapters 7-9 is that their
optimal solutions are provided by complex Finsler metrics belonging to the class of general
(α, β)-metrics (the so-called (η, η̃)-slope metrics). These are obtained through a direction-
dependent deformation of the background Riemannian metric h, followed by a rigid translation
along a direction collinear with the gravitational wind.
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