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(A) Rezumat

Obiectivul acestei teze este prezentarea principalelor contribuµii ale autorului la dezvoltarea
geometriei Finsler complexe precum ³i cele referitoare la extinderi ale problemei Matsumoto
pe panta muntelui, printr-un model general de navigaµie optim , bazat pe geometria Riemann-
Finsler, stabilind leg turi directe cu problema de navigaµie Zermelo.

Pentru a studia probleme referitoare la spaµiile Landsberg complexe, proiectivitate, cur-
bur  olomorf , deform ri, etc., sunt combinate tehnici din geometria Finsler real  cu ele-
mente speci�ce spaµiilor Finsler complexe. Problemele clasice (problema Matsumoto a pantei
muntelui MAT ³i problema de navigaµie Zermelo ZNP), prezentate in literatura de speciali-
tate independent, sunt intens studiate prin intermediul geometriei Riemann-Finsler deoarece
în geometria Finsler, noµiunea de lungime de arc desemneaz  timpul ³i atunci, traiectoriile
optime ca timp sunt local, geodezicele corespunz toare metricilor Finsler. Tendinµele moderne
spre aplicaµii, impun dezvoltatrea de noi modele. Caracteristicile principale ale modelelor de
navigaµie descrise aici sunt tipul ³i gradul de compensare ale efectului gravitaµiei asupra pantei
muntelui. Acestea permit descrierea mai multor probleme de navigaµie ³i în particular, leag 
problema MAT de cea a navigaµiei Zermelo sub in�uenµa gravitaµiei.

Teza are dou  p rµi: Partea I. Câteva aspecte din geometria Finsler complex  care cuprinde
primele cinci capitole (Capitolele 1-5) ³i Partea a II-a. Extensii ale problemei Matsumoto a
pantei muntelui cu patru capitole (Capitolele 6-9). La �nalul tezei, într-un capitol separat,
sunt menµionate câteva direcµii de cercetare care au ap rut pe parcursul descrierii rezultatelor
din tez  ³i care ar putea � dezvoltate. În continuare, prezent m pe scurt �ecare parte a tezei.

Partea I. Aceast  parte cuprinde câteva probleme pe care le-am studiat în geometria Finsler
complex , rezultatele descrise aici �ind publicate în articolele [24, 25, 26, 27, 36, 23, 9, 14].
Capitolul 1 prezint  pe scurt principalele instrumente, speci�ce geometriei Finsler complexe,
care sunt utilizate de-a lungul acestei p rµi. În Capitolul 2 prezent m spaµiile Landsberg
complexe ³i Berwald generalizate, precum ³i câteva cazuri particulare de spaµii Landsberg
complexe. Între situaµiile care apar în cazul complex, comparativ cu cele din cazul real, exist 
deosebiri semni�cative, numai dac  se ia în seam  faptul c  în geometria Finsler complex 
exist  dou  derivate covariante orizontale diferite (conjugate), în particular pentru tensorii
Cartan complec³i acestea sunt Cij̄k|h ³i Cij̄k|h̄, în raport cu conexiunea Chern-Finsler. Este
important de menµionat faptul c  o condiµie de forma Clr̄h|k = 0 este echivalent  cu Clr̄h|k̄ = 0

³i mai mult, în acest caz, coe�cienµii orizontali Lijk ai conexiunii Chern-Finsler depind doar
de punctele z de pe varietate. Probabil c  acesta a fost principalul motiv care l-a determinat
pe T. Aikou s  denumeasc  spaµiile Finsler complexe care au proprietatea c  Lijk = Lijk(z),
spaµii Berwald complexe [7]. Cu toate acestea, condiµia ca un spaµiu s  �e Berwald complex
poate � exprimat  prin independeµa coe�cienµilor orizontali Gijk ai unei conexiuni liniare de
tip Berwald BΓ, de coordonatele direcµiilor tangente, doar în cazul în care spaµiul este Kähler,
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adic  atunci când Lijk = Gijk. A³adar, o extensie incontestabil  a spaµiilor Berwald complexe,
în leg tur  direct  cu BΓ, este dat  de spaµiile Berwald generalizate caracterizate prin faptul
c  funcµiileGijk depind doar de poziµia z. Pentru a studia spaµiile Landsberg complexe, utiliz m
al turi de BΓ, ³i o alt  conexiune liniar  complex  de tip Rund RΓ, amândou  �ind asociate
conexiunii neliniare canonice. Mai exact, un spaµiu Landsberg complex satisface condiµia
c

Lijk = Gijk care se refer  la coe�cienµii orizontali ai conexiunilor RΓ ³i BΓ. Pân  acum se
cunoa³te faptul c  metricile Kähler ³i Kähler-Berwald sunt metrici Landsberg complexe, dar
existenµa unor exemple de metrici Landsberg complexe care nu sunt nici Kähler-Berwald ³i
nici Kähler este o problem  deschis . Teoria general  a spaµiilor Berwald generalizate este
completat  cu câteva rezultate speciale referitoare la meticile Randers complexe în Secµiunea
2.3. Rezultatele din acest capitol sunt publicate în articolele [26, 27].

Problema metricilor Finsler complexe proiectiv echivalente este prezentat  începând cu
Capitolul 3. Secµiunea 3.2 este preponderent canalizat  pe versiunile complexe ale teoremei
Rapcsák ³i pe o soluµie Finsler complex  a problemei a patra a lui Hilbert. Secµiunea 3.3
exploreaz  proiectivit µile metricilor Randers complexe F̃ = α + |β|, un rezultat �ind dat de
condiµiile necesare ³i su�ciente ca metricile F̃ ³i α s  �e proiecctiv echivalente [25].

O analiz  mai am nunµit  a relaµiei de echivalenµ  proiectiv  a metricilor Finsler complexe
permite stabilirea existenµei unor invarianµi proiectivi de curbur  de tip Douglas ³i de tip Weyl,
în Capitolul 4. Exist  unele similitudini formale cu studiile din geometria Finsler real , dar
deosebirile dintre cazul real ³i cel complex sunt mult mai profunde. Mai exact, în Secµiunea
4.2 explorarea relaµiei de echivalenµ  proiectiv  conduce la trei invariaµi proiectivi de curbur 
de tip Douglas, iar anularea acestora caracterizeaz  spaµiile Douglas complexe. De asemenea,
aceasta permite ³i obµinerea unor propriet µi suplimentare pentru spaµiile Kähler-Berwald.
Prin intermediul unui invariant proiectiv de curbur  de tip Weyl se obµine o clasi�care a spaµiile
Kähler-Berwald de curbur  olomorf  constant  ³i anume, acestea sunt pur hermitiene, dac  au
curbura olomorf  o constant  nenul  sau non-pur hermitiene, dac  au curbura olomorf  nul .
Secµiunea 4.3 este dedicat  metricilor Finsler complexe local proiectiv plate. În Secµiunea
4.4 un detaliu esenµial este posibilitatea scrierii ecuaµiilor curbelor geodezice sub o anumit 
form  care reduce studiul spaµiilor Douglas complexe, la investigarea unor funcµii care provin
din aceste ecuaµii. În Secµiunea 4.5 teoria general  a spaµiilor Douglas complexe este aplicat 
spaµiilor Randers complexe [24, 23].

În Capitolul 5 consider m o problem  de navigaµie Zermelo pe o varietate hermitian 
(M,h) ³i ar t m c  soluµiile sunt funcµii real omogene, adic  R-metrici Finsler complexe de
tip Randers (Secµiunea 5.3). Dincolo de semni�caµia faptului c  navigaµia Zermelo furnizeaz 
o aplicaµie concret  a R-metricilor Randers, mult mai important este faptul c  prin inter-
mediul acesteia pot � construite explicit metrici non-hermitiene (numite W -deform ri Zer-
melo), obµinute prin deformarea metricii hermitiene h, printr-un câmp vectorial W. În Secµi-
unea 5.4 este prezentat acest aspect, al turi de studiul invarianµei unor propriet µi ale metri-
cilor hermitiene, ca urmare a W -deform rilor, considerând câmpuri vectoriale W particulare
[9, 14].

Partea a II-a. Aceast  parte, bazat  pe rezultatele obµinute în lucr rile [10, 20, 11, 12, 13],
prezint  o colecµie de probleme de navigaµie pe panta alunecoas  (versantul alunecos) a unui
munte, reprezentat de o varietate riemannian  (M,h) de dimensiune cel puµin doi, sub acµiunea
unor �vânturi active�, exprimate prin intermediul vântului gravitaµional (un câmp vectorial
gradient), împreun  cu doi coe�cienµi de tracµiune. Capitolul 6 puncteaz  câteva noµiuni
³i rezultate de baz  din geometria Riemann-Finsler, acestea �ind necesare în prezentarea
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celorlalte capitole.
Înainte de a prezenta Capitolele 7-9, se impune o scurt  descriere a tipurilor de prob-

leme de navigaµie optim  în raport cu timpul, studiate în literatur  prin intermediul ge-
ometriei Riemann-Finsler, considerând un caz particular, mai exact, în prezenµa unui vânt
gravitaµional. Noµiunea de vânt gravitaµional introdus  recent în lucrarea [10], în contextul
datelor de navigaµie Zermelo [127, 45, 71, 124, 61] permite o descriere unitar  a tuturor prob-
lemelor de navigaµie optim  prezentate în Capitolele 7-9, incluzându-le totodat  ³i pe cele
clasice (MAT ³i ZNP). Aspectul cheie în descrierea modelelor de navigaµie este dat de tipul
³i gradul de compensare ale efectului gravitaµiei asupra pantei muntelui care apoi, caracter-
izeaz  ecuaµiile de mi³care ³i în consecinµ , metrica Finsler corespunz toare �ec rui caz. În
continuare ne referim la cele dou  probleme clasice, investigate iniµial de E. Zermelo respectiv,
M. Matsumoto [156, 157, 106].

ZNP se refer  la determinarea celor mai rapide traiectorii ale unei ambarcaµiuni care se
deplaseaz  cu o vitez  maxim  în raport cu un mediu înconjur tor, între dou  locaµii pe
mare sau în aer, în prezenµa unui curent (vânt) variabil, exprimat printr-un câmp vectorial
W . Problema a fost reformulat  ³i generalizat  la variet µi riemanniene (M,h) de dimensiune
arbitrar , cu soluµii în geometria Finsler ³i spaµiu-timp [127, 71, 45, 87, 61, 124]. Un câmp
vectorial gradient poate � tratat ca un vânt special în datele de navigaµie (h,W ) [20]. Aceasta
se plieaz  cu noµiunea de vânt gravitaµional care este componentaGT a câmpului gravitaµional.
Atunci, ecuat, ia general  de mi³care este vZNP = u +GT , unde u reprezint  vectorul vitez 
proprie, cu viteza maxim  ||u||h = 1. Soluµia este dat  prin intermediul unei metrici Randers
a c rei indicatoare este h-cercul translatat cu GT .

MAT este tot o problem  de minimizare în raport cu timpul, �ind urm rite cele mai rapide
drumuri care pot � parcurse pe un versant al unui munte, sub efectul gravitaµiei, µinând cont
de faptul c  a urca este mai obositor decât a coborî [106]. În acest model, componenta
transversal  a vântului gravitaµional (cross-gravity additive), i.e. Proju⊥G

T (direcµia u⊥ �-
ind ortogonal  lui u) este întotdeauna anulat  ³i, prin urmare, nu are niciun impact asupra
traseului rezultant. În acela³i timp, componenta longitudinal  a vântului gravitaµional (along-
gravity e�ect), i.e. ProjuGT (�ind evident c  GT = ProjuGT+ Proju⊥G

T ) este considerat 
maxim , în orice direcµie u de mi³care, oricare ar � forµa vântului ||GT ||h. Acest fapt conduce
la ecuaµia de mi³care vMAT = u+ProjuGT ³i de asemenea, implic  faptul c  vitezele u ³i
vMAT sunt întotdeauna coliniare, ceea ce contrasteaz  cu toate celelalte probleme de navi-
gaµie descrise în aceast  parte. Soluµia este dat  prin intermediul metricii Matsumoto a c rei
indicatoare este curba limaçon, în cazul unui model 2-dimensional.

O leg tur  direct  între MAT ³i ZNP sub in�uenµa vântului gravitaµional este prezentat  în
Capitolul 7. Amândou  problemele sunt generalizate ³i studiate printr-un model al versantului
alunecos care include un coe�cient de tracµiune transversal (cross-traction) exprimat prin
intermediul unui parametru real η ∈ [0, 1]. În aceast model (slippery slope), componenta
longitudinal  a vântului gravitaµional acµioneaz  continuu, cu toat  puterea în orice direcµie
de mi³care, oricare ar � forµa vântului ||GT ||h, pe când, componenta lateral  este supus 
compens rii, din cauza tracµiunii descris  prin η. În acest caz, ecuaµia general  de mi³care
este vη = u+(1−η)Proju⊥GT+ProjuGT , iar soluµia problemei este dat  de o metrica numit 
slippery slope, aceasta �ind o (α, β)-metric  general  [10].

În Capitolul 8 sunt prezentate ³i alte modele de navigaµie optim , pe panta unui munte.
Mai întâi este considerat un model în care, spre deosebire de MAT, componenta transversal 
a vântului gravitaµional este luat  în considerare în întregime în ecuaµia de mi³care, în timp ce
componenta longitudinal  este ignorat . În acest model, acµionat doar de Proju⊥G

T (cross-
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gravity), numit CROSS, viteza rezultant  este v† = u+Proju⊥G
T , iar soluµia problemei este

dat  tot de o metric  (α, β)-general , (metrica cross-slope) [11]. Apoi este valori�cat faptul
c  �ecare dintre cele dou  componente ale lui GT pot � reduse parµial prin introducerea unui
coe�cient de tracµiune, nu doar luate în întregime ca în MAT (doar componenta lateral )
sau în CROSS (doar componenta longitudinal ). A³adar, prin analogie cu modelul slippery
slope din Chapter 7, un alt model denumit slippery cross slope este explorat în Secµiunea 8.3,
introducând un alt coe�cient de tracµiune η̃ ∈ [0, 1], numit along-traction. Ecuaµia de mi³care
este acum vη̃ = u+Proju⊥G

T + (1 − η̃)ProjuGT , iar in�uenµa celor dou  componente ale
vântului gravitaµional este aici orecum inversat , comparativ cu modelul slippery slope. Mai
mult, problema slippery cross slope (soluµia acesteia �ind dat  de metrica numit  slippery
slope cross) leag  direct CROSS ³i ZNP sub in�uenµa vântului gravitational [12].

Capitolul 9 ofer  un model mult mai general de navigaµie pe panta alunecoas  a muntelui,
care une³te ³i extinde toate problemele de navigat, ie dezvoltate în Capitolele 7 ³i 8. Acum
este admis  situaµia ca ambele componente ale vântului gravitaµional, în raport cu direcµia de
mi³care, s  varieze simultan pe intervale complete (ambii coe�cienµi de tract, iune η, η̃ ∈ [0, 1]
sunt acum inclu³i în ecuaµia general  de mi³care). Acest scenariu re�ect  impactul ambelor
tract, iuni pe versantul alunecos, ceea ce confer  un sens mult mai larg problemei de navigaµie
optim , în raport cu timpul pe panta muntelui [13].

Caracteristica comun  tuturor problemelor de navigaµie (studiate în Capitolele 7-9) este
c  soluµiile optime ale acestora sunt furnizate de metrici Finsler complexe din clasa (α, β)-
metricilor generale (a³a-numitele (η, η̃)-slope metrics). Acestea sunt obµinute printr-o defor-
mare a metricii riemanniene h, dependent  de direcµia de mi³care u, urmat  apoi de o translaµie
rigid , dat  de o direcµie coliniar  vântului gravitaµional.
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(A-i) Summary

The objective of this thesis is to present the author's main contributions to the development
of complex Finsler geometry and to the extensions of Matsumoto's slope-of-a-mountain prob-
lem through a general model of time-optimal navigation based on Riemann-Finsler geometry,
thereby establishing direct links with Zermelo's navigation problem.

In order to address some aspects related to complex Landsberg spaces, projectivity, holo-
morphic curvature, deformation, etc., di�erent techniques from real Finsler approaches are
applied, combined with the speci�c tools of complex Finsler geometry. The classic problems,
Matsumoto's slope-of-a-mountain problem (MAT) and Zermelo's navigation problem (ZNP),
presented independently in the literature, have been intensively explored within the framework
of Riemann-Finsler geometry. The key argument is that in Finsler geometry, the notion of
arc length can be interpreted as time, thus making the time-optimal paths locally the Finsler
geodesics. The modern trend toward applications requires the development of new models.
The main features of the navigation models described here are the type and range of compen-
sation of the gravity e�ects on a mountain slope, which facilitate the description of various
navigation problems and, in particular, link MAT and ZNP under the in�uence of gravity.

The thesis is divided into two parts: Part I. Di�erent aspects of complex Finsler geometry
which includes the �rst �ve chapters (Chapters 1-5) and Part II. Extensions of Matsumoto's
slope-of-a-mountain problem encompassing four chapters (Chapters 6-9). At the end, a distinct
chapter outlines some future research directions based on the topics discussed in the preceding
chapters. Below, a brief description of each part of the thesis is presented.

Part I. This part comprises a few problems that we have studied in complex Finsler geometry,
drawing heavily on our published papers [24, 25, 26, 27, 36, 23, 9, 14]. Chapter 1 brie�y
presents the main tools speci�c to complex Finsler geometry that are utilized throughout
this section. In Chapter 2, we discuss complex Landsberg and generalized Berwald spaces,
including particular instances of complex Landsberg spaces. Notable di�erences arise when
compared to real reasoning, primarily due to the presence of two distinct horizontal covariant
derivatives in complex Finsler geometry, speci�cally for Cartan tensors, one has Cij̄k|h and
Cij̄k|h̄ with respect to Chern-Finsler connection. It is worthwhile to mention that the condition
Clr̄h|k = 0 is equivalent to Clr̄h|k̄ = 0 and moreover, the horizontal coe�cients Lijk of the Chern-
Finsler connection depend solely on the position coordinate z, in this case. This observation
likely led T. Aikou to designate the complex Finsler spaces with Lijk = Lijk(z) as complex
Berwald spaces [7]. However, the de�ning characteristic of a complex Berwald space is that the
horizontal coe�cients Gijk of a complex linear connection of Berwald type BΓ are independent
on the �ber coordinates, only within the Kähler context when Lijk = Gijk. Consequently, an
unquestionable extension of complex Berwald spaces, directly linked to BΓ, is represented by
a generalized Berwald space, characterized by Gijk being dependent only on the position z.
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To manage complex Landsberg spaces, another complex linear connection of Rund type RΓ is
utilized alongsideBΓ, both tied to the canonical complex nonlinear connection. More precisely,

a complex Landsberg space maintains the relationship
c

Lijk = Gijk, which pertains to the
horizontal coe�cients of connections RΓ and BΓ. To date, Kähler and Kähler-Berwald metrics
are necessarily complex Landsberg metrics, yet the existence of a complex Landsberg metric
(non-pure Hermitian), which is neither Kähler-Berwald nor Kähler, remains an unresolved
issue. The general theory concerning generalized Berwald spaces is complemented by some
special outcomes for the complex Randers metrics in Section 2.3. The results in this chapter
are contained in the papers [26, 27].

The discussion on projectively related complex Finsler metrics begins in Chapter 3. Section
3.2 primarily delves into the complex variants of Rapcsák's theorem and develops a complex
Finsler solution for Hilbert's fourth problem. Section 3.3 examines the projectivities of com-
plex Randers metrics, F̃ = α + |β|, presenting the necessary and su�cient conditions for the
metrics F̃ and α to be projectively related [25].

A more detailed analysis of the projective change relationship of complex Finsler metrics
in Chapter 4 allows for the establishment of the existence of projective curvature invariants of
Douglas and Weyl types. There are some formal similarities with studies from real Finsler ge-
ometry, but the di�erences between the real and complex cases are much more profound. More
precisely, in Section 4.2, exploring the projective change relationship leads to three projective
curvature invariants of Douglas type, and the vanishing of these characterizes complex Douglas
spaces. This also allows for the derivation of additional properties for Kähler-Berwald spaces.
Through a projective curvature invariant of Weyl type, a classi�cation of Kähler-Berwald
spaces of constant holomorphic curvature is achieved, whereby these spaces are either pure
Hermitian if they have a non-null constant holomorphic curvature or non-pure Hermitian if
they have null holomorphic curvature. Section 4.3 is dedicated to locally projectively �at
complex Finsler metrics. In Section 4.4, an essential detail is the possibility of rewriting the
equations of geodesic curves in a form that simpli�es the study of complex Douglas spaces
to the investigation of certain functions that arise from these equations. In Section 4.5, the
general theory of complex Douglas spaces is applied to complex Randers spaces [24, 23].

In Chapter 5, we consider a problem of Zermelo navigation on a Hermitian manifold (M,h),
and we show that the solutions are real homogeneous functions, namely R-complex Finsler
metrics of Randers type (Section 5.3). Beyond the signi�cance of the fact that Zermelo
navigation provides a concrete application for the R-complex Randers metrics, much more
important is the fact that through it, non-pure Hermitian metrics (named W -Zermelo defor-
mations) can be explicitly constructed. These are obtained by deforming the pure Hermitian
metric h through a vector �eld W. Section 5.4 presents this aspect, alongside the study of the
invariance of certain properties of the pure Hermitian metrics as a result of W -deformations,
considering particular vector �elds W [9, 14].

Part II. This part, based on the results obtained in our works [10, 20, 11, 12, 13], presents a
collection of navigation problems on a slippery mountain slope represented by a Riemannian
manifold (M,h) of arbitrary dimension (at least 2), under the in�uence of "active winds",
expressed through the gravitational wind (a gradient vector �eld) along with two traction co-
e�cients. Chapter 6 outlines several basic notions and results from Riemann-Finsler geometry,
which are necessary for the presentation of the subsequent chapters.

Before presenting Chapters 7-9, a brief description of the types of time-optimal navigation
problems studied in the literature through Riemann-Finsler geometry is necessary, consider-
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ing a particular case, speci�cally, in the presence of a gravitational wind. The concept of
gravitational wind, recently introduced in the work [10], in the context of Zermelo navigation
data [127, 45, 61], allows a uni�ed description of all the time-optimal navigation problems
presented in Chapters 7-9, including the classical ones (MAT and ZNP). The key aspect in
describing the navigation models is the type and degree of compensation of the gravity e�ect
on the mountain slope, which then characterizes the motion equations and, consequently, the
corresponding Finsler metric for each case. We refer next to the two classical problems initially
investigated by E. Zermelo and M. Matsumoto [156, 157, 106].

ZNP refers to the determination of the time-minimizing paths of a craft moving at a
maximum speed relative to a surrounding and �owing medium, between two positions at
sea, on the river or in the air, in the presence of a variable current (wind), modelled as a
perturbing vector �eldW . The problem has been reformulated and generalized to Riemannian
manifolds (M,h) of arbitrary dimension, with solutions in Finsler geometry and spacetime
[127, 71, 45, 87, 61, 124]. A gradient vector �eld can be treated as a special type of wind in
the navigation data (h,W) [20]. This aligns with the concept of gravitational wind, which is
the component GT of the gravitational �eld. Thus, the general equation of motion is given
by vZNP = u + GT , where u denotes a self-velocity and ||u||h = 1 represents the maximum
self-speed of a sailing or �ying craft. The solution is provided by a Randers metric, whose
indicatrix is the h-circle rigidly translated by GT .

MAT is also a time-minimization problem, where the objective is to determine the fastest
paths on a slope of a mountain under the e�ect of gravity, taking into account that ascending
is more exhausting than descending [106]. In this model, the transverse (lateral) component
of the gravitational wind GT (the cross-gravity additive) i.e. Proju⊥G

T is always cancelled
and, therefore, has not impact on the resultant path, where u⊥ is the direction orthogonal to
the walker's self-velocity u. At the same time, the longitudinal component of GT (the along-
gravity e�ect) i.e. ProjuGT (making evident that GT= ProjuGT+ Proju⊥G

T ) is considered
to act at full strength in any direction u of motion, regardless of the wind force ||GT ||h.
This leads to the equation of motion vMAT = u+ProjuGT , impling that the velocities u and
vMAT are always collinear, which contrasts with all other navigation problems described in
this part. The solution is provided by the Matsumoto metric whose indicatrix is a limaçon in
a two-dimensional model of the slope.

A direct connection between MAT and ZNP under the in�uence of a gravitational wind is
presented in Chapter 7. Both problems are generalized and studied through a slippery slope
model that incorporates a cross-traction coe�cient, expressed by a real parameter η ∈ [0, 1].
In this model (slippery slope), the longitudinal component of the gravitational wind acts
continuously, at full strength, in any direction of motion, regardless of the wind force ||GT ||h,
whereas the lateral component is subject to compensation due to traction, described by η. In
this case, the equation of motion is given by vη = u + (1 − η)Proju⊥G

T+ProjuGT , and the
solution to the problem is provided by a Finsler metric called the slippery slope metric, which
belongs to the class of general (α, β)-metrics [10].

In Chapter 8, additional models for time-optimal navigation on a mountain slope are
presented. First, a model is considered in which, unlike MAT, the transverse component of
the gravitational wind is fully taken into account in the equation of motion, while the along-
gravity e�ect is reduced completely. In this model, in�uenced solely by cross-gravity impact,
referred to as cross slope (CROSS), the resultant velocity is given by v† = u+Proju⊥G

T , and
the solution to the problem is again provided by a general (α, β)-metric, called the cross-slope
metric [11]. Next, the fact that each of the two components of GT can be partially reduced
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by introducing a traction coe�cient is leveraged, rather than considering them entirely as
in MAT (where only the lateral component is taken into account) or in CROSS (where only
the longitudinal component is considered). Thus, by analogy with the slippery slope model
from Chapter 7, another model, referred to as slippery cross slope, is explored in Section 8.3,
concerning the along-gravity scaling by introducing an along-traction coe�cient η̃ ∈ [0, 1]. The
equation of motion now becomes vη̃ = u+Proju⊥G

T +(1− η̃)ProjuGT and the in�uence of the
two components of the gravitational wind is somewhat reversed compared to the slippery slope
model. Moreover, the slippery cross slope problem (whose solution is given by the slippery
slope cross metric) directly connects CROSS and ZNP under the in�uence of the gravitational
wind [12].

Chapter 9 provides a much more general model of navigation on the slippery slope of the
mountain, which uni�es and extends all the navigation problems developed in Chapters 7 and
8. In this case, it is now allowed for both components of the gravitational wind, relative to
any direction u of motion, to vary simultaneously in full ranges (both traction coe�cients
η, η̃ ∈ [0, 1] are now included in the general equation of motion). This scenario re�ects the
impact of both types of traction on the slippery slope, giving a much broader meaning to the
problem of time-optimal navigation on the mountain slope [13].

A common characteristic of all the navigation problems studied in Chapters 7-9 is that their
optimal solutions are provided by complex Finsler metrics belonging to the class of general
(α, β)-metrics (the so-called (η, η̃)-slope metrics). These are obtained through a direction-
dependent deformation of the background Riemannian metric h, followed by a rigid translation
along a direction collinear with the gravitational wind.
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(B-i) Scienti�c and professional
achievements

Introduction

The scienti�c results included here represent a collection of outcomes of the author in the
complex and real Finsler geometries. Th presentation is structured into two parts: Part I.
Di�erent aspects of complex Finsler geometry which comprises the �rst �ve chapters (Chapters
1-5) and Part II. Extensions of Matsumoto's slope-of-a-mountain problem with four chapters
(Chapters 6-9), which aim to show separately the contributions of the author in both branches
of Finsler geometry (complex and real). Although somewhat unusual, we start (in Part I) by
presenting some results obtained in complex Finsler geometry - the principal background of
the author. Motivated by the modern trend toward applications, in recent years the author
has expanded her research area to also include the older and more widely known branch of
Finsler geometry, namely the real Finsler geometry, proposing an original idea that generalizes
the famous Matsumoto's slope-of-a-mountain problem (in Part II).

Part I. Di�erent aspects of complex Finsler geometry

Professor Shiing-Shen Chern wrote [70]:

�Complex Finsler geometry is extremely beautiful. Again the bundle of line ele-
ments PTM plays the important role. The scalar product on the pulled-back TM
gives rise to a Hermitian structure on the complexi�cation of the latter. Here the
geometrical properties mix well with the complex structure; connection forms are
of type (1, 0) and curvature forms are of type (1, 1). A real valued holomorphic
curvature, as a function on PTM , can be introduced�. 1

Bearing in mind the perspective of S. S. Chern, we tried to introduce general themes from
real Finsler geometry into complex Finsler geometry. Nevertheless, there are noteworthy
di�erences and speci�c tools when compared to the real reasoning, all these being emphasized
in each chapter of Part I. Certainly, as expected, our study is far from being complete. Here
we point out just some of the main problems that we have approached in complex Finsler
geometry, mostly based on our papers [24, 25, 26, 27, 36, 23, 40, 14]. More precisely, in this
part, we present the complex Landsberg and generalized Berwald spaces as well as a few
particular cases of complex Landsberg spaces for which the unicorn problem has no solution
(Chapter 2). The problem of the projectively related complex Finsler metrics is addressed

1Shiing-Shen Chern, Finsler Geometry Is Just Riemannian Geometry without the Quadratic Restriction,
Notices of the AMS, September 1996.
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in Chapter 3, mainly focused on the complex versions of Rapcsák's theorem and a complex
Finsler solution of Hilbert's fourth problem. Making full use of the projective changes of
the complex Finsler metrics, in Chapter 4 we present a few projective curvature invariants
of Douglas and Weyl type which then allow us to point out some complex Finsler spaces of
constant holomorphic curvature along with the complex Douglas spaces. At the end of this
part, in Chapter 5 we consider Zermelo's navigation problem on a Hermitian manifold, trying
to indicate how some properties of a Hermitian metric are a�ected by the Zermelo deformation
under action of some special winds.

There is not enough space here to prove with other results that our contribution in complex
Finsler �eld is relevant (see for example: [31, 32, 34] for complex Cartan spaces, [38, 37,
28] for η-Einstein spaces and holomorphic sectional and bisectional curvatures, [115, 29, 30]
for a complex Finsler approach of gravity, [14, 15] for complex Finsler solutions of Zermelo
navigation problem on Hermitian manifolds). However, from our point of view the presentation
of this part seems natural.

Part II. Extensions of Matsumoto's slope-of-a-mountain problem

Professor Paul Finsler answered in 1969 [106], [107, �16]:

�In the astronomy we measure the distance in a time, in particular, in the light-
year. When we take a second as the unit, the unit surface is a sphere with the radius
of 300,000 km. To each point of our space is associated such a sphere; this de�nes
the distance (measured in a time) and the geometry of our space is the simplest
one, namely, the euclidean geometry. Next, when a ray of light is considered as
the shortest line in the gravitational �eld, the geometry of our space is Riemannian
geometry. Furthermore, in an anisotropic medium the speed of the light depends
on its direction, and the unit surface is not any longer a sphere. Now, on a slope
of the earth surface we sometimes measure the distance in a time, namely, the
time required such as seen on a guidepost. Then the unit curve, taken a minute as
the unit, will be a general closed curve without centre, because we can walk only a
shorter distance in an uphill road than in a downhill road. This de�nes a general
geometry, although it is not exact. The shortest line along which we can reach the
goal, for instance, the top of a mountain as soon as possible will be a complicated
curve.� 2

The idea for the results presented in this part comes from two iconic problems: Zermelo's
navigation problem (ZNP) and Matsumoto's slope-of-a-mountain problem (MAT) which are
continuously topical issues and examples in the research area of Riemann-Finsler geometry
because of their intuitively clear formulation, modelling and signi�cant applications in physics.
The former, which was stated originally much earlier and solved by Ernst Zermelo, was in-
tended initially to determine the shortest time paths of an object that moves at a constant
self-speed on the Euclidean plane in the presence of an external force like wind or water
current [157]. In recent years, the problem was generalized substantially and considered on
Riemannian manifolds of arbitrary dimension in purely geometric formulation in the presence
of weak vector �elds [127, 45, 71, 124]. Furthermore, the study was extended for stronger
winds including some investigations on global solutions [154, 61]. The latter was investigated

2The answer of P. Finsler to the question of M. Matsumoto regarding �models of the Finsler spaces�.
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for the �rst time by Makoto Matsumoto (inspired by the answer of P. Finsler [106], [107, �16])
and also refers to the fastest trajectories (time geodesics) of a person who walks or runs on
a mountain slope under the in�uence of gravity, taking into consideration that walking uphill
is more tiring than walking downhill (see also [62, 63, 158]). The corresponding research on
the issues in weak vector �elds has led to the solutions provided by special Finsler metrics,
namely, of Randers and Matsumoto type, respectively. It is worth pointing out that both
issues are presented in literature as two di�erent problems (see for example [44, Sec. 1.1.1]),
which thus far have been described and studied separately, although their solutions belong to
the class of (α, β)-metrics. In particular, the geometric construction of an indicatrix based
on a rigid translation of a background Riemannian metric in Zermelo's navigation problem
di�ers considerably from a direction-dependent deformation included in the Matsumoto prob-
lem. This fact is related directly to the essential di�erence in the equations of motion that
underlie ZNP and MAT.

The general aim of Part II, focused on our results obtained in [10, 20, 11, 12, 13], is
to present a set of navigation problems on a slippery mountain slope that is a Riemannian
manifold under the action of some active winds, expressed in terms of a gravitational wind and
two traction coe�cients (separately or even together). A crucial role in our study is played by
the gravitational wind, which lets us collect and describe all time-optimal problems mentioned
in this part, including the classical ones (ZNP and MAT), in a convenient, uni�ed and e�ective
manner. The key aspect we want to emphasize is the type and range of compensation of the
gravity e�ects in the described models of the mountain slopes, which then characterize the
general equations of motion and, consequently, the related Finsler metric in each case. Our
study generalizes Matsumoto's initial exposition [106], whilst, at the same time, creating a
direct link between MAT and ZNP. In fact, these two classical problems in Finsler geometry
become the particular and boundary cases of our study. The investigation presented also
provides new applications of the respective general (α, β)-metric that are described in this
work. More precisely, we formulate and solve the slippery slope problem (Chapter 7) and the
slippery-cross-slope problem that includes the navigation problem under the cross gravitational
wind (Chapter 8). Chapter 9 uni�es and extends all navigation problems developed in the
previous chapters, by the most general model of a slippery mountain slope. The key detail is
that here both the transverse and longitudinal gravity-additives with respect to direction of
motion are admitted to vary simultaneously in full ranges.
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Chapter 1

Rudiments of complex Finsler
geometry

This chapter brie�y recalls some basic notions about complex Finsler geometry with a few of
its tools (e.g., Chern-Finsler, Berwald and Rund complex linear connections) that are needed
for presenting the next chapters. For more details we specify [1, 116, 5, 6]. In particular, we
focus on some important properties of the aforementioned complex linear connections that
were proved in our paper [26].

1.1 Complex Finsler spaces

Let M be an n-dimensional complex manifold, z = (zk)k=1,n be the complex coordinates in a
local chart. Note that by k = 1, n we mean k = 1, ..., n.

The complexi�ed TCM of the real tangent bundle TRM splits into the sum of holomorphic
tangent bundle T ′M and its conjugate T ′′M . The bundle T ′M (π : T ′M →M) is itself a com-
plex manifold and the local coordinates in a local chart will be denoted by u = (zk, ηk)k=1,n.

These are changed into (z′k, η′k)k=1,n by the rules

z′k = z′k (z) and η′k =
∂z′k

∂zj
ηj . (1.1)

A complex Finsler space is a pair (M,F ), where F : T ′M → R+ is a continuous function
satisfying the conditions:
i) L = F 2 is smooth on T̃ ′M = T ′M\{0};
ii) F (z, η) ≥ 0 for all (z, η) ∈ T ′M ; the equality holds if and only if η = 0;

iii) F (z, λη) = |λ|F (z, η) for all (z, η) ∈ T ′M and λ ∈ C, λ ̸= 0;
iv) the Hermitian matrix

(
gij̄(z, η)

)
is positive de�nite, where gij̄ =

∂2L
∂ηi∂η̄j

is the fundamental
metric tensor. Equivalently, this means that the indicatrix of F is strongly pseudoconvex.

A function f on T ′M is called (p, q)-homogeneous with respect to η and η̄, respectively if
f(z, λη) = λpλ̄qf(z, η), for any λ ∈ C, λ ̸= 0. By Euler's theorem, this homogeneity condition
is equivalent to ∂f

∂ηk
ηk = pf and ∂f

∂η̄k
η̄k = qf. Consequently, from iii) we have

∂L

∂ηk
ηk =

∂L

∂η̄k
η̄k = L,

∂gij̄
∂ηk

ηk =
∂gij̄
∂η̄k

η̄k = 0 and L = gij̄η
iη̄j .

9
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Thus, L = F 2 is (1, 1)-homogeneous and gij̄(z, η) are (0, 0)-homogeneous with respect to η
and η̄, respectively.

Roughly speaking, the geometry of a complex Finsler space consists of the study of the
geometric objects of the complex manifold T ′M endowed with the Hermitian metric structure
de�ned by gij̄ . Therefore, the �rst step is to study the sections of the complexi�ed TC(T ′M)
of the real tangent bundle TR(T ′M), which is decomposed in the sum

TC(T
′M) = T ′(T ′M)⊕ T ′′(T ′M).

Let V T ′M = kerπ∗ ⊂ T ′(T ′M) be the vertical sub-bundle, locally spanned by {∂̇k = ∂
∂ηk

},
and V T ′′M be its conjugate. A natural local frame for T ′

u(T
′M) is { ∂

∂zk
, ∂̇k} and the Jacobi

matrix of the above transformations (1.1) gives the changinig rules for ∂
∂zk

and ∂̇k. A complicate
form of the change rule for ∂

∂zk
leads to idea of complex nonlinear connection, brie�y (c.n.c.),

which is a tool "to linearise" this geometry. More precisely, a (c.n.c.) refers to the horizontal
sub-bundle HT ′M in T ′(T ′M), such that T ′(T ′M) = HT ′M ⊕ V T ′M and HuT

′M is locally
spanned by { δ

δzk
= ∂

∂zk
−N j

k
∂
∂ηj

}, where N j
k(z, η) are the coe�cients of the (c.n.c.), that hold

the certain rule

N ′i
j

∂z′j

∂zk
=
∂z′i

∂zj
N j
k −

∂2z′i

∂zj∂zk
ηj . (1.2)

The pair {δk = δ
δzk
, ∂̇k = ∂

∂ηk
} is called the adapted frame of the (c.n.c.) which obey the

change rules δk = ∂z′j

∂zk
δ′j and ∂̇k = ∂z′j

∂zk
∂̇′j . By conjugation everywhere, it results an adapted

frame {δk̄, ∂̇k̄} on T ′′
u (T

′M). The dual adapted frames are {dzk, δηk} and {dz̄k, δη̄k}.
A section on T ′(T ′M), locally expressed as follows

S = ηk
∂

∂zk
− 2Gk(z, η)

∂

∂ηk
, (1.3)

is a complex spray, where Gk denote the spray coe�cients (see [116]). Under the changes of
complex coordinates on T ′M, the coe�cients Gk of the spray S hold the rule

2G′i = 2Gk
∂z′i

∂zk
− ∂2z′i

∂zj∂zk
ηjηk. (1.4)

The notions of complex spray and (c.n.c.) are interdependent, one determining the other.
Di�erentiating (1.4) with respect to ηj , it follows that the functions N i

j = ∂Gi

∂ηj
satisfy the

rule (1.2), and hence N i
j de�ne a nonlinear connection. Conversely, any (c.n.c.) determines a

complex spray. Indeed, a simple computation shows that if N i
j are the coe�cients of a (c.n.c.),

then 1
2N

i
j η

j satisfy (1.4) and thus, they de�ne a complex spray.
Certainly, a main problem in this geometry is to determine a (c.n.c.) related only to the

fundamental function of the complex Finsler space (M,F ) and corresponding to it the action
of a derivative law D on the sections of TC(T ′M). A well-known solution is provided by
Chern-Finsler (c.n.c.), with the local coe�cients

N i
j = gmi

∂glm
∂zj

ηl,

which are (1, 0)-homogeneous with respect to η and η̄, respectively ((∂̇kN i
j)η

k = N i
j and

(∂̇k̄N
i
j)η̄

k = 0), being a main tool in complex Finsler geometry (see [116]). From now on, by
δk we mean the adapted frame with respect to the Chern-Finsler (c.n.c.).

10
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Corresponding to Chern-Finsler (c.n.c.), there exists a good complex vertical connection
D called Chern-Finsler connection in [1] or Hermitian-Finsler connection in [5, 6]. This means
that it is of (1, 0)-type (i.e. DJXY = JDXY, for any section X on T ′(T ′M) and for any
vertical vector �eld Y , where J is the natural complex structure on TCM) and metrical with
respect to the Hermitian structure. Following the notations from [116], the Chern-Finsler
connection is locally given by CFΓ = (N i

j , L
i
jk, L

ı
jk
, Cijk, C

ı
jk
), where

N i
j = Liljη

l, Lijk = gliδkgjl = ∂̇jN
i
k, Cijk = gli∂̇kgjl, Lı

jk
= Cı

jk
= 0 (1.5)

and Dδkδj = Lijkδi, Dδkδj̄ = Lı
jk
δı̄, D∂̇k

∂̇j = Cijk∂̇i, D∂̇k
∂̇j̄ = Cı

jk
∂̇ı̄.

Denoting by ” p ” , ” | ” , ” p̄ ” and ”̄|”, the h-, v-, h-, v- covariant derivatives with respect
to Chern-Finsler connection, respectively, it turns out the following relations

ηi|k = ηi|k = ηi|k = 0, ηi|k = δik, (1.6)

gij|k = gij|k = gij |k = gij |k = 0.

Now, we consider the complex Cartan tensors: Cij̄k = ∂̇kgij̄ and Cij̄k̄ = ∂̇k̄gij̄ .

Lemma 1.1.1. For any complex Finsler space (M,F ), the following statements hold:
i) Clr̄h|k = (∂̇hL

i
lk)gir̄;

ii) Clr̄h̄|k = (∂̇h̄L
i
lk)gir̄ + (∂̇h̄N

i
k)Cir̄l.

Proof. Di�erentiating N i
kgir̄ =

∂gjr̄
∂zk

ηj with respect to ηl, this gives

Lilkgir̄ =
∂glr̄
∂zk

−N i
kCir̄l. (1.7)

Now, di�erentiating in (1.7) with respect to ηh it results i), and then with respect to η̄h, it
leads to ii).

Recall that Ri
jhk

= −δhL
i
jk − (δhN

l
k)C

i
jl denote the hh̄ - curvatures coe�cients of Chern-

Finsler connection. According to [1, p. 108] and [116, p. 81], the holomorphic curvature of
the complex Finsler space (M,F ) in direction η is de�ned by

KF (z, η) =
2

L2
Rr̄jk̄hη̄

rηj η̄kηh, (1.8)

where Rr̄jk̄h = Ri
jk̄h
gir̄.

In [1]'s terminology, the complex Finsler space (M,F ) is strongly Kähler i� T ijk = 0,

Kähler i� T ijkη
j = 0 and weakly Kähler i� gilT

i
jkη

jηl = 0, where T ijk = Lijk − Likj . In [65]
it is proved that strongly Kähler and Kähler notions actually coincide. We note that in the
particular case of the complex Finsler metrics which come from Hermitian metrics on M,
so-called pure Hermitian metrics in [116] (i.e. gij = gij(z)), all these types of Kähler coincide.

11
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1.2 Connections on a complex Finsler space

As already emphasized in the previous section, between a complex spray and a (c.n.c.) there
exists an interdependence, one determining the other. In [116] it is proved that the Chern-
Finsler (c.n.c.) does not generally come from a complex spray, excepting the case when the
complex metric is Kähler. On the other hand, its local coe�cients Nk

j = gm̄k ∂glm̄
∂zj

ηl always
determine a complex spray with the coe�cients Gi = 1

2N
i
jη
j , which are (2, 0)-homogeneous

with respect to η and η̄, respectively ((∂̇kGi)ηk = 2Gi and (∂̇k̄G
i)η̄k = 0). Furthermore, Gi

induce a (c.n.c.) with the local coe�cients denoted by
c

N i
j = ∂̇jG

i and called canonical in
[116], where it is proved that the canonical (c.n.c.) coincides with Chern-Finsler (c.n.c.) if and
only if the complex Finsler metric is Kähler.

Further on, we consider the frame {
c
δk, ∂̇k} with respect to the canonical (c.n.c.), where

c
δk = ∂

∂zk
−

c

N j
k ∂̇j , as well as the dual frame {dzk,

c
δηk}, where

c
δηk = dηk +

c

Nk
j dz

j . Moreover,
we associate to the canonical (c.n.c.) two complex linear connections. One is of Berwald type

BΓ = (
c

N i
j , G

i
jk, G

i
jk̄
, 0, 0) having the connection form

ωij(z, η) = Gijkdz
k +Gijk̄dz̄

k, (1.9)

where Gijk = ∂̇k
c

N i
j = Gikj and G

i
jk̄

= ∂̇k̄

c

N i
j . Another is a complex linear connection of Rund

type RΓ = (
c

N i
j ,

c

Lijk,
c

Li
jk̄
, 0, 0), where

c

Lijk = 1
2g
li(

c
δkgjl +

c
δjgkl) and

c

Li
jk̄

= 1
2g
li(

c
δk̄gjl −

c
δl̄gjk).

We note that RΓ is only h-metrical and BΓ is neither h- nor v-metrical (for more details

see [116]) and the spray coe�cients hold the relations 2Gi = N i
jη
j =

c

N i
jη
j = Gijkη

jηk and
c
δj = δj − (

c

Nk
j −Nk

j )∂̇k.

A few additional properties are speci�c to the Kähler case. Namely, under Kähler assump-

tion one has that
c
δj = δj ([116], p. 68) and thus,

c
δjgkh̄ =

c
δkgjh̄. If we contract the last

equality with gı̄j it results gı̄j(
c
δjgkh̄ −

c
δkgjh̄) = 0, that is

c

Lı̄
h̄j

= 0. By conjugation, it follows

that
c

Li
hj̄

= 0. Also, in the Kähler case one has Lijk =
c

Lijk = Gijk.

Further on, the tools related to the Berwald and Rund connections will be speci�ed every-

where by a centred superscript, like above (e.g.
c
δk,

c

Lijk, XB

| k
, etc.), while for the Chern-Finsler

connection we keep the initial generic notation, without centred superscript (e.g. δk, Lijk, X|k,
etc.).

Lemma 1.2.1. For any complex Finsler space (M,F ), the following statements hold:
i) Gi

jk̄
η̄k = 0;

ii) g
lr̄

B

| h
+ g

hr̄
B

| l
+Gm̄r̄hglm̄ +Gm̄r̄lghm̄ = −C

lr̄h
B

| 0
;

iii) 2(∂̇h̄G
i)gir̄ = C

0r̄h̄
B

| 0
= C0r̄h̄|0;

iv) C
ij̄h

B

| k
= ∂̇h(g

ij̄
B

| k
) + (∂̇hG

l
ik)glj̄ + (∂̇hG

m̄
j̄k
)gim̄;

v) C
ir̄h̄

B

| k
= ∂̇h̄(g

ij̄
B

| k
) + (∂̇h̄G

l
ik)glj̄ + (∂̇h̄G

m̄
j̄k
)gim̄ +Gl

kh̄
Cij̄l −Gm̄

h̄k
Cij̄m̄,

12
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where the index 0 means the contraction by the �ber coordinate η and
B
p is h-covariant derivative

with respect to BΓ.

Proof. i) Gi
jk̄
η̄k = ∂̇j [(∂̇k̄G

i)η̄k] = 1
2 ∂̇j [(∂̇k̄N

i
l )η

lη̄k] = 1
2 ∂̇j [∂̇k̄(g

m̄i ∂gsm̄
∂zl

ηs)η̄kηl] = 0.

ii) Gi = 1
2N

i
jη
j = 1

2g
m̄i ∂gjm̄

∂zh
ηjηk can be rewritten as follows

Gigir̄ =
1

2

∂gjr̄
∂zk

ηjηk. (1.10)

Di�erentiating (1.10) with respect to ηl, it yields

c

N i
l gir̄ =

1

2

(
∂glr̄
∂zk

+
∂gkr̄
∂zl

)
ηk −GiCir̄l. (1.11)

Di�erentiating (1.11) with respect to ηh it results

Gihlgir̄ =
1

2

(
∂glr̄
∂zh

+
∂ghr̄
∂zl

)
+

1

2

∂Clr̄h
∂zk

ηk −Gi(∂̇hCir̄l)−
c

N i
hCir̄l −

c

N i
lCir̄h, (1.12)

which leads to

−(
c
δkClr̄h)η

k +
c

N i
hCir̄l +

c

N i
lCir̄h =

c
δhglr̄ +

c
δlghr̄ − 2Gihlgir̄. (1.13)

Now, taking into account that g
lr̄

B

| h
=

c
δhglr̄ −Gilhgir̄ −Gm̄r̄hglm̄ and i) it turns out ii).

iii) Di�erentiating (1.10) with respect to η̄h, it turns out that

2(∂̇h̄G
i)gir̄ =

∂Clr̄h̄
∂zk

ηlηk −
c

N i
kη
kCir̄h̄. (1.14)

But, one has also ∂̇l(Cjs̄h̄η
j) = (∂̇lCjs̄h̄)η

j + Cls̄h̄ = ∂̇h̄(Cjs̄lη
j) + Cls̄h̄ = Cls̄h̄. Thus, using

(1.14) and N i
jη
j =

c

N i
jη
j we obtain 2(∂̇h̄G

i)gir̄ =
c
δk(Clr̄h̄η

l)ηk = δk(Clr̄h̄η
l)ηk, which together

with i) and the h-covariant derivative rule with respect to Chern-Finsler connection gives iii).

iv) Using again g
ij̄

B

| k
=

c
δkgij̄ −Glikglj̄ −Gm̄

j̄k
gim̄, which di�erentiated now with respect to ηh,

gives

∂̇h(g
ij̄

B

| k
) =

∂Cij̄h

∂zk
−GlhkCij̄l −

c

N l
k(∂̇hCij̄l)− (∂̇hG

l
ik)glj̄ −GlikClj̄h − (∂̇hG

m̄
j̄k
)gim̄ −Gp̄

j̄k
Cim̄h

=
c
δkCij̄h −GlhkCij̄l −GlikClj̄h −Gm̄

j̄k
Cim̄h − (∂̇hG

l
ik)glj̄ − (∂̇hG

m̄
j̄k
)gim̄

= C
ij̄h

B

| k
− (∂̇hG

l
ik)glj̄ − (∂̇hG

m̄
j̄k
)gim̄,

that is iv).

13
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For v) we compute

∂̇h̄(g
ij̄

B

| k
) =

∂Cij̄h̄

∂zk
−Gl

kh̄
Cij̄l −N l

k(∂̇lCij̄h̄)− (∂̇h̄G
l
ik)glj̄ −GlikClj̄h̄ − (∂̇h̄G

m̄
j̄k
)gim̄ −Gm̄

j̄k
Cip̄m̄

= δkCij̄h̄ −GlikClj̄h̄ −Gm̄
h̄k
Cij̄m̄ −Gm̄

j̄k
Cim̄h̄ −Gl

kh̄
Cij̄l

+Gm̄
h̄k
Cij̄m̄ − (∂̇h̄G

l
ik)glj̄ − (∂̇h̄G

m̄
j̄k
)gim̄

= C
ij̄h̄

B

| k
−Gl

kh̄
Cij̄l +Gm̄

h̄k
Cij̄m̄ − (∂̇h̄G

l
ik)glj̄ − (∂̇h̄G

m̄
j̄k
)gim̄.
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Chapter 2

On complex Landsberg spaces

This chapter presents the concepts of complex Landsberg and generalized Berwald spaces
that were �rst introduced by us in [26], as well as a few of their subclasses. More precisely,
the intersection of these two sets of complex Finsler spaces provides the set of G-Landsberg
spaces that includes two other, strong Landsberg and G-Kähler spaces. We prove that a G-
Kähler space coincides with a Kähler-Berwald space and it is included in the set of the strong
Landsberg spaces. Some special complex Finsler spaces with (α, β)-metrics (introduced by us
in [27, 36]) o�er examples of generalized Berwald spaces.

2.1 Introduction and the main results

The real Landsberg spaces, in particular the real Berwald spaces, have been a major subject
of study for many geometers over the years. In 1926 L. Berwald introduced a special class of
Finsler spaces which took his name in 1964. It is known that a real Finsler space is called
a Berwald space if the local coe�cients of the Berwald connection depend only on position
coordinates. An equivalent condition to this is that the Cartan tensor �eld is h-parallel to
the Berwald connection, (i.e. Cijk;r = 0, where ";" means the horizontal covariant derivative
with respect to the Berwald connection). In 1934 É. Cartan emphasized that the Berwald
connection is not metrical and gij;k = −2Cijk;0. Therefore if Cijk;0 = 0, then it becomes
metrical. However, such a space was called a Landsberg space by L. Berwald in 1928.

Many great contributions to the geometry of the real Landsberg and Berwald spaces have
been made by Z. Szabo [136], M. Matsumoto [108], P. Antonelli [42], A. Bejancu [50], Z. Shen
[128], etc. Every Berwald space is a Landsberg space. The converse, has been a long-standing
problem [100, 137, 73].

Some general themes from real Finsler geometry about Landsberg and Berwald spaces
were broached in complex Finsler geometry by us (see [26]). There are noteworthy di�erences
compared to real reasoning, mainly on account of the fact that in complex Finsler geometry
there are two di�erent horizontal covariant derivatives, in particular for the Cartan tensors, one
has Cij̄k|h and the other Cij̄k|h̄ with respect to Chern-Finsler connection. As we have already
proved by Lemma 2.2.15, for any complex Finsler space, the condition Clr̄h|k = 0 is equivalent
to Clr̄h|k̄ = 0 and moreover, the horizontal coe�cients of the Chern-Finsler connection depend
only on the position coordinates, namely Lijk(z), in this case. Perhaps, this reason led T.
Aikou to call the complex Finsler spaces with Lijk(z), complex Berwald spaces [7]. However,
the condition for complex Berwald space can be characterized by the fact that the horizontal
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coe�cients Gijk of the complex linear connection of Berwald type BΓ are independent of
the �bre coordinates, only in the particular context of Kähler assumption when, Lijk = Gijk.
Therefore an unquestionable extension of the complex Berwald spaces, directly related to the
linear connection BΓ, is provided by a generalized Berwald space characterized by the fact
that Gijk depend only on the position z. Some characteristics of the generalized Berwald space
are collected in Theorem 2.2.18. We note that an interesting study of the generalized Berwald
spaces was also done by C. Zhong in [160], where the terminology weakly complex Berwald
spaces is used for these.

The same arguments as in the real case were taken into account to de�ne a complex
Landsberg space in [26]. Since in the real case, a Finsler space is Landsberg if the Berwald
and Rund connections coincide, we also used as a toolkit, besides BΓ, another complex linear
connection of Rund type RΓ, both associated to the canonical complex nonlinear connection,

with the local coe�cients
c

N i
j = ∂̇jG

i. However, in complex Finsler geometry the things are
considerably more di�cult. On one hand, the connections BΓ and RΓ are in general not of
(1, 0)-type as Chern-Finsler connection. On the other hand, in the complex case alongside the
horizontal covariant derivative with respect to BΓ, we also have its conjugate and thus it is
hardly to control the relationships between these. Here, we speak about complex Landsberg

space i�Gijk =
c

Lijk and various characterizations of the complex Landsberg spaces are provided
by Theorem 2.2.2. Further on, we have de�ned the class of G-Landsberg spaces. This is
included in the class of complex Landsberg spaces with ∂̇k̄G

i = 0. Theorem 2.2.8 reports
on the necessary and su�cient conditions for a complex Finsler space to be a G-Landsberg
space. A reinforcement of the tensorial characterization for a G-Landsberg space gives rise to
a subclass of G-Landsberg, namely a complex Finsler space is strong Landsberg i� C

lr̄h
B

| 0
=

0 and C
jr̄h

B

| 0̄
= 0. Other characteristics of the strong Landsberg spaces are combined in

Theorem 2.2.10. Because any Kähler space is a complex Landsberg space, the substitution
of the Landsberg condition with the Kähler condition in the de�nition of a G-Landsberg
space had to lead in [26] to another subclass of this, called G-Kähler. Among other things,
Theorem 2.2.13 provides that a G-Kähler space coincides with a complex Berwald space that
satis�es in addition the Kähler condition (a Kähler-Berwald space). The strong Landsberg
spaces are situated somewhere between complex Berwald spaces and G-Landsberg spaces. The
proof of the aforementioned theorems is presented in Section 2.2 as well as the interrelations
among all these classes of complex Finsler spaces. An intuitive scheme with all these spaces
is summarized in Figure 2.1.

The general theory on generalized Berwald spaces is ful�lled by some special outcomes
in [26] for the class of complex Finsler spaces with (α, β)-metrics (see Section 2.3). More
precisely, we prove that a complex Randers space assumed to be a generalized Berwald and
the weakly Kähler is Kähler-Berwald (Theorem 2.3.6).

2.2 From complex Landsberg to generalized Berwald spaces

We begin by pointing out a few complex Finsler spaces of Landsberg type.

De�nition 2.2.1. Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called

complex Landsberg space if Gijk =
c

Lijk.
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Figure 2.1: Inclusions

It is worthwhile to mention that any complex Finsler space that is Kähler is a Landsberg

space, because under Kähler assumption, Lijk =
c

Lijk = Gijk. Therefore, the Kähler spaces
o�er an asset family of complex Landsberg spaces.

Theorem 2.2.2. Let (M,F ) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M,F ) is a complex Landsberg space;
ii) C

lr̄h
B

| 0
= 0;

iii) 2(∂̇hG
i
jk)gir̄ −Gm̄r̄kCjm̄h −Gm̄r̄jCkm̄h = C

jr̄h
B

| k
+ C

kr̄h
B

| j
;

iv) g
ij̄

B

| k
=

c

(Lm̄
j̄k

−Gm̄
j̄k
)gim̄.

Proof. i) ⇔ ii). A direct computation gives the relation

g
lr̄

B

| h
+ g

hr̄
B

| l
+Gm̄r̄hglm̄ +Gm̄r̄lghm̄ = 2(

c

Lilhgir̄ −Gilhgir̄)

which, together with Lemma 1.2.1 ii), provides this equivalence.

i) ⇒ iii). Since (M,F ) is Landsberg, one has that Gijkgir̄ =
1
2(

c
δkgjr +

c
δjgkr). Di�erentiating

it with respect to ηh yields iii).
iii) ⇒ ii). By contracting in iii) with ηk, it turns out that 2(∂̇hG

i
jk)gir̄η

k = C
jr̄h

B

| 0
. On the

other hand, (∂̇hGijk)gir̄η
k = 0. From this we obtain ii).

i) ⇔ iv). g
ij̄

B

| k
=

c
δkgij̄ − Glikglj̄ − Gm̄

j̄k
gim̄ = g

ij̄
R

| k
+ (

c

Llik − Glik)glj̄ + (
c

Lm̄
j̄k

− Gm̄
j̄k
)gim̄, where

R
p is h-covariant derivative with respect to the connection RΓ. Since RΓ is h-metrical, then

g
ij̄

B

| k
= (

c

Llik −Glik)glj̄ − (
c

Lm̄
j̄k

−Gm̄
j̄k
)gim̄, and thus the claim follows.

De�nition 2.2.3. Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
G-Landsberg space if it is Landsberg and the spray coe�cients Gi are holomorphic with respect
to η, i.e. ∂̇k̄G

i = 0.
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A few immediately consequences follow below.

Proposition 2.2.4. If (M,F ) is a G-Landsberg space then the connection BΓ is of (1, 0)-type.

Corollary 2.2.5. Gi are holomorphic with respect to η if and only if the connection BΓ is of
(1, 0)-type.

Proposition 2.2.6. Gi are holomorphic with respect to η if and only if the horizontal coe�-
cients Gijk of BΓ depend only on z.

Proof. If Gi are holomorphic functions with respect to η, then ∂̇k̄G
i = 0 which leads to

∂̇k̄

c

N i
h = 0 and ∂̇k̄G

i
jh = 0. Thus, the functions Gijh are holomorphic with respect to η, too.

Now, we make a similar reasoning like that in [66, Proposition 1.1], but here for the
functions Gijh that are homogeneous of degree 0 with respect to η (i.e. (∂̇kG

i
jh)η

k = 0). We
consider Dε = {η ∈ T ′

zM | F (z, η) < ε, ε > 0}, with ε su�ciently small, and we study the
functions Gijh on D 1

ε
\ Dε. Since these functions are homogeneous of degree 0 with respect to

η, their moduli achieve a maximum at an interior point of D 1
ε
\ Dε. Thus, we can apply the

strong maximum principle, which gives that the functions Gijh are constant with respect to η
on D 1

ε
\ Dε. Now, letting ε→ 0, it turns out that the functions Gijh are locally constant along

of η ∈ T ′
zM \ {0}. Under a change of the local coordinates (zi, ηi) into (z′i, η′i), the functions

Gijh hold the the relation G′i
jk = ∂z′i

∂zr
∂zs

∂z′j
∂zq

∂z′k
Grsq +

∂z′i

∂zr
∂2zr

∂z′j∂z′k
. It turns out that G′i

jk depend

only on z′, too. Thus, globally we have Gijk(z). Conversely, if G
i
jk(z) then ∂̇k̄G

i
jh = 0, which

contracted by ηjηh turns out our claim.

Corollary 2.2.7. The coe�cients Gijk depend only on z if and only if ∂̇kG
i
jh = 0.

Proof. It is obvious the fact that if Gijk depend only on z, then ∂̇kG
i
jh = 0. Conversely, if

∂̇kG
i
jh = 0, by conjugation we have ∂̇k̄G

ı̄
j̄h̄

= 0, i.e. Gı̄
j̄h̄

are holomorphic with respect to η.
Since the functions Gı̄

j̄h̄
are also homogeneous of degree 0, by the same arguments as in the

proof of Proposition 2.2.6 one has that ∂̇kGı̄j̄h̄ = 0, and by conjugation ∂̇k̄G
i
jh = 0. Applying

again Proposition 2.2.6, we get Gijk(z).

Theorem 2.2.8. Let (M,F ) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M,F ) is a G-Landsberg space;

ii) Gijk =
c

Lijk(z);

iii) C
lr̄h

B

| 0
= 0 and C

j0̄h
B

| 0̄
= 0;

iv) g
ij̄

B

| k
=

c

Lm̄
j̄k
gim̄ and ∂̇h̄G

i = 0.

v) C
jr̄h

B

| k
+ C

kr̄h
B

| j
= 0 and C

rl̄h
B

| k̄
+ C

rk̄h
B

| l̄
= 0.

Proof. i)⇔ ii) is a direct consequence of Proposition 2.2.6. i)⇔ iii) results by Lemma 1.2.1 iii)
and Theorem 2.2.2 ii). Under assumptions ∂̇h̄G

i = 0, the equivalence i) ⇔ iv) from Theorem
2.2.2 provides the proof for i) ⇔ iv).
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i) ⇒ v) If (M,F ) is a G-Landsberg space then by Lemma 1.2.1 ii) and v) we have

g
lr̄

B

| h
+ g

hr̄
B

| l
= 0 and C

lr̄h̄
B

| k
= ∂̇h̄(g

lr̄
B

| k
).

Thus, it turns out that C
lr̄h̄

B

| k
+ C

kr̄h̄
B

| l
= ∂̇h̄(g

lr̄
B

| k
+ g

kr̄
B

| l
) = 0 and by conjugation, the last

relation leads to C
rl̄h

B

| k̄
+ C

rk̄h
B

| l̄
= 0. Now, using Lemma 1.2.1 iv) and Proposition 2.2.6, it

follows that C
jr̄h

B

| k
+ C

kr̄h
B

| j
= 0.

v) ⇒ i) First, contracting with ηk the identity C
jr̄h

B

| k
+ C

kr̄h
B

| j
= 0, it results C

jr̄h
B

| 0
= 0,

i.e. the space is Landsberg. On the other hand, the contraction by η̄kη̄l of the identity
C
rl̄h

B

| k̄
+C

rk̄h
B

| l̄
= 0 gives 2C

r0̄h
B

| 0̄
= 0 and by conjugation, this is 2C

0r̄h̄
B

| 0
= 0. Using Lemma

1.2.1 iii), we have 2(∂̇h̄G
i)gir̄ = C

0r̄h̄
B

| 0
. From here we obtain that ∂̇h̄G

i = 0, which completes

the proof.

Having in mind the tensorial characterization iii) from Theorem 2.2.8 for a G-Landsberg
space, this give rise to another class of complex Landsberg spaces.

De�nition 2.2.9. Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
strong Landsberg space if C

lr̄h
B

| 0
= 0 and C

jr̄h
B

| 0̄
= 0.

Theorem 2.2.10. Let (M,F ) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M,F ) is a strong Landsberg space;
ii) g

lr̄
B

| s
(z) and ∂̇h̄G

i = 0;

iii) C
lr̄h

B

| k
= 0 and ∂̇h̄G

i = 0;

iv) C
jr̄h

B

| k̄
= 0.

Proof. i) ⇒ ii). If (M,F ) is a strong Landsberg space, then by Theorem 2.2.8 iii) it is
G-Landsberg. Therefore, by Lemma 1.2.1 iv) and v) one has that C

ij̄h
B

| k
= ∂̇h(g

ij̄
B

| k
) and

C
lr̄h̄

B

| k
= ∂̇h̄(g

lr̄
B

| k
), which contracted by ηk lead to

∂̇h(g
ij̄

B

| k
)ηk = ∂̇h̄(g

lr̄
B

| k
)ηk = 0. (2.1)

Di�erentiating the second equality in (2.1) by ηs it yields

0 = ∂̇h̄[∂̇s(g
lr̄

B

| k
)ηk] + ∂̇h̄(g

lr̄
B

| s
).

Now, using the �rst relation from (2.1) it results ∂̇h̄(g
lr̄

B

| s
) = 0. Since g

lr̄
B

| s
are holomorphic

and homogeneous of degree zero with respect to η, one has that g
lr̄

B

| s
depends only on z, i.e.

g
lr̄

B

| s
(z). Now, the conditions g

lr̄
B

| s
(z) and ∂̇h̄G

i = 0 substituted into Lemma 1.2.1 iv), give

C
ij̄h

B

| k
= 0. Thus, we have proved ii) ⇒ iii).
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To prove iii) ⇒ iv) we use again Lemma 1.2.1 iv). Under assumptions iii), ∂̇h(g
ij̄

B

| k
) = 0,

and by conjugation, it follows that ∂̇h̄(g
jı̄

B

| k̄
) = 0. This means that the functions g

jı̄
B

| k̄
are

holomorphic with respect to η. Making use of their homogeneity it turns out that g
jı̄

B

| k̄
(z)

and thus the conjugates g
ij̄

B

| k
depend on z only. Therefore, v) from Lemma 1.2.1 leads to

C
lr̄h̄

B

| k
= 0, this is iv).

The proof is complete if we show that iv) ⇒ i). Indeed, C
lr̄h̄

B

| k
= 0 implies C

lr̄h̄
B

| 0
= 0

and ∂̇h̄G
i = 0, by Lemma 1.2.1 iii). Lemma 1.2.1 v) gives that ∂̇h̄(g

ij̄
B

| k
) = 0 and also

g
jı̄

B

| k̄
(z). Thus, by Lemma 1.2.1 iv), we obtain that C

lr̄h
B

| k
= 0, which contracted by ηk yields

C
lr̄h

B

| 0
= 0. So, the space is strong Landsberg.

Remark 2.2.11. By Theorem 2.2.8 iv) and Theorem 2.2.10 ii) it follows that an n-dimensional

complex Finsler space is strong Landsberg if and only if (
c

Lm̄
j̄k
gim̄)(z) and ∂̇h̄G

i = 0.

Having in the mind that any Kähler complex Finsler space is necessarly complex Lands-
berg, we can introduce another generalization for the G-Landsberg spaces. So, by replacing
the Landsberg condition from de�nition of the G-Landsberg space with the Kähler condition
we obtain:

De�nition 2.2.12. Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
G-Kähler space if it is Kähler and the spray coe�cients Gi are holomorphic with respect to η.

A few necessary and su�cient conditions for G-Kähler spaces are given by the next theorem.

Theorem 2.2.13. Let (M,F ) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M,F ) is G-Kähler;

ii) Gi
jk̄

=
c

Li
jk̄
;

iii) Gijk = Lijk(z);

iv) (M,F ) is Kähler-Berwald space;
v) g

ij̄
B

| k
= 0 and ∂̇h̄G

i = 0.

Proof. i) ⇔ ii). If (M,F ) is G-Kähler then
c

Li
jk̄

= 0 and Gi
jk̄

= 0. These imply that Gi
jk̄

=
c

Li
jk̄
.

Conversely, if Gi
jk̄

=
c

Li
jk̄

then ∂̇k̄
c

N i
j =

1
2g
li(

c
δk̄gjl −

c
δl̄gjk), which contracted by η̄k gives

η̄k(
c
δk̄gjl)− (

c
δl̄gjk)η̄

k = 0.

Since η̄k
c
δk̄ = η̄kδk̄ and (

c
δl̄gjk)η̄

k = (δl̄gjk)η̄
k, it follows that (δk̄gjl− δl̄gjk)η̄

k = 0 which means

that (M,F ) is Kähler, as well as ∂̇k̄
c

N i
j = 0. The contraction of ∂̇k̄

c

N i
j = 0 by ηj gives ∂̇k̄G

i = 0,

and thus, Gi does not depend on η̄k.
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Taking into account that (M,F ) is Kähler if and only if Lijk =
c

Lijk = Gijk, and using Propo-
sition 2.2.6, the claims i) ⇔ iii) and i) ⇔ iv) follow.

i) ⇔ v). It is obvious the fact that, if (M,F ) is G-Kähler, then g
ij̄

B

| k
= gij̄|k = 0. Conversely,

if g
ij̄

B

| k
= 0 and ∂̇h̄G

i = 0, then Gijk = gli(
c
δkgjl). Since G

i
jk = Gikj then

c
δkgjl =

c
δjgkl and

(
c
δkgjl)η

k = (
c
δjgkl)η

k. The later means that the space is Kähler.

An immediately consequence of Theorem 2.2.13 follows.

Proposition 2.2.14. (M,F ) is a Kähler-Berwald space if and only if the connections BΓ
and RΓ are of (1, 0)-type.

Lemma 2.2.15. For any complex Finsler space (M,F ), Clr̄h|k = 0 if and only if Clr̄h|k̄ = 0.

Proof. If Clr̄h|k = 0, then by Lemma 1.1.1 i), it follows that ∂̇hLilk = 0 and the conjugates
∂̇h̄L

ı̄
l̄k̄

= 0. This means that Lı̄
l̄k̄

are holomorphic with respect to η, which together with
their homogeneity of degree 0, gives Lijk(z). Thus, by Lemma 1.1.1 ii) it turns out that
Clr̄h|k̄ = 0. Conversely, if Clr̄h|k̄ = 0 then the condition ii) from Lemma 1.1.1 is reduced to

(∂̇h̄L
i
lk)gir̄+(∂̇h̄N

i
k)Cir̄l = 0. By contracting the last relation with ηl, it follows that ∂̇h̄N

i
k = 0.

Thus, it turns out that ∂̇h̄L
i
lk = 0. Now, using i) from Lemma 1.1.1, one has Clr̄h|k = 0.

We note that Clr̄h|k̄ = 0 or Clr̄h|k = 0 implies ∂̇h̄G
i = 0, but in general the converse is not

true. The condition ∂̇h̄G
i = 0 together with the Kähler property gives either Clr̄h|k̄ = 0 or

Clr̄h|k = 0. Therefore, a tensorial characterizations for Kähler-Berwald spaces is provided by
the next theorem.

Theorem 2.2.16. (M,F ) is Kähler-Berwald space if and only if it is Kähler and either
Clr̄h|k̄ = 0 or Clr̄h|k = 0.

In the remainder of this section we return to the notion of the real Berwald space, [50].
It is a real Finsler space for which the coe�cients of the (real) Berwald connection depend
only on the position. Our problem is to see whether there exist a corespondent of this real
assertion in complex Finsler geometry. Taking into account Theorem 2.2.13 we have Gijk(z),
for any complex Berwald space. Nevertheless the converse is not true. As one has emphasized
below, there are complex Finsler spaces with Gijk depending only on z which are not Berwald.
Therefore, there comes into view another class of complex Finsler spaces.

De�nition 2.2.17. Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
generalized Berwald if the horizontal coe�cients Gijk of BΓ depend only on the position z.

Using Corollary 2.2.5 and Proposition 2.2.6, we have proved the following result.

Theorem 2.2.18. Let (M,F ) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M,F ) is generalized Berwald;
ii) Gi are holomorphic with respect to η;
iii) BΓ is of (1, 0)-type.

Corollary 2.2.19. If (M,F ) is a complex Berwald space, then the space is generalized Berwald.
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Proof. Since the coe�cients Lijk depend only on z, we have ∂̇h̄L
i
jk = 0, which contracted by

ηjηk gives ∂̇h̄G
i = 0.

We note that in the particular case of the pure Hermitian metrics (i.e. gij = gij(z)), the
notions of complex Berwald and generalized Berwald coincide. Summing up all the results
proved the above, the inclusions from Figure 2.1 seem natural. The intersection of the sets of
complex Landsberg and generalized Berwald spaces gives the class of G-Landsberg spaces.

An example of complex Berwald space is given by the complex version of Antonelli-Shimada
metric

F 2
AS = LAS(z, w; η, θ) = e2σ

(
|η|4 + |θ|4

) 1
2 , with η, θ ̸= 0, (2.2)

on a domain D from T̃ ′M, dimM = 2, such that its metric tensor is nondegenerated. We
relabeled the local coordinates z1, z2, η1, η2 as z, w, η, θ, respectively. σ(z, w) is a real valued
function, [116, 37]. A direct computation leads to the following non-zero coe�cients:

L1
11 = L2

21 = 2
∂σ

∂z
and L1

12 = L2
22 = 2

∂σ

∂w
,

which depend only on z and w. Also, we get

G1 = (
∂σ

∂z
η +

∂σ

∂w
θ)η and G2 = (

∂σ

∂z
η +

∂σ

∂w
θ)θ,

which do not depend on η̄ and θ̄. Thus, LAS is complex Berwald and in general, it is not

Kähler. Some additional computations shows that LAS is not G-Landsberg (
c

Lijk ̸= Gijk). In
particular, if σ is a constant, then the metric LAS is locally Minkowski.

Another example of generalized Berwald space is provided by the complex version ofWrona
metric on a subset of Cn, [160]

F (z, η) =
|PQ|
|OH|

=
|η|4

|z|2|η|2 − | < z, η > |2
, (2.3)

with (z, η) ∈ Ω = {(z, η) ∈ Cn × Cn | z ̸= λη, λ ∈ C}, where P, Q ∈ Cn, O is the origin of
Cn, H is the projection of O on the line PQ and, |PQ| and |OH| are the Euclidian lengths of

the segments [PQ] and [OH], respectively. It follows that Gi = 0 and also
c

Lijk ̸= Gijk which
attest that (2.3) is an example of generalized Berwald metric which is neither G-Landsberg

nor complex Berwald. Moreover it satis�es
c

Lijkη
j = Gijkη

j .
It seems that may be de�ned and investigated a new class of complex spaces which satis�es

c

Lijkη
j = Gijkη

j , called for example weak Landsberg, being a generalization of the complex
Landsberg spaces.

Trivial examples of strong Landsberg metrics are provided by the pure Hermitian metrics.
Moreover, any locally Minkowski manifold is Kähler-Berwald. In the next section we came
with some nice families of generalized Berwald spaces.

2.3 Generalized Berwald spaces with (α, β)-metrics

Let ã = aij̄(z)dz
i⊗dz̄j be a pure Hermitian metric and let b = bi(z)dz

i be a di�erential (1, 0)-
form. By these tools we have de�ned (for more details see [36, 27]) the complex (α, β)-metric
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F on T ′M,
F (z, η) = F (α(z, η), |β(z, η)|), (2.4)

where α(z, η) =
√
aij̄(z)η

iη̄j and β(z, η) = bi(z)η
i. Let us recall that the coe�cients of

the Chern-Finsler connection corresponding to the pure Hermitian metric α are given by the
formulas

a

Nk
j = am̄k

∂alm̄
∂zj

ηl,
a

Lijk = ali(
a
δkajl),

a

Cijk = 0

and we consider also the settings bi = aj̄ibj̄ , ||b||2 = aj̄ibibj̄ , bı̄ = b̄i.

Lemma 2.3.1. [36] Let (M,F ) be a complex Finsler space with (α, β)-metric that holds
∂|β|2

∂zi
= ||b||2∂α

2

∂zi
. The following statements are equivalent:

i) ||b||2br ∂arm̄
∂zl

η̄m = β̄b̄mbr
∂arm̄
∂zl

;

ii) ||b||2∂bm̄
∂zi

η̄m = β̄
∂bm̄
∂zi

b̄m;

iii) bs̄
∂bm̄
∂zi

η̄m = β̄
∂bs̄
∂zi

;

iv) β̄
(
∂bi
∂zl

ηiηl − 2bl

a

Gl
)
+ β

∂bm̄
∂zl

η̄mηl = 0, where
a

Gl = 1
2

a

N l
jη
j .

Proposition 2.3.2. [36] Let (M,F ) be a complex Finsler space with (α, β)-metric that holds
∂|β|2
∂zi

= ||b||2 ∂α2

∂zi
. If one of the equivalent conditions from Lemma 2.3.1 holds, then N i

j =
a

N i
j .

Moreover, if α is Kähler, then F is Kähler.

Theorem 2.3.3. Let (M,F ) be a complex Finsler space with (α, β)-metric that holds the

relation ∂|β|2
∂zi

= ||b||2 ∂α2

∂zi
. If one of the equivalent conditions from Lemma 2.3.1 holds, then

(M,F ) is generalized Berwald. Moreover, if α is Kähler then (M,F ) is Kähler-Berwald.

Proof. By Proposition 2.3.2, it follows that the coe�cients are expressed as Gi = am̄k ∂alm̄
∂zj

ηlηj

and they are holomorphic with respect to η, i.e. the space is generalized Berwald. Assuming
the Kähler property for aij̄ , it turns out that the space is Kähler-Berwald.

In [26], we focused on two classes of complex (α, β)-metrics, namely the complex Randers
metrics F = α + |β| and the complex Kropina metrics F = α2

|β| , |β| ≠ 0. Subsequently, we
present only a few results regarding generalized Berwald-Randers spaces.

Considering the complex Randers metric F = α+ |β| we recall the following notations and
formulas [27],

∂α

∂ηi
=

1

2α
li,

∂|β|
∂ηi

=
β̄

2|β|
bi, ηi =

∂L

∂ηi
=
F

α
li +

Fβ̄

|β|
bi, (2.5)

N i
j =

a

N i
j +

1

γ

(
lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r
)
ξi +

β

2|β|
kri

∂br̄
∂zj

,

where kr̄i = 2αaj̄i + 2(α||b||2+2|β|)
γ ηiη̄r − 2α3

γ bib̄r − 2α
γ (β̄ηib̄r + βbiη̄r), γ = L + α2(||b||2 − 1),

ξi = β̄ηi + α2bi. Consequently, the corresponding spray coe�cients are given by

Gi =
a

Gi +
1

2γ

(
lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r
)
ξiηj +

β

4|β|
kri

∂br̄
∂zj

ηj . (2.6)

Moreover, for the weakly Kähler complex Randers spaces we have proven.
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Proposition 2.3.4. [27] A complex Randers space (M,F ) is weakly Kähler if and only if

α2|β|
γδ

[
β
α||b||2 + |β|

|β|
∂bm̄
∂zr

η̄m + β̄

(
∂br
∂zl

− bm̄
∂alm̄
∂zr

)
ηl − α|β|bm̄∂bm̄

∂zr

]
ηrCk

−
(
αβ̄Fkl + αbl

∂br̄
∂zk

η̄r + 2|β|alr̄Γr̄j̄kη̄
j

)
ηl + αbk

∂bm̄
∂zr

η̄mηr = 0, (2.7)

where Cj = Cjh̄kg
h̄k = δ

(
1
α2 lj − β̄

|β|2 bj

)
with δ = α2||b||2−|β|2

2γ − n|β|
2F , Γ

r̄
j̄i

= 1
2a

r̄k(
∂akj̄
∂zi

−∂aij̄
∂zk

)

and Fil =
∂bl
∂zi

− ∂bi
∂zl

.

Theorem 2.3.5. Let (M,F ) be a connected complex Randers space. (M,F ) is a generalized
Berwald space if and only if (β̄lr̄ ∂b̄

r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0.

Proof. If (M,F ) is generalized Berwald then 2Gi = Gijk(z) η
jηk, which means that Gi is

quadratic in η. Thus, using (2.6) we have

α|β|{ − β[(α2||b||2 + |β|2)ar̄i + ||b||2η̄rηi − α2b̄rbi − β̄ηib̄r − βbiη̄r] ∂br̄
∂zj

ηj

+4|β|2(Gi −
a

Gi)}+ |β|2[2(α2||b||2 + |β|2)(Gi −
a

Gi)− 2α2βar̄i ∂br̄
∂zj

ηj

−(β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηjηi − α2β

|β|2 (β̄lr̄
∂b̄r

∂zj
− β ∂br̄

∂zj
η̄r)ηjbi] = 0,

which contains an irrational part and another rational one. Thus, we obtain

β
[
(α2||b||2 + |β|2)ar̄i + ||b||2η̄rηi − α2b̄rbi − β̄ηib̄r − βbiη̄r

]
∂br̄
∂zj

ηj

= 4|β|2(Gi −
a

Gi) and

(β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηjηi + α2β

|β|2 (β̄lr̄
∂b̄r

∂zj
− β ∂br̄

∂zj
η̄r)ηjbi + 2α2βar̄i ∂br̄

∂zj
ηj

= 2(α2||b||2 + |β|2)(Gi −
a

Gi).

Their contractions by bi and li yield

(Gi −
a

Gi)bi = 0;

4|β|2(
a

Gi −Gi)li + 2βα2(||b||2η̄r − β̄b̄r) ∂br̄
∂zj

ηj = 0;

β̄(α2||b||2 + |β|2)lr̄ ∂b̄
r

∂zj
ηj − β(α2||b||2 − |β|2) ∂br̄

∂zj
η̄rηj + 2α2|β|2b̄r ∂br̄

∂zj
ηj = 0;

(α2||b||2 + |β|2)(
a

Gi −Gi)li + α2(β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0.

(2.8)

Adding the second and the third relations from (2.8), we obtain

4|β|2(
a

Gi −Gi)li + (α2||b||2 + |β|2)(β̄lr̄
∂b̄r

∂zj
+ β

∂br̄
∂zj

η̄r)ηj = 0.
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This together with the fourth equation from (2.8) implies

(
a

Gi −Gi)li = 0 and (β̄lr̄
∂b̄r

∂zj
+ β

∂br̄
∂zj

η̄r)ηj = 0.

Conversely, if (β̄lr̄ ∂b̄
r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0, by di�erentiation with respect to η̄m we deduce

that (lr̄ ∂b̄
r

∂zj
bm̄ + β ∂bm̄

∂zj
)ηj = 0. The last two relations give

am̄i
∂bm̄
∂zj

ηj =
β

|β|2
∂br̄
∂zj

η̄rbiηj and b̄m
∂bm̄
∂zj

ηj = ||b||2 β

|β|2
∂br̄
∂zj

η̄rηj ,

which substituted into (2.6) imply that Gi =
a

Gi and thus, Gi are holomorphic in η, i.e. the
space is generalized Berwald.

Theorem 2.3.6. Let (M,F ) be a connected complex Randers space. (M,F ) is a Kähler-
Berwald space if and only if it is generalized Berwald and weakly Kähler.

Proof. If (M,F ) is Kähler-Berwald then it is obvious that the space is generalized Berwald
and in particular, weakly Kähler. Now, we prove the converse. On the one hand, if the space
is generalized Berwald, by Theorem 2.3.5, it turns out that (β̄lr̄

∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0, which

can be rewritten as

β̄

(
∂bi
∂zl

ηiηl − 2bl

a

Gl
)
+ β

∂bm̄
∂zl

η̄mηl = 0. (2.9)

Moreover, (2.9) implies that

||b||2β̄
(
∂bi
∂zl

ηiηl − 2bl

a

Gl
)
+ |β|2b̄m∂bm̄

∂zl
ηl = 0. (2.10)

On the second hand, the space is assumed to be weakly Kähler. Therefore, (2.9) and (2.10)
substituted into (2.7) lead to

α2

(
β̄Fklη

l + β
∂br̄
∂zk

η̄r − bk
∂br̄
∂zl

η̄rηl
)
+ 2α|β|alr̄Γr̄j̄kη̄

j = 0, (2.11)

which contains two parts: the �rst is rational and the second is irrational. It results that

β̄Fklη
l + β

∂br̄
∂zk

η̄r − bk
∂bm̄
∂zl

η̄mηl = 0 and alr̄Γ
r̄
j̄kη̄

j = 0. (2.12)

The second condition from (2.12) gives the Kähler property for α. Thus, di�erentiating (2.9)
with respect to ηk it follows that

bk
∂br̄
∂zl

η̄rηl = −β ∂br̄
∂zk

η̄r − β̄

(
∂bl
∂zk

+
∂bk
∂zl

)
ηl + 2β̄bl

a

N l
k. (2.13)

Now, (2.13) together with the �rst condition from (2.12) implies that

β̄lr̄
∂b̄r

∂zk
+ β

∂br̄
∂zk

η̄r = 0 (2.14)
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and from this, it follows its derivative with respect to η̄m

lr̄
∂b̄r

∂zk
bm̄ + β

∂bm̄
∂zk

= 0. (2.15)

Moreover, the relations (2.14) and (2.15) imply that

am̄i
∂bm̄
∂zk

=
β

|β|2
∂br̄
∂zk

η̄rbi and b̄m
∂bm̄
∂zk

= ||b||2 β

|β|2
∂br̄
∂zk

η̄r. (2.16)

Plugging (2.14) and (2.16) into (2.5), we obtain N i
j =

a

N i
j and thus, Likj =

a

Likj =
a

Lijk = Lijk,
i.e. the Randers space (M,F ) is Kähler which proves our claim.

It is worth mentioning that the last result (Theorem 2.3.6) is valid for any complex Finsler
space, [24]. Alternative proof of Theorem 2.3.6 is presented in the next chapter, for any
complex Finsler space.
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Chapter 3

Projectivities in complex Finsler
geometry

Several subjects from projective real Finsler geometry were studied by us in complex Finsler
geometry [25, 24, 23]. This chapter is focussed on the concept of projectively related com-
plex Finsler metrics, in an attempt to approach complex variants of Rapcsák's theorem and
Hilbert's fourth problem. As an application of our theory, we study the projectivities of a
complex Randers metric [25].

3.1 Introduction and the main results

The problem of the projectively related real Finsler metrics is quite dated and results from
the formulation of Hilbert's fourth problem: determine the metrics on an open subset in
Rn, whose geodesics are straight lines. Roughly speaking, two Finsler metrics, on a common
underlying manifold, are called projectively related if they have the same geodesics as point
sets. The study of the projective real Finsler spaces was initiated by L. Berwald [53, 52], his
studies mainly concern two dimensional Finsler spaces. Further substantial contributions on
this topic have been made by A. Rapcsák [123], R.B. Misra [108] and, especially Z. Szabo [136]
and M. Matsumoto [109]. The problem of projective Finsler spaces is strongly connected to
projectively related sprays, as Z. Shen pointed out in [128]. Moreover, the topic on projective
real Finsler spaces continues to be of interest also for some special classes of Finsler metrics
(see [46, 49, 69, 99, 54], etc.).

Based on some ideas from the real case, we introduced in complex Finsler geometry the
concept of projectively related complex Finsler metrics [25]. There are meaningful di�erences
when compared to real reasoning mainly on account that in complex Finsler geometry, the
notion of a complex geodesic curve comports two nuances: one in the sense of Abate-Patrizio
[1], and the other as introduced by Royden [125]. It is worth mentioning that while a complex
geodesic curve in Royden's sense has been obtained under weakly Kähler condition along the
curve, a complex geodesic curve in Abate-Patrizio's sense does not require any such restric-
tion. Thus, we can state that any complex geodesic curve in Royden's sense is a complex
geodesic curve in Abate-Patrizio's sense. In order to address a general characterization of
the projectively related complex Finsler metrics, we have considered the complex geodesics in
Abate-Patrizio's sense.

An overview of the chapter's content is below. In Section 3.2 we describe the projectively
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related complex Finsler metrics, pointing out the necessary and su�cient conditions for this
(Theorem 3.2.6 and Corollary 3.2.7). Theorem 3.2.8 attests the invariance of the weakly
Kähler property under a projective change. Complex versions of Rapcsák's theorem are given
by Theorems 3.2.10, 3.2.11 and 3.2.12 and a complex Finsler solution for Hilbert's fourth
problem is provided by Theorem 3.2.18. The last part of the chapter (Section 3.3) is devoted
to the projectivities of the complex Randers metric F̃ = α + |β|. We provide the necessary
and su�cient conditions for the metrics F̃ and α to be projectively related (Theorem 3.3.2).
Based on the previous results, we prove that a complex Randers metric F̃ = α + |β| de�ned
on a domain D from Cn is projectively related to the complex Euclidean metric on D if and
only if α is projectively related to the Euclidean metric and F̃ is a Kähler-Berwald metric
(Theorem 3.3.3).

3.2 Projectively related complex Finsler metrics

Before presenting the concept of projectively related complex Finsler metrics, we recall the
notion of the complex geodesic curve from [1]. Based on this, we can emphasize an important
property of the Kähler-Berwald spaces, proved in [24].

In Abate-Patrizio's sense (see [1, p. 101]) a complex geodesic curve is provided by the
equation

D
Th+ThT

h = θ∗(T h, T h),

where T h is the horizontal lift of the tangent vector along the curve and in the local coordinates,
θ∗ is expressed as

θ∗ = gm̄kgip̄(L
p̄
j̄m̄

− Lp̄
m̄j̄

)dzi ∧ dz̄j ⊗ δk.

Moreover, the di�erential equations satis�ed by a complex geodesic curve z = z(s) of (M,F ),
with s a real parameter, can be written locally as

d2zi

ds2
+ 2Gi(z(s),

dz

ds
) = θ∗i(z(s),

dz

ds
), (3.1)

where zi(s), i = 1, n, denote the coordinates along of the curve z = z(s) and

2Gi = N i
jη
j =

c

N i
jη
j and θ∗i = 2gj̄i

c
δj̄L.

Since
c
δj = δj− (

c

Nk
j −Nk

j )∂̇k and δjL = 0, immediately results that θ∗iηi = 0, where ηi = ∂̇iL.
We note that the functions θ∗i are vanished if and only if the space is weakly Kähler [116].
Moreover, θ∗i are (1, 1)-homogeneous with respect to η and η̄ respectively, i.e. (∂̇kθ∗i)ηk = θ∗i

and (∂̇k̄θ
∗i)η̄k = θ∗i.

Lemma 3.2.1. Let (M,F ) be a complex Finsler space. Then, (∂̇k̄G
i)ηi = 0.

Proof. It results di�erentiating Gigij̄ =
1
2

∂ghj̄
∂zs η

hηs with respect to η̄k and then contracting on
it by η̄j .

As a consequence of Lemma 3.2.1 it follows that the holomorphic curvature of the complex
Finsler space (M,F ) in direction η can be simply expressed in the terms of the spray coe�cients
Gi, namely

KF (z, η) = − 4

F 4
gkm̄

∂Gk

∂z̄h
η̄hη̄m.
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Also, it is necessary to compute

∂̇kθ
∗i = 2∂̇k(g

j̄i
c
δj̄L) = −2gj̄lgm̄i(∂̇kglm̄)(

c
δj̄L) + 2gj̄i∂̇k(

c
δj̄L)

= −θ∗lCikl + 2gj̄i∂̇k[
∂L

∂z̄j
−

c

N r̄
j̄ (∂̇r̄L)]

= −θ∗lCikl + 2gj̄i[
∂2L

∂ηk∂z̄j
− (∂̇k

c

N r̄
j̄ )(∂̇r̄L)−

c

N r̄
j̄ gkr̄].

Now, using Lemma 3.2.1 and ∂2L
∂ηk∂z̄j

= N r̄
j̄
gkr̄ we obtain

(∂̇k
c

N r̄
j̄ )(∂̇r̄L) = (∂̇k

c

N r̄
j̄ )η̄r = [∂̇j̄(∂̇kG

r̄)]η̄r = ∂̇j̄ [(∂̇kG
r̄)η̄r]− (∂̇kG

r̄)(∂̇j̄ η̄r)

= −(∂̇kG
r̄)Clr̄j̄η

l,

where η̄r = ∂̇r̄L and Clr̄j̄η
l = ∂̇j̄ η̄r. Therefore,

∂̇kθ
∗i = −θ∗lCikl + 2gj̄i[(N r̄

j̄ −
c

N r̄
j̄ )gkr̄ + (∂̇kG

r̄)Clr̄j̄η
l]. (3.2)

Theorem 3.2.2. [24] Let (M,F ) be a complex Finsler space that satis�es the weakly Kähler
and generalized Berwald conditions. Then (M,F ) is a Kähler-Berwald space.

Proof. Under given assumptions, the relation (3.2) is 2gj̄i(N r̄
j̄
−

c

N r̄
j̄
)gkr̄ = 0, which contracted

by 1
2gim̄g

s̄k gives N s̄
m̄ −

c

N s̄
m̄ = 0, i.e. F is Kähler. This, together with the assumption that F

is generalized Berwald, proves our claim.

Let us consider L̃ another complex Finsler metric on the complex manifold M.

De�nition 3.2.3. The complex Finsler metrics L and L̃ on the complex manifold M , are
called projectively related if they have the same complex geodesics as point sets.

This means that for any complex geodesic z = z(s) of (M,L) there is a transformation of
the parameter s, such that s̃ = s̃(s), with ds̃

ds > 0 and z = z(s̃) is a geodesic of (M, L̃) and,
conversely.

We assume that z = z(s) is a complex geodesic of (M,L). Thus, it satis�es (3.1). Taking
an arbitrary transformation of the parameter t = t(s), with dt

ds > 0, generally, the equations
(3.1) cannot be preserved. Indeed, for the new parameter t we have

dzi

ds
=
dzi

dt

dt

ds
,

d2zi

ds2
=
d2zi

dt2

(
dt

ds

)2

+
dzi

dt

d2t

ds2
, θ∗k

(
z,
dz

ds

)
=

(
dt

ds

)2

θ∗k(z,
dz

dt
).

Then,[
d2zi

dt2
+ 2Gi(z,

dz

dt
)− θ∗i(z,

dz

dt
)

](
dt

ds

)2

=
d2zi

ds2
− dzi

dt

d2t

ds2
+ 2Gi(z,

dz

ds
)− θ∗i(z,

dz

ds
)

= −dz
i

dt

d2t

ds2
.
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Therefore, we get the equations (3.1) in parameter t,

d2zi

dt2
+ 2Gi(z(t),

dz

dt
) = θ∗i(z(t),

dz

dt
)− dzi

dt

d2t

ds2
1(
dt
ds

)2 , i = 1, n, (3.3)

which is equivalent to

d2zi

dt2
+ 2Gi(z, dzdt )− θ∗i(z, dzdt )

dzi

dt

= − d2t

ds2
1(
dt
ds

)2 , i = 1, n. (3.4)

Corresponding to the complex Finsler metric L̃ on the same manifold M, we have the spray
coe�cients G̃i and the functions θ̃∗i. If L and L̃ are projectively related, then z = z(s̃(s)) is
a complex geodesic of (M, L̃), where s̃ is the parameter corresponding to L̃. Now, we assume
that the same parameter t is transformed by t = t(s̃) and as the above we obtain

d2zi

dt2
+ 2G̃i(z, dzdt )− θ̃∗i(z, dzdt )

dzi

dt

= − d2t

ds̃2
1(
dt
ds̃

)2 , i = 1, n. (3.5)

The di�erence between (3.4) and (3.5) gives

2G̃i(z,
dz

dt
)− θ̃∗i(z,

dz

dt
) = 2Gi(z,

dz

dt
)− θ∗i(z,

dz

dt
) +

[
d2t

ds2
1(
dt
ds

)2 − d2t

ds̃2
1(
dt
ds̃

)2
]
dzi

dt
, (3.6)

i = 1, n. Since the equations (3.6) is satis�ed along any geodesic curve, they can be rewritten
as

2G̃i(z, η)− 2θ̃∗i(z, η) = Gi(z, η)− θ∗i(z, η) +Bi(z, η) + 2P (z, η)ηi, i = 1, n (3.7)

2G̃i(z,
dz

dt
)− θ̃∗i(z,

dz

dt
) = 2Gi(z,

dz

dt
)− θ∗i(z,

dz

dt
) + 2P (z,

dz

dt
)
dzi

dt
, i = 1, n (3.8)

for some smooth functions P on T ′M . Using the notation Bi = 1
2(θ̃

∗i− θ∗i), the homogeneity
of the functions θ̃∗i and θ∗i give (∂̇kB

i)ηk = Bi and (∂̇k̄B
i)η̄k = Bi. Based on these, the

relations (3.7) are simpli�ed as

G̃i = Gi +Bi + Pηi. (3.9)

Now we are going to point out some properties for P . To do this, we redeem the homo-
geneities of the functions which are included in (3.9), going from η to λη for any λ ∈ C, λ ̸= 0.
More precisely, di�erentiating in (3.9) with respect to η and η̄ and then setting λ = 1, it turns
out

Bi = [(∂̇kP )η
k − P ]ηi and Bi = −(∂̇k̄P )η̄

kηi (3.10)

and thus, for every i = 1, n,
(∂̇kP )η

k + (∂̇k̄P )η̄
k = P. (3.11)

Lemma 3.2.4. Between the spray coe�cients G̃i and Gi of the metrics L and L̃ onM there are
the relations (3.9), where P is a smooth function on T ′M , if and only if G̃i = Gi+(∂̇kP )η

kηi,
Bi(z, η) = −(∂̇k̄P )η̄

kηi and (∂̇kP )η
k + (∂̇k̄P )η̄

k = P , for any i = 1, n.
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From the above considerations, we get

Lemma 3.2.5. If the complex Finsler metrics L and L̃ are projectively related, then there is
a smooth function P on T ′M satisfying (∂̇kP )η

k + (∂̇k̄P )η̄
k = P, such that

G̃i(z, η) = Gi(z, η) + (∂̇kP )η
kηi and Bi(z, η) = −(∂̇k̄P )η̄

kηi, i = 1, n. (3.12)

If we consider the notations V = (∂̇kP )η
k and Q = −2(∂̇k̄P )η̄

k, it results that P = V − 1
2Q.

Moreover, taking into account again the homogeneity of the functions G̃i, Gi and Bi it turns
out that V is (1, 0)-homogeneous and Q is (0, 1)-homogeneous.

Further on, we focus on the converse implication. Namely, under assumption that z = z(s)
is a complex geodesic of (M,L), we show that the complex Finsler metric L̃ with the spray
coe�cients G̃i given by

G̃i = Gi +Bi + Pηi,

where P is a smooth function on T ′M , is projectively related to L, i.e. there is a parametriza-
tion s̃ = s̃(s), with ds̃

ds > 0, such that z = z(s̃(s)) is a geodesic of (M, L̃).

If there is a parametrization s̃ = s̃(s) and z = z(s) is a complex geodesic of (M,L), it
follows that

d2zi

ds̃2
= −2Gi(z,

dz

ds̃
) + θ∗i(z,

dz

ds̃
)− d2s̃

ds2
1(
ds̃
ds

)2 dzids̃ ,
for any i = 1, n, and moreover using (3.12), it leads to

d2zi

ds̃2
= −2G̃i(z,

dz

dt
) + θ̃∗i(z,

dz

ds̃
) +

(
2P (z,

dz

ds̃
)− d2s̃

ds2
1(
ds̃
ds

)2
)
dzi

ds̃
, i = 1, n.

Thus, z = z(s̃(s)) is a geodesic of (M, L̃) if and only if(
2P (z,

dz

ds̃
)− d2s̃

ds2
1(
ds̃
ds

)2
)
dzi

ds̃
= 0, i = 1, n. (3.13)

Assuming that the complex geodesic curve is not a line, it results

2P (z,
dz

ds
)
ds̃

ds
=
d2s̃

ds2
. (3.14)

Denoting by u(s) = ds̃
ds , we get

d2s̃
ds2

= du
ds and so, 2P (z, dzds )u = du

ds .We obtain u = ae
∫
2P (z, dz

ds
)ds.

From here, it results that there is s̃(s) = a
∫
e
∫
2P (z, dz

ds
)dsds + b, where a, b are arbitrary

constants.
Summing up all the above results, we have proven the following theorem.

Theorem 3.2.6. Let L and L̃ be complex Finsler metrics onM. Then L and L̃ are projectively
related if and only if there is a smooth function P on T ′M , such that

G̃i = Gi +Bi + Pηi, i = 1, n. (3.15)

As a consequence of Lemma 3.2.4 we have the following result.
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Corollary 3.2.7. Let L and L̃ be complex Finsler metrics on M. L and L̃ are projectively
related if and only if there is a smooth function P on T ′M , such that G̃i = Gi + (∂̇kP )η

kηi,
Bi = −(∂̇k̄P )η̄

kηi and (∂̇kP )η
k + (∂̇k̄P )η̄

k = P , for any i = 1, n.

The relations (3.15) which link the spray coe�cients G̃i and Gi of the projectively related
complex Finsler metrics L and L̃ is called projective change.

Theorem 3.2.8. Let L and L̃ be two projectively related complex Finsler metrics onM. Then,
L is weakly Kähler if and only if L̃ is also weakly Kähler. In this case, the projective change
is G̃i = Gi + Pηi, where P is a (1, 0)-homogeneous function.

Proof. Since L and L̃ are projectively related, then G̃i = Gi + (∂̇kP )η
kηi, Bi = −(∂̇k̄P )η̄

kηi

and (∂̇kP )η
k + (∂̇k̄P )η̄

k = P. First, if L is weakly Kähler, then θ∗i = 0. This implies that
θ̃∗i = −2(∂̇k̄P )η̄

kηi, which contracted by g̃ir̄η̄r = ∂̇iL̃, gives θ̃∗ig̃ir̄η̄r = −2(∂̇k̄P )η̄
kL̃. Next,

θ̃∗ig̃ir̄η̄
r = 0. Thus, we get (∂̇k̄P )η̄

k = 0, which implies θ̃∗i = 0, i.e. L̃ is weakly Kähler
and P = (∂̇kP )η

k. Moreover, it follows that G̃i = Gi + Pηi. The converse implication results
immediately following the same arguments.

Lemma 3.2.9. Let L and L̃ be complex Finsler metrics on M. The spray coe�cients G̃i and
Gi of the metrics L and L̃ satisfy

G̃i = Gi +
1

2
g̃r̄i
[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
, i = 1, n. (3.16)

Proof. Starting with
c
δkL̃ = ∂L̃

∂zk
−

c

N l
k(∂̇lL̃), by a direct computation we obtain

∂̇r̄(
c
δkL̃) = ∂̇r̄

(
∂L̃

∂zk
−

c

N l
k(∂̇lL̃)

)
=

∂2L̃

∂zk∂η̄r
− (∂̇r̄

c

N l
k)(∂̇lL̃)−

c

N l
kg̃lr̄.

If we contract last relation with g̃r̄iηk, and we take into account the relation ηk
c
δk = ηkδk, it

turns out that

g̃r̄i∂̇r̄(
c
δkL̃)η

k = g̃r̄i∂̇r̄(δkL̃)η
k = 2G̃i − 2g̃r̄i(∂̇r̄G

l)(∂̇lL̃)− 2Gi

and thus, (3.16) is justi�ed.

Next, we prove few complex versions of the Rapcsák's theorem.

Theorem 3.2.10. Let L and L̃ be complex Finsler metrics on M. Then, L and L̃ are projec-
tively related if and only if

1

2

[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
= P (∂̇r̄L̃) +Big̃ir̄, r = 1, n, (3.17)

with P = 1
2L̃

[(δkL̃)η
k + θ∗i(∂̇iL̃)].

Proof. We assume that L and L̃ are projectively related. Then, by Theorem 3.2.6 and the
relation (3.16) we have

Bi + Pηi =
1

2
g̃r̄i
[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
, i = 1, n. (3.18)
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First, if these relations are contracted by g̃im̄η̄m, we get

−1

2
θ∗i(∂̇iL̃) + PL̃ =

1

2
∂̇m̄(δkL̃)η

kη̄m + (∂̇m̄G
l)η̄m(∂̇lL̃),

because of Big̃im̄η̄
m = −1

2θ
∗i(∂̇iL̃).

Using the homogeneity of the functions Gi (this is (∂̇m̄G
l)η̄m = 0) and the fact that

∂̇m̄(δkL̃)η
kη̄m = (δkL̃)η

k, it turns out that P = 1
2L̃

[(δkL̃)η
k + θ∗i(∂̇iL̃)]. Second, contracting

the relation (3.18) only by g̃im̄, we obtain (3.17).
Conversely, substituting the formulas (3.17) into (3.16), it leads to the relation (3.15) with

P = 1
2L̃

[(δkL̃)η
k + θ∗i(∂̇iL̃)], i.e. L and L̃ are projectively related.

Theorem 3.2.11. Let L and L̃ be complex Finsler metrics on M. Then, L and L̃ are projec-
tively related if and only if

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) =
1

L̃
(δkL̃)η

k(∂̇r̄L̃), (3.19)

Br = − 1

2L̃
θ∗l(∂̇lL̃)η

r, r = 1, n,

P =
1

2L̃
[(δkL̃)η

k + θ∗i(∂̇iL̃)].

Moreover, the projective change is G̃i = Gi + 1
2L̃

(δkL̃)η
kηi.

Proof. By Corollary 3.2.7, if L and L̃ are projectively related, then there is a smooth function
P on T ′M , such that G̃i = Gi + (∂̇kP )η

kηi, Bi = −(∂̇k̄P )η̄
kηi and (∂̇kP )η

k + (∂̇k̄P )η̄
k = P ,

for any i = 1, n. Using (3.16), it follows that

(∂̇kP )η
kηi =

1

2
g̃r̄i
[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
, i = 1, n, (3.20)

which contracted �rstly by g̃im̄ and secondly by g̃im̄η̄m give

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) = 2(∂̇kP )η
k(∂̇r̄L̃)

and (∂̇kP )η
k = 1

2L̃
(δkL̃)η

k respectively, since δkL̃ is (1, 1)-homogeneous. Now, contracting

Bi = −(∂̇k̄P )η̄
kηi with g̃im̄η̄m and using the fact that Bi g̃im̄η̄

m = −1
2θ

∗i(∂̇iL̃), it turns out
that (∂̇k̄P )η̄

k = 1
2L̃
θ∗i(∂̇iL̃). Therefore, it follows that P = 1

2L̃
[(δkL̃)η

k + θ∗i(∂̇iL̃)].

Conversely, substituting the �rst condition (3.19) into (3.16), we obtain G̃i = Gi + V ηi,
where V = 1

2L̃
(δkL̃)η

k. Now, since P = 1
2L̃

[(δkL̃)η
k + θ∗i(∂̇iL̃)], we get

(∂̇kP )η
k =

1

2L̃
(δkL̃)η

k = S and (∂̇k̄P )η̄
k =

1

2L̃
θ∗i(∂̇iL̃).

Thus, these lead to G̃i = Gi+ (∂̇kP )η
kηi, Bi = −(∂̇k̄P )η̄

kηi and (∂̇kP )η
k + (∂̇k̄P )η̄

k = P.

Plugging L̃ = F̃ 2 into (3.19) we have proven another equivalent complex version of Rapc-
sák's theorem.
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Theorem 3.2.12. Let F and F̃ be the complex Finsler metrics on M. Then, F and F̃ are
projectively related if and only if

∂̇r̄(δkF̃ )η
k + 2(∂̇r̄G

l)(∂̇lF̃ ) =
1

F̃
(δkF̃ )η

k(∂̇r̄F̃ ), (3.21)

Br = − 1

F̃
θ∗l(∂̇lF̃ )η

r, r = 1, n,

P =
1

F̃
[(δkF̃ )η

k + θ∗i(∂̇iF̃ )].

Moreover, the projective change is G̃i = Gi + 1
F̃
(δkF̃ )η

kηi.

Theorem 3.2.13. Let L be a weakly Kähler complex Finsler metric and L̃ another complex
Finsler metric, both on M. Then, L and L̃ are projectively related if and only if L̃ is weakly
Kähler and

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) = 2P (∂̇r̄L̃), r = 1, n, (3.22)

P =
1

2L̃
(δkL̃)η

k.

Moreover, the projective change is G̃i = Gi + Pηi and P is (1, 0)-homogeneous.

Proof. Having in mind the Theorems 3.2.8 and 3.2.11 the direct implication is obvious. For
the converse, we have Bi = θ∗i = θ̃∗i = 0, because L and L̃ are weakly Kähler, which together
with (3.22) are su�cient conditions for the projectivity of the metrics L and L̃. Now, plugging
(3.22) into (3.16) it follows that G̃i = Gi + Pηi and P is (1, 0)-homogeneous.

Paying more attention to Theorem 3.2.12, we obtain the following result.

Corollary 3.2.14. Let F be a generalized Berwald metric and F̃ another complex Finsler
metric, both on M. Then, F and F̃ are projectively related if and only if

∂̇r̄(δkF̃ )η
k =

1

F̃
(δkF̃ )η

k(∂̇r̄F̃ ) ; B
r = − 1

F̃
θ∗l(∂̇lF̃ )η

r, (3.23)

P =
1

F̃
[(δkF̃ )η

k + θ∗i(∂̇iF̃ )],

for any r = 1, n. Moreover, the projective change is G̃i = Gi + 1
F̃
(δkF̃ )η

kηi and F̃ is also
generalized Berwald.

Proof. The equivalence results by Theorem 3.2.12, where ∂̇r̄Gl = 0, because F is a generalized
Berwald metric. In order to show that F̃ is generalized Berwald, we compute

∂̇r̄[
1

F̃
(δkF̃ )η

k] = − 1

F̃ 2
(∂̇r̄F̃ )(δkF̃ )η

k +
1

F̃
∂̇r̄(δkF̃ )η

k = 0,

where we used the �rst identity from (3.23). Now, by di�erentiating the projective change
G̃i = Gi + 1

F̃
(δkF̃ )η

kηi with respect to η̄r it follows that ∂̇r̄G̃l = 0, i.e. F̃ is generalized
Berwald.

In particular, if F is a Kähler-Berwald metric, then by Theorems 3.2.2, 3.2.13 and Corollary
3.2.14, we obtain the following result.
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Corollary 3.2.15. Let F be a Kähler-Berwald metric and F̃ another complex Finsler metric,
both on M. Then, F and F̃ are projectively related if and only if F̃ is weakly Kähler and

∂̇r̄(δkF̃ )η
k = P (∂̇r̄F̃ ), r = 1, n and P =

1

F̃
(δkF̃ )η

k. (3.24)

Moreover, the projective change is G̃i = Gi + Pηi and F̃ is Kähler-Berwald.

Proposition 3.2.16. Let F and F̃ be two projectively related complex Finsler metrics on M.
If P is (1, 0)-homogeneous and F is generalized Berwald, then P is holomorphic with respect
to η.

Proof. Since G̃i = Gi+Bi+Pηi and P is (1, 0)-homogenous, then Bi = 0. Thus, by Corollary
3.2.14, it turns out that θ∗l(∂̇lF̃ ) = 0, P = 1

F̃
(δkF̃ )η

k and, moreover ∂̇r̄P = 0.

Proposition 3.2.17. Let F and F̃ be two projectively related complex Finsler metrics on M.
If P is (0, 1)-homogeneous then Bi = −Pηi and the projective change is G̃i = Gi, for any
i = 1, n.

Proof. Under the assumptions G̃i = Gi + Bi + Pηi and P is (0, 1)-homogenous and taking
into account that G̃i and Gi are (2, 0)-homogeneous and Bi and Pηi are (1, 1)-homogeneous,
it follows that G̃i = Gi and Bi = −Pηi.

Further on, a complex version of the Hilbert's fourth problem is approached.

Theorem 3.2.18. Let L be complex Euclidean metric on a domain D from Cn and L̃ another
complex Finsler metric on D. Then, L and L̃ are projectively related if and only if L̃ is weakly
Kähler and

G̃i =
1

2L̃

∂L̃

∂zk
ηkηi, i = 1, n. (3.25)

Moreover, L̃ is Kähler-Berwald.

Proof. The complex Euclidean metric L = |η|2 =
∑n

k=1η
kη̄k is Kähler with the local spray

coe�cients Gi = 0, for any i = 1, n. By these assumptions, the conditions (3.22) can be
rewritten as

∂̇r̄(
∂L̃

∂zk
)ηk = 2P (∂̇r̄L̃), (3.26)

for any r = 1, n , where P = 1
2L̃

∂L̃
∂zk

ηk. Next, by contraction in (3.26) with g̃r̄i and using again

(3.26), it follows that G̃i = Pηi, since G̃i = 1
2 g̃
r̄i∂̇r̄(

∂L̃
∂zk

)ηk. The converse is obvious.

We note that if we replace L̃ = F̃ 2 into (3.25), it can be rewritten as G̃i = 1
F̃
∂F̃
∂zk

ηkηi, i = 1, n.

Example. Some examples of complex Finsler metrics that are projectively related to the
complex Euclidean metric are given by the following pure Hermitian metrics

F̃ 2(z, η) =
|η|2 + ε

(
|z|2|η|2 − |< z, η >|2

)
(1 + ε|z|2)2

, ε < 0, (3.27)
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de�ned on the disk ∆n
r =

{
z ∈ Cn, |z| < r, r =

√
1/|ε|

}
⊂ Cn, where |z|2 =

∑n
k=1z

kz̄k,

< z, η >=
∑n

k=1z
kη̄k and |< z, η >|2 =< z, η > < z, η >. We note that a direct computation

leads to G̃i = − ε<z,η>
(1+ε|z|2) = 1

F̃
∂F̃
∂zk

ηkηi. Moreover, the metrics (3.27) are Kähler with constant
holomorphic curvature KF = 4ε. In particular, for ε = −1, (3.27) provides the Bergman metric
on the unit disk ∆n = ∆n

1 .

3.3 Projectivities of a complex Randers metric

Let us consider the complex Randers metric F̃ = α + |β| on T ′M with β(z, η) = bi(z)η
i a

di�erential (1, 0)-form and α(z, η) =
√
aij̄(z)η

iη̄j a pure Hermitian metric on M. By these

objects we have de�ned

∂α

∂ηi
=

1

2α
li,

∂|β|
∂ηi

=
β̄

2|β|
bi, η̃i =

∂L̃

∂ηi
=
F̃

α
li +

F̃ β̄

|β|
bi,

G̃i =
a

Gi +
1

2γ

(
lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r
)
ξiηj +

β

4|β|
kri

∂br̄
∂zj

ηj

li = aij̄ η̄
j , bi = aj̄ibj̄ , ||b||2 = aj̄ibibj̄ , bı̄ = b̄i,

where
a

Gi = 1
2

a

N i
jη
j are the spray coe�cients of α, γ = L̃+ α2(||b||2 − 1), ξi = β̄ηi + α2bi and

kr̄i = 2αaj̄i + 2(α||b||2+2|β|)
γ ηiη̄r − 2α3

γ bib̄r − 2α
γ (β̄ηib̄r + βbiη̄r).

First our aim is to determine the necessary and su�cient conditions such that the complex
Randers metric F̃ is projectively related to the Hermitian metric α. A simple computation
shows that,

(δkF̃ )η
k = (δk|β|)ηk =

1

2|β|
(β̄lr̄

∂b̄r

∂zk
+ β

∂br̄
∂zk

η̄r)ηk, (3.28)

because (δkα)η
k = 0 and

θ∗i(∂̇iF̃ ) = − β̄

2|β|
Γkij̄bkη

iη̄j , (3.29)

where δk = ∂
∂zk

−
a

N j
i ∂̇j and Γk

ij̄
= 1

2a
r̄k(∂air̄

∂z̄j
−∂aij̄
∂z̄r ). Taking into account Theorem 2.3.5 we

have proven the following result.

Lemma 3.3.1. Let (M, F̃ ) be a connected complex Randers space. Then, (M, F̃ ) is a gener-
alized Berwald space if and only if (δk|β|)ηk = 0.

Theorem 3.3.2. Let (M, F̃ ) be a connected complex Randers space. Then,
i) α and F̃ are projectively related if and only if F̃ is generalized Berwald and Bi = −Pηi,

for any i = 1, n, where P = − β̄

2F̃ |β|Γ
k
ij̄
bkη

iη̄j . Moreover, the projective change is G̃i =
a

Gi.

ii) α is Kähler and α is projectively related to F̃ if and only if F̃ is a Kähler-Berwald metric.

Proof. We �rst prove i). Since α is pure Hermitian then is generalized Berwald. If α and F̃ are
projectively related, then by Corollary 3.2.14 it results that F̃ is generalized Berwald. Thus,
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by (3.28), (3.29) and Lemma 3.3.1, the conditions (3.23) are reduced to Bi = −Pηi, for any
i = 1, n, where P = − β̄

2F̃ |β|Γ
k
ij̄
bkη

iη̄j . Conversely, if F̃ is generalized Berwald, then the �rst

condition from (3.23) is identically satis�ed and by (3.29), it turns out that Bi = − 1
F̃
θ∗l(∂̇lF̃ )η

i

and P = 1
F̃
θ∗i(∂̇iF̃ ). All these conditions imply the projectivity of the metrics α and F̃ .

ii) is a consequence of i), under assumptions that the metrics α and F̃ are Kähler, respectively.

Example. Let ∆ =
{
(z, w) ∈ C2, |w| < |z| < 1

}
be the Hartogs triangle with the pure

Kähler-Hermitian metric

aij =
∂2

∂zi∂zj
(log

1

(1− |z|2) (|z|2 − |w|2)
), α2(z, w; η, θ) = aijη

iηj , (3.30)

where z, w, η, θ are the local coordinates z1, z2, η1, η2, respectively, and |zi|2 = ziz̄i, with
zi ∈ {z, w}, ηi ∈ {η, θ}. We choose

bz =
w

|z|2 − |w|2
, bw = − z

|z|2 − |w|2
. (3.31)

With these tools we have constructed in [28] the complex Randers metric F̃ = α+ |β|, where
α(z, w, η, θ) =

√
aij̄(z, w)η

iη̄j and β(z, η) = bi(z, w)η
i. It is a Kähler-Berwald metric, and

thus, by Theorem 3.3.2 ii), α and F̃ are projectively related.

Our second goal is to �nd when a complex Randers metric F̃ = α + |β| on a domain D
from Cn is projectively related to the complex Euclidean metric F on D.

To do this, we make several assumptions. First, we assume that F̃ is a Kähler-Berwald
metric. Thus, by Theorem 3.3.2, ii) it turns out that α and F̃ are projectively related, α is

Kähler and G̃i =
a

Gi. Next, we assume that α is projectively related to the Euclidean metric F.

Therefore, Theorem 3.2.18 implies that
a

Gi = 1
α
∂α
∂zk

ηkηi. Under these statements, we compute

1

F̃

∂F̃

∂zk
ηkηi =

1

F̃

∂α

∂zk
ηkηi +

1

F̃

∂|β|
∂zk

ηkηi =
1

F̃

∂α

∂zk
ηkηi +

1

2|β|F̃

(
(δk|β|)ηk + 2β̄

a

Glbl

)
ηi

=
α

F̃

a

Gi +
|β|
F̃

1

α

∂α

∂zk
ηkηi =

a

Gi.

Thus, G̃i = 1
F̃
∂F̃
∂zk

ηkηi, for any i = 1, n, which together with the Kähler-Berwald assumption

for F̃ , lead to the fact that F̃ is projectively related to the complex Euclidean metric F .
Conversely, by Theorem 3.2.18 it results that F and F̃ are projectively related if and only

if the complex Randers metric F̃ is weakly Kähler and G̃i = 1
F̃
∂F̃
∂zk

ηkηi, for any i = 1, n. These

induce that F̃ is generalized Berwald and morover, by Theorem 2.3.5, F̃ is a Kähler-Berwald
metric. Now, taking into account Theorem 3.3.2, ii) it results that F̃ and α are projectively

related, α is Kähler and G̃i =
a

Gi. So, we obtain

a

Gi =
1

F̃

(
∂α

∂zk
ηk +

β̄

|β|

a

Glbl

)
ηi. (3.32)
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If we contract (3.32) with bi it results the relation
a

Gibi = β
α
∂α
∂zk

ηk, which substituted into

(3.32) yields
a

Gi = 1
α
∂α
∂zk

ηkηi, i.e. α is projectively related to the Euclidean metric F.
Therefore, the following theorem is proved

Theorem 3.3.3. Let F̃ = α+ |β| be a complex Randers metric on a domain D from Cn and
F the complex Euclidean metric on D. Then, F and F̃ are projectively related if and only if
α is projectively related to the Euclidean metric F and F̃ is Kähler-Berwald.
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Chapter 4

Projective invariants of a complex
Finsler space

This chapter, based on our papers [24, 23], extends the results presented in the previous
chapter, exploring the projective change relationship of the complex Finsler metrics. It is
a survey of the projective curvature invariants of Douglas and Weyl type which allow the
complex Douglas space in relation to other special classes of complex Finsler spaces to be
described.

4.1 Introduction and the main results

The subject of projective real Finsler spaces continues to be topical because of the projective
curvature invariants that include Douglas curvature, Weyl curvature, generalized Douglas-
Weyl curvature among others [53, 123, 128, 42, 109]. Exploration of these projective invariants
leads to the special classes of metrics such as Douglas metrics and Finsler metrics of scalar
�ag curvature [46, 49, 69, 42, 128, 99, 43, 136]. A theorem by J. Douglas states that a Finsler
space is projectively �at, if and only if, its Weyl and Douglas curvature invariants are zero.
Some generalizations of the notion of Berwald space are strongly connected to the equation
of geodesics, as pointed out by S. Bácsó and M. Matsumoto [46].

Recent years have seen evidence of signi�cant progress in the study of complex Finsler
geometry [7, 141, 144, 65, 160, 25, 26, 117]. Nevertheless, many subordinate subjects may
be de�ned and studied. The prolongation of Chapter 3 aims to construct and investigate
the projective invariants on complex Finsler manifolds, with a view to pointing out other
applications of the complex projective change relationship. In [24] we stated the existence
of the complex versions of the projective curvature invariants of Douglas and Weyl type and
then, we clari�ed some notions related to these. There are some formal similarities with the
real approach, but the di�erences between real and complex cases are more thorough. For
example, there are three projective curvature invariants of Douglas type and the vanishing
of these invariants characterizes the complex Douglas spaces. The study of complex Finsler
metrics with constant holomorphic curvature is one most important problems in this geometry
(see for instance [1, 90, 125, 144, 28]). Moreover, in [24], we proposed a characterization of
the Kähler-Berwald spaces with constant holomorphic curvature, by means of a projective
curvature invariant of Weyl type.

Subsequently, we make an overview of the chapter's content. In Section 4.2.1, we start
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by considering the structure equations satis�ed by the connection form of the complex linear
connection of Berwald type BΓ. Next, we have derived some of the Bianchi identities which
specify the relations among the covariant derivatives of the curvature coe�cients of BΓ. The
�rst class of projective curvature invariants obtained by successive vertical di�erentiations of
the projective change relationship is explored in Section 4.2.2. A direct consequence is the
existence of three projective invariants of Douglas type and, by means of these, the complex
Douglas spaces are de�ned. Additional investigations have to lead to some necessary and
su�cient conditions that a complex Finsler space is of Douglas and generalized Kähler type,
(Theorems 4.2.7 and 4.2.9, Corollary 4.2.12). Moreover, the complex Douglas property is
preserved by the projective changes (Theorem 4.2.8). We have shown that any pure Hermitian
complex Finsler space is a complex Douglas space. Thus, properly complex Douglas tensors
are non-pure Hermitian quantities. The study of weakly Kähler projective changes is more
signi�cant (Section 4.2.3). We have proved that weakly Kähler Douglas spaces are Kähler-
Berwald spaces (Theorem 4.2.17). A projective curvature invariant of Weyl type W i

jkh, that
formally looks the same as in the real case, is obtained. It vanishes in the Kähler context. For
Kähler-Berwald spaces another projective curvature invariant of Weyl type W i

jk̄h
is found and

moreover we have shown that W i
jk̄h

= 0 if and only if the space is either pure Hermitian with
the holomorphic curvature KF equal to a constant value, or non-pure Hermitian with KF = 0
(Theorem 4.2.20).

Section 4.3 is devoted to the locally projectively �at complex Finsler metrics. The necessary
and su�cient conditions for the locally projective �atness of a complex Finsler metric and other
characterizations are established in Theorems 4.3.1, 4.3.4, 4.3.5 and Propositions 4.3.2, 4.3.3.
At the end of this section, the locally projectively �at complex Finsler metrics are exempli�ed,
illustrating better the interest for this work (Theorem 4.3.6).

In Section 4.4 a key detail for our arguments is that the equations of the complex geodesic
curves can be rewritten in a more signi�cant form, d

2zj

dt2
ηk− d2zk

dt2
ηj +2Djk = 0. Consequently,

the study of the complex Douglas spaces and their subclasses is reduced to the investigation of
the functionsDjk derived from the equations of the geodesic curves. For example, some vertical
di�erentiations of these function provide the tensors Djk

hrm and Djk

hl̄m
, which characterize the

complex Douglas spaces (Theorems 4.4.2 and 4.4.3). Also, the holomorphicity of the functions
Djk is proper to the Kähler-Berwald spaces (Theorem 4.4.7).

The general theory on complex Douglas spaces is applied to the class of complex Randers
spaces, in Section 4.5. Theorems 4.5.1 and 4.5.3 report on the necessary and su�cient con-
ditions for a complex Randers metric F = α + |β| to be a complex Douglas metric. Namely,
a complex Randers metric F = α + |β| is Douglas, if and only if, α and F are projectively
related (Theorem 4.5.5). Moreover, a complex Randers-Douglas space of dimension two is a
Kähler-Berwald space and the existence of the complex Randers-Douglas spaces is attested
by some explicit examples for dimension n ≥ 3.

4.2 Projective curvature invariants

Although the Chern-Finsler complex nonlinear connection (de�ned by the local coe�cients
(1.5)) is frequently used in complex Finsler geometry [1, 116], in this study, we use the canon-

ical complex nonlinear connection because it derives from a complex spray, i.e.
c

N i
j = ∂̇jG

i

and Gi = 1
2N

i
jη
j . Associated to the canonical complex nonlinear connection, we have the
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connection of Berwald type BΓ which is our key tool for studying the projective changes of
the complex Finsler metrics.

4.2.1 Curvature forms and Bianchi identities

Before of all, our goal is to describe the curvature forms and the Bianchi identities corre-
sponding to BΓ. Let us to cosider the connection form ωij(z, η) = Gijkdz

k + Gi
jk̄
dz̄k of BΓ,

this satisfying the following structure equations

d(dzi)− dzk ∧ ωik = hΩi, d(
c
δηi)−

c
δηk ∧ ωik = vΩi, dωij − ωkj ∧ ωik = Ωij , (4.1)

and their conjugates, where d is exterior di�erential with respect to the canonical (c.n.c.).
Since

d(
c
δηi) = d

c

N i
j ∧ dzj =

1

2
Ki
jkdz

k ∧ dzj +Θi
jk̄dz̄

k ∧ dzj +Gijk
c
δηk ∧ dzj +Gijk̄

c
δη̄k ∧ dzj

and Gijk = Gikj , the torsion and curvature forms are given by the following formulas:

hΩi = −Gijk̄dz
j ∧ dz̄k,

vΩi = −1

2
Ki
jkdz

j ∧ dzk −Θi
jk̄dz

j ∧ dz̄k −Gijk̄dz
j ∧

c
δη̄k −Gijk̄

c
δηj ∧ dz̄k,

Ωij = −1

2
Ki
jkhdz

k ∧ dzh − 1

2
Ki
jk̄h̄dz̄

k ∧ dzh +Ki
jhk
dzk ∧ dzh

−Gijkhdz
k ∧

c
δηh −Gijk̄h̄dz̄

k ∧
c
δη̄h −Gi

jhk
dzk ∧

c
δηh +Gi

jhk

c
δηk ∧ dzh,

where

Ki
jk =

c
δk

c

N i
j −

c
δj

c

N i
k, Θi

jk̄ =
c
δk̄

c

N i
j and

Ki
jkh =

c
δhG

i
jk −

c
δkG

i
jh +GljkG

i
lh −GljhG

i
lk,

Ki
jk̄h̄ =

c
δh̄G

i
jk̄ −

c
δk̄G

i
jh̄ +Gljk̄G

i
lh̄ −Gljh̄G

i
lk̄,

Ki
jk̄h =

c
δhG

i
jk̄ −

c
δk̄G

i
jh +Gljk̄G

i
lh −GljhG

i
lk̄

are hh-, h̄h̄- and hh̄- curvature tensors, respectively. We note that

Gijkh = ∂̇hG
i
jk, G

i
jk̄h̄ = ∂̇h̄G

i
jk̄, G

i
jk̄h = ∂̇hG

i
jk̄

are hv-, h̄v̄- and hv̄- curvature tensors, respectively. Moreover, they have the following prop-
erties

Ki
jkh = ∂̇jK

i
kh, K

i
jkhη

j = Ki
kh, K

i
jk̄h̄

+Ki
jh̄k̄

= 0,

Gijkhη
j = 0, Gi

jk̄h
η̄k = 0, Gi

jk̄h
ηj = Gi

hk̄
, Gi

jk̄h̄
η̄h = −Gi

jk̄
,

(∂̇mG
i
jkh)η

m = −Gijkh, (∂̇mG
i
jk̄h̄

)ηm = Gi
jk̄h̄

, (∂̇mG
i
jk̄h

)ηm = 0.

(4.2)

We mention that we preferred to denote by Ki
jkh the horizontal curvature tensors of BΓ,

instead of classical real notation Rijkh. In this way, we avoid any confusion with the horizontal
curvatures coe�cients of the Chern-Finsler connection from (1.5).
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Considering the exterior di�erential of the third structure equation from (4.1), it follows
that

−Ωlj ∧ ωil + ωlj ∧ Ωil = dΩij , (4.3)

which leads to sixteen Bianchi identities. We mention here only some of these, which are
needed for our proposed study

∂̇rG
i
jkh = ∂̇hG

i
jkr, ∂̇rG

i
jkh

= ∂̇hG
i
jkr
, ∂̇rG

i
jk̄h̄ = ∂̇h̄G

i
jkr
,

∂̇r̄G
i
jkh = ∂̇hG

i
jrk, ∂̇r̄G

i
jk̄h̄ = ∂̇h̄G

i
jk̄r̄, ∂̇r̄G

i
jhk

= ∂̇h̄G
i
jrk. (4.4)

When the space is generalized Berwald, the following identities are true:

∂̇rK
i
jkh = 0, ∂̇r̄K

i
jkh = 0, ∂̇rK

i
jkh

= 0, ∂̇r̄K
i
jkh

= 0

and for Kähler-Berwald spaces we get

Ki
jr̄k|h̄ = Ki

jh̄k|r̄, Ki
jrk|h = Ki

jrh|k, (4.5)

where we denoted by '|k ' the horizontal covariant derivative with respect to Chern-Finsler
connection.

4.2.2 Projective curvature invariants of Douglas type

As already mentioned in the previous chapter, the di�erential equations satis�ed by a geodesic
curve z = z(s) of (M,F ), with s a real parameter, are given by

d2zi

ds2
+ 2Gi(z(s),

dz

ds
) = θ∗i(z(s),

dz

ds
), (4.6)

where zi(s), i = 1, n, denote the coordinates along of the curve z = z(s). We mention that

2Gi = N i
jη
j =

c

N i
jη
j and θ∗i = 2gj̄i

c
δj̄L. The functions θ∗i are (1, 1)-homogeneous, this is,

θ∗ik η
k = θ∗i and θ∗i

k̄
η̄k = θ∗i, where θ∗ik = ∂̇kθ

∗i and θ∗i
k̄

= ∂̇k̄θ
∗i. Moreover, the functions θ∗i

hold the following relations:

θ∗ikjη
k = 0, θ∗i

kh̄
ηk = θ∗i

h̄
, θ∗i

k̄j
η̄k = θ∗ij , θ∗i

k̄h̄
η̄k = 0,

θ∗ikjrη
k = −θ∗ijr, θ∗i

kh̄j
ηk = 0, θ∗i

rk̄j
η̄k = θ∗irj , θ∗i

jk̄h̄
η̄k = 0,

θ∗i
kh̄r̄
ηk = θ∗i

h̄r̄
, θ∗jhlrmη

m = −2θ∗jhlr, θ∗j
hl̄rm

η̄l = θ∗jhrm,

θ∗j
hl̄r̄m

η̄l = 0, θ∗j
hl̄rm

ηm = −θ∗j
hl̄r
, θ∗j

hl̄r̄m
ηm = 0,

(4.7)

where the subscripts indicate di�erentiation with respect to η or η̄, for example θ∗ikj = ∂̇jθ
∗i
k =

∂̇kθ
∗i
j , θ

∗i
rk̄j

= ∂̇jθ
∗i
rk̄

= ∂̇rθ
∗i
jk̄

= ∂̇k̄θ
∗i
jr, θ

∗i
rmk̄j

= ∂̇mθ
∗i
jk̄r
, etc. We also emphasize the fact that

θ∗kηk = 0, where ηk = ∂̇kL.
Let F̃ be another complex Finsler metric on the underlying complex manifold M. Corre-

sponding to the metric F̃ , we have the spray coe�cients G̃i and the functions θ̃∗i. According
to Theorem 3.2.6, the complex Finsler metrics F and F̃ on M are projectively related if and
only if there is a smooth function P on T ′M , such that

G̃i = Gi +Bi + Pηi, i = 1, n, (4.8)
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where Bi = 1
2(θ̃

∗i − θ∗i), the relation (4.8) being called the projective change. An equivalent
form for this is

G̃i = Gi + V ηi and θ̃∗i = θ∗i +Qηi, i = 1, n, (4.9)

where V − 1
2Q = P , V = (∂̇kP )η

k is (1, 0)-homogeneous and Q = −2(∂̇k̄P )η̄
k is (0, 1)-

homogeneous.
Di�erentiating in (4.9) with respect to ηj , we get

c

Ñ i
j =

c

N i
j + Vjη

i + V δij and θ̃∗ij = θ∗ij +Qjη
i +Qδij , (4.10)

where Vj = ∂̇jV, Qj = ∂̇jQ, θ̃∗ij = ∂̇j θ̃
∗i and θ∗ij = ∂̇jθ

∗i. Thus, Vj − 1
2Qj = Pj , with Pj = ∂̇jP.

To eliminate V and Q from (4.10), we sum with i = j. Since Viηi = V and Qiηi = 0, (4.10)
gives

V =
1

n+ 1
(
c

Ñ i
i −

c

N i
i ) and Q =

1

n
(θ̃∗ii − θ∗ii ). (4.11)

It follows that P = 1
n+1(

c

Ñ i
i −

c

N i
i )− 1

2n(θ̃
∗i
i − θ∗ii ). Substituting this in (4.8), we �nd that the

projective change is

G̃i = Gi +
1

2
(θ̃∗i − θ∗i) +

1

n+ 1
(
c

Ñ l
l −

c

N l
l )η

i − 1

2n
(θ̃∗ll − θ∗ll )η

i, i = 1, n. (4.12)

From here we can extract

Di = Gi − 1

n+ 1

c

N l
l η
i − 1

2
(θ∗i − 1

n
θ∗ll η

i), (4.13)

which are the components of a projective invariant, under the projective change (4.8).

Proposition 4.2.1. Let (M,F ) be a complex Finsler space. The functions Di are the local
coe�cients of a complex spray if and only if F is weakly Kähler.

Proof. First, Di satisfy the rule (1.4), forasmuch as
c

N l
l η
i, θ∗i and θ∗ll η

i have changes all like
vectors. Second, Di are (2, 0)-homogeneous if and only if θ∗i = 1

nθ
∗l
l η

i. The last relation
contracted by ηi gives 0 = θ∗iηi =

1
nθ

∗l
l L. Hence, θ

∗l
l = 0 and so θ∗i = 0.

Further on, the projective change (4.8) gives rise to various projective invariants. Indeed,
some successive di�erentiations of (4.12) with respect to η and η̄ yield

G̃ijkh = Gijkh +
1

n+ 1
[(∂̇hD̃jk − ∂̇hDjk)η

i +
∑

(k,j,h)

(D̃jh −Djh)δ
i
k]

+
1

2
(θ̃∗ijkh − θ∗ijkh)−

1

2n
[(∂̇hθ̃

∗l
ljk − ∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h)

(θ̃∗lljh − θ∗lljh)δ
i
k],

G̃ijk̄h̄ = Gijk̄h̄ +
1

n+ 1
[(∂̇jD̃k̄h̄ − ∂̇jDk̄h̄)η

i + (D̃k̄h̄ −Dk̄h̄)δ
i
j ]

+
1

2
(θ̃∗ijk̄h̄ − θ∗ijk̄h̄)−

1

2n
[(∂̇h̄θ̃

∗l
lk̄j − ∂̇h̄θ

∗l
lk̄j)η

i + (θ̃∗llk̄h̄ − θ∗llk̄h̄δ
i
j ],

G̃ijk̄h = Gijk̄h +
1

n+ 1
[(∂̇hD̃k̄j − ∂̇hDk̄j)η

i + (D̃k̄j −Dk̄j)δ
i
h + (D̃k̄h −Dk̄h)δ

i
j ]

+
1

2
(θ̃∗ijk̄h − θ∗ijk̄h)−

1

2n
[(∂̇hθ̃

∗l
lk̄j − ∂̇hθ

∗l
lk̄j)η

i + (θ̃∗llk̄j − θ∗llk̄j)δ
i
h + (θ̃∗llk̄h − θ∗llk̄h)δ

i
j ],

(4.14)
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where Dkh = Giikh, Dk̄h̄ = Gi
ik̄h̄

and Dk̄h = Gi
ik̄h

are respectively, hv-, h̄v̄- and hv̄- Ricci

tensors and
∑

(j,k,h)

is the cyclic sum. From this we deduce the following three projective

curvature invariants of Douglas type

Di
jkh = Gijkh −

1
n+1 [(∂̇hDjk)η

i +
∑

(k,j,h)Djhδ
i
k]−

1
2{θ

∗i
jkh −

1
n [(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h) θ
∗l
ljhδ

i
k]},

Di
jk̄h̄

= Gi
jk̄h̄

− 1
n+1 [(∂̇jDk̄h̄)η

i +Dk̄h̄δ
i
j ]− 1

2{θ
∗i
jk̄h̄

− 1
n [(∂̇h̄θ

∗l
lk̄j

)ηi + θ∗l
lk̄h̄
δij ]},

Di
jk̄h

= Gi
jk̄h

− 1
n+1 [(∂̇hDk̄j)η

i +Dk̄jδ
i
h +Dk̄hδ

i
j ]− 1

2{θ
∗i
jk̄h

− 1
n [(∂̇hθ

∗l
lk̄j

)ηi + θ∗l
lk̄j
δih + θ∗l

lk̄h
δij ]}.
(4.15)

De�nition 4.2.2. A complex Finsler space (M,F ) is called complex Douglas space if all of
the invariants (4.15) are vanishing.

Remark 4.2.3. If F is Kähler-Berwald (i.e. Gijk(z) and F is weakly Kähler, according to
Theorem 3.2.2), then Gijkh = Gi

jk̄h̄
= Gi

jk̄h
= 0 and Dkh = Dk̄h̄ = Dk̄h = θ∗i = 0, and

thus the projective curvature invariants of Douglas type are vanishing. It turns out that any
Kähler-Berwald space is a complex Douglas space.

Subsequently, the key of the proofs is the strong maximum principle which gives the
independence of the �ber coordinates of the holomorphic and (0, 0)-homogenous functions on
T ′M .

Lemma 4.2.4. If one of hv-, h̄v̄- or hv̄- Ricci tensors is vanishing then they are all vanishing.

Proof. Supposing Dkh = 0, it results Giikh = 0, which is equivalent with ∂̇hG
i
ik = 0. By

conjugation, ∂̇h̄G
ı̄
ı̄k̄

= 0, and so, Gı̄
ı̄k̄

are holomorphic with respect to η. But, Gı̄
ı̄k̄

are (0, 0)-
homogeneous and so they depend only on z, (Gı̄

ı̄k̄
= Gı̄

ı̄k̄
(z)). Hence, Giik depend only on

z and ∂̇h̄G
i
ik = Dh̄k = 0 which contracted by ηk give ∂̇h̄

c

N i
i = 0, i.e. Gi

ih̄
= 0. So that,

Dk̄h̄ = ∂̇h̄G
i
ik̄

= 0.

If Dk̄h̄ = 0 then ∂̇h̄G
i
ik̄

= 0 which contracted by η̄h yield Gi
ik̄

= 0, because Gi
ik̄h̄
η̄h = −Gi

ik̄
.

It results ∂̇k̄G
i
ih = 0, i.e. Dk̄h = 0. Further on using the holomorphicity with respect to η and

the homogeneity of the coe�cients Giih it results that Giih depend on z alone. So, ∂̇jGiih = 0
which give Dhj = 0.

If Dk̄h = 0 then ∂̇k̄G
i
ih = 0 and similarly it results that Giih depend only on z and Gi

ik̄
= 0.

This implies Dhj = Dk̄h̄ = 0.

Proposition 4.2.5. Let (M,F ) be a complex Finsler space. If Di
jk̄h

= 0 then F is generalized
Berwald and

Di
jkh = −1

2
{θ∗ijkh −

1

n
[(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h)

θ∗lljhδ
i
k]}, (4.16)

Di
jk̄h̄ = −1

2
{θ∗ijk̄h̄ −

1

n
[(∂̇h̄θ

∗l
lk̄j)η

i + θ∗llk̄h̄δ
i
j ]},

θ∗ijk̄h =
1

n
[(∂̇hθ

∗l
ljk̄)η

i + θ∗llk̄jδ
i
h + θ∗llk̄hδ

i
j ].
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Proof. If Di
jk̄h

= 0 then

Gi
jk̄h

= 1
n+1 [(∂̇hDk̄j)η

i +Dk̄jδ
i
h +Dk̄hδ

i
j ] +

1
2{θ

∗i
jk̄h

− 1
n [(∂̇hθ

∗l
lk̄j

)ηi + θ∗l
lk̄j
δih + θ∗l

lk̄h
δij ]}.

(4.17)
which will be contracted by ηjηh and then by ηi.

Using Gi
jk̄h
ηjηh = Gi

hk̄
ηh = ∂̇k̄G

i, (∂̇jDk̄h)η
jηh = 0, Dk̄hη

h = Gl
lk̄
and taking into account

(4.7), after the contraction by ηjηh of Gi
jk̄h

, we obtain

∂̇k̄G
i =

2

n+ 1
Gllk̄η

i.

Due to Lemma 3.2.1, i.e. (∂̇k̄G
i)ηi = 0, the contraction of the above relation with ηi leads to

Gl
lk̄

= 0. Its di�erential with respect to ηh gives Gl
lk̄h

= 0, i.e. Dk̄h = 0 which plugged into
(4.17) yields

Gijk̄h =
1

2
{θ∗ijk̄h −

1

n
[(∂̇hθ

∗l
lk̄j)η

i + θ∗llk̄jδ
i
h + θ∗llk̄hδ

i
j ]}.

The last relation contracted by ηj gives Gi
hk̄

= 0. Next, it results ∂̇k̄G
i
jh = 0 which means that

Gijh are holomorphic functions with respect to η. Together with their homogeneity it turns
out Gijh = Gijh(z). Hence G

i
jkh = Gi

jk̄h̄
= 0 and (4.16).

Proposition 4.2.6. Let (M,F ) be a complex Finsler space. If Di
jk̄h̄

= 0 then F is generalized
Berwald and

Di
jkh = −1

2
{θ∗ijkh −

1

n
[(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h)

θ∗lljhδ
i
k]}, (4.18)

θ∗ijk̄h̄ =
1

n
[(∂̇h̄θ

∗l
ljk̄)η

i + θ∗llk̄h̄δ
i
j ],

Di
jk̄h = −1

2
{θ∗ijk̄h −

1

n
[(∂̇hθ

∗l
ljk̄)η

i + θ∗lljk̄δ
i
h + θ∗llk̄hδ

i
j ]}.

Proof. If Di
jk̄h̄

= 0 then

Gijk̄h̄ =
1

n+ 1
[(∂̇jDk̄h̄)η

i +Dk̄h̄δ
i
j ] +

1

2
{θ∗ijk̄h̄ −

1

n
[(∂̇h̄θ

∗l
ljk̄)η

i + θ∗llk̄h̄δ
i
j ]}. (4.19)

The contraction of (4.19) by ηj η̄hηi and using (4.7) and Gi
jk̄h̄
η̄hηj = −Gi

jk̄
ηj = −∂̇k̄Gi,

Dk̄h̄η̄
h = −Gi

ik̄
, (∂̇jDk̄h̄)η̄

hηj = −(∂̇jG
i
ik̄
)ηj = −Gi

ik̄
, lead to

0 = −(∂̇k̄G
i)ηi = − 2L

n+ 1
Gllk̄,

which implies Gl
lk̄
= 0 and so, Gl

lk̄h̄
= 0, i.e. Dk̄h̄ = 0. Plugging Dk̄h̄ = 0 into (4.19) we obtain

Gijk̄h̄ =
1

2
{θ∗ijk̄h̄ −

1

n
[(∂̇h̄θ

∗l
ljk̄)η

i + θ∗llk̄h̄δ
i
j ]}.

Now, the last relations contracted only by η̄h leads to Gi
jk̄

= 0. As above we obtain that Gijh
depend only on z. So, the space is generalized Berwald and the relations (4.18) are true.
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Theorem 4.2.7. Let (M,F ) be a complex Finsler space. (M,F ) is a complex Douglas space
if and only if it is generalized Berwald with

θ∗ijkh =
1

n
[(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h)

θ∗lljhδ
i
k], (4.20)

θ∗ijk̄h̄ =
1

n
[(∂̇h̄θ

∗l
ljk̄)η

i + θ∗llk̄h̄δ
i
j ],

θ∗ijk̄h =
1

n
[(∂̇hθ

∗l
ljk̄)η

i + θ∗lljk̄δ
i
h + θ∗llk̄hδ

i
j ]}.

Proof. The direct implication is obvious by Propositions 4.2.5 and 4.2.6. Conversely, if the
space is generalized Berwald, replacing the relations (4.20) into (4.15), it follows Di

jk̄h
=

Di
jkh = Di

jk̄h̄
= 0.

Let D̃i
jkh, D̃

i
jk̄h̄

and D̃i
jk̄h

be the projective curvature invariants of Douglas type corre-

sponding to the complex Finsler metric F̃ . From (4.14) and (4.15) we immediately obtain the
following result.

Theorem 4.2.8. Let F and F̃ be projectively related complex Finsler metrics on M . F is a
Douglas metric if and only if F̃ is also a Douglas metric.

Since conditions (4.20) are checked for any weakly Kähler complex Finsler metric, the
class of the complex Finsler spaces that ful�ll (4.20) generalizes the class of the weakly Kähler
complex Finsler spaces. We call this class as generalized Kähler.

The next theorem provides the necessary and su�cient conditions that a complex Finsler
space to be generalized Kähler. We use the notation Ki = θ∗i − 1

nθ
∗l
l η

i.

Theorem 4.2.9. Let (M,F ) be a complex Finsler space. (M,F ) is a generalized Kähler
space if and only if the functions Ki are homogeneous polynomials in η and in η̄ of �rst
degree. Moreover, if the functions Ki vanish identically, then the space is weakly Kähler.

Proof. We assume that the conditions (4.20) are checked. Due to (4.7), the contraction of
these with ηj gives

θ∗ikh =
1

n
(θ∗llhkη

i + θ∗llhδ
i
k + θ∗llkδ

i
h) and θ∗ik̄h̄ =

1

n
θ∗llk̄h̄η

i. (4.21)

Di�erentiating (4.21) with respect to η and η̄, it leads to (4.20). Thus, the sistems (4.20) and
(4.21) are equivalent.

After two successive integrations with respect to η̄ of the second formula in (4.21), using
the homogeneity conditions, we have θ∗i = 1

nθ
∗l
l η

i + f i
k̄
η̄k, where f i

k̄
(z, z̄, η). The subscript f i

k̄

does not mean di�erentiation with respect to η̄k here. Since f i
k̄
depend only on z, z̄ and η,

then f i
k̄
η̄k are homogeneous polynomials in η̄ of �rst degree.

It follows that θ∗ikh = 1
n(θ

∗l
lhkη

i + θ∗llhδ
i
k + θ∗llkδ

i
h) + ∂̇k∂̇h(f

i
r̄η̄
r), which with the �rst formula

in (4.21) implies ∂̇k(∂̇h(f ir̄η̄
r)) = 0. Hence ∂̇h(f ir̄η̄

r) does not depend on η and thus there exist
the smooth functions φir̄h(z, z̄) such that ∂̇h(f ir̄η̄

r) = φir̄hη̄
r. Obviously, the subscripts in φir̄h

do not indicate the di�erentiation with respect to η̄r and ηh.
The last equation obtained can be rewritten as ∂̇h(f ir̄η̄

r) = ∂̇h(φ
i
r̄sη̄

rηs). Integration with
respect to η gives f ir̄η̄

r = φir̄sη̄
rηs + ψi, where ψi(z, z̄, η̄) must be homogeneous polynomials

in η̄ of �rst degree.
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This results in θ∗i = 1
nθ

∗l
l η

i + φir̄sη̄
rηs + ψi, but the homogeneity properties of θ∗i and θ∗ll

lead to ψi = 0. It still hold that Ki = φir̄sη̄
rηs, that is Ki are the homogeneous polynomials

in η and in η̄ of �rst degree.
Conversely, if Ki = φir̄sη̄

rηs, where φir̄h(z, z̄), then a few derivations of these conditions
with respect to η and η̄ yield (4.21).

In particular, if Ki = 0, then θ∗i = 1
nθ

∗l
l η

i, which contracted with ηi gives θ∗ll = 0 and
thus θ∗i = 0.

Some su�cient circumstances for the generalized Kähler property of a complex Finsler
space are given in the following.

Proposition 4.2.10. Let (M,F ) be a complex Finsler space. If θ∗i are homogeneous polyno-
mials in η and in η̄ of �rst degree, then (M,F ) is a generalized Kähler space.

Proof. Under our assumption, we have θ∗i = f ir̄sη̄
rηs, where f ir̄h(z, z̄). Di�erentiating these

with respect to η and η̄ leads to either θ∗ikh = θ∗i
k̄h̄

= 0 or θ∗ikh = 0 and θ∗i
kh̄

depend only on z
and z̄. Thus, the conditions in (4.21) are ful�lled and the space is generalized Kähler.

Examples of complex Douglas metrics are provided �rst by the class of pure Hermitian
metrics. Considering the pure Hermitian metric gij = gij(z), we obtain

Gi =
1

2
gm̄i

∂glm̄
∂zj

ηlηj and θ∗i = −gm̄i(∂glm̄
∂z̄k

− ∂glk̄
∂z̄m

)ηlη̄k.

On one hand, since ∂̇h̄G
i = 0 any pure Hermitian metric is generalized Berwald. On the other

hand, because the functions gm̄i(∂glm̄
∂z̄k

− ∂glk̄
∂z̄m ) depend only on z and z̄ we have that θ∗i are

homogeneous polynomials in η and in η̄ of �rst degree. According to Proposition 4.2.10, any
pure Hermitian metric is then generalized Kähler.

Owing to Theorem 4.2.9 we have the following result.

Corollary 4.2.11. Let (M,F ) be a complex Finsler space. (M,F ) is a weakly Kähler space
if and only if the functions Ki vanish identically.

In addition, by Theorem 4.2.9, an unsophisticated equivalent form of the Theorem 4.2.7
can be formulated.

Corollary 4.2.12. Let (M,F ) be a complex Finsler space. (M,F ) is a complex Douglas
space if and only if it is a generalized Berwald space and Ki = φir̄sη̄

rηs, where φir̄s are smooth
functions that depend only on z and z̄.

4.2.3 Weakly Kähler projective changes

The next discussion is focused on the weakly Kähler complex Finsler spaces. In this case, the
projective invariants of Douglas type (4.15) are reduced to

Di
jkh = Gijkh −

1

n+ 1
[(∂̇jDkh)η

i +
∑

(j,k,h)

Djkδ
i
h], (4.22)

Di
jk̄h̄ = Gijk̄h̄ −

1

n+ 1
[(∂̇jDk̄h̄)η

i +Dk̄h̄δ
i
j ],

Di
jk̄h = Gijk̄h −

1

n+ 1
[(∂̇jDk̄h)η

i +Dk̄hδ
i
j +Dk̄jδ

i
h].

By Lemma 4.2.4, it immediately turns out the following result.
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Proposition 4.2.13. Let (M,F ) be a weakly Kähler complex Finsler space. If one of hv-,
h̄v̄- or hv̄- Ricci tensors is vanishing, then

Di
jkh = Gijkh, D

i
jk̄h̄ = Gijk̄h̄, D

i
jk̄h = Gijk̄h. (4.23)

Proposition 4.2.14. Let (M,F ) be a weakly Kähler complex Finsler space. If one of state-
ments (4.23) is true, then the hv-, h̄v̄- and hv̄- Ricci tensors are vanishing.

Proof. Suppose that Di
jk̄h̄

= Gi
jk̄h̄

. Then, using (4.22) it results (∂̇jDk̄h̄)η
i+Dk̄h̄δ

i
j = 0. Since

(∂̇jDk̄h̄)η
j = Dk̄h̄, hence (n+1)Dk̄h̄ = 0, and so Dk̄h̄ = 0. By Lemma 4.2.4, hv-, and hv̄- Ricci

tensors are vanishing. The proof is similar for Di
jkh = Gijkh or Di

jk̄h̄
= Gi

jk̄h̄
.

Corroborating (4.22) with Propositions 4.2.5 and 4.2.6, it follows

Corollary 4.2.15. Let (M,F ) be a weakly Kähler complex Finsler space.
i) If Di

jk̄h
= 0 then Di

jkh = Di
jk̄h̄

= 0.

ii) If Di
jk̄h̄

= 0 then Di
jkh = Di

jk̄h
= 0.

Theorem 4.2.16. Let (M,F ) be a weakly Kähler complex Finsler space. If either Di
jk̄h̄

= 0

or Di
jk̄h

= 0 then the space is Kähler-Berwald.

Proof. If either Di
jk̄h̄

= 0 or Di
jk̄h

= 0 then Gijh = Gijh(z), which means that the space is
generalized Berwald. The proof is completed by Theorem 3.2.2.

Theorem 4.2.17. If (M,F ) is a complex weakly Kähler Douglas space then it is Kähler-
Berwald.

Proof. It results by Theorem 4.2.16.

By Corollary 4.2.11 and Theorem 4.2.17, we have the next result.

Theorem 4.2.18. If (M,F ) is a complex Douglas space and the functions Ki vanish identi-
cally, then it is a Kähler-Berwald space.

According to Theorem 3.2.8 (or [25, Theorem 3.2]), the weakly Kähler property is preserved
by the projective changes, and moreover we have

G̃i = Gi + Pηi, (4.24)

where P is a (1, 0)-homogeneous function. Under this simpli�ed expression of the projective
change, it turns out that

c

Ñ i
j =

c

N i
j + Pjη

i + Pδij ,
c

δ̃k =
c
δk − (Pkη

i + Pδik)∂̇i,

G̃ijk = Gijk + Pjkη
i + Pkδ

i
j + Pjδ

i
k, G̃i

jk̄
= Gi

jk̄
+ Pjk̄η

i + Pk̄δ
i
j ,

(4.25)

where Pjk = ∂̇kPj = Pkj , Pk̄ = ∂̇k̄P, Pjk̄ = ∂̇k̄Pj = ∂̇jPk̄. In addition, the (1, 0) - homogeneity
of P implies

Pkη
k = P, Pjk̄η̄

k = 0, Pjkη
k = 0, Pk̄η̄

k = 0, Pjk̄η
j = Pk̄.
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Hereinafter, we study the hh-curvatures tensor Ki
jkh. Under the projective change (4.24),

we have

K̃i
kh = Ki

kh +A(k,h)[P
k
B

| h
ηi + (PB

| h
− PPh)δ

i
k],

K̃i
jkh = Ki

jkh +A(k,h)[P
jk

B

| h
ηi + P

k
B

| h
δij + (P

j
B

| h
− PjPh − PPjh)δ

i
k],

(4.26)

where 'B
| h
' is the horizontal covariant derivative with respect to BΓ and A(k,h) is the alternate

operator, for example A(k,h){P
k
B

| h
} = P

k
B

| h
− P

h
B

| k
. Next we make the following notations

Xkh = P
k
B

| h
− P

h
B

| k
and Xh = PB

| h
− PPh

which have the properties

∂̇jXh = P
j
B

| h
− PjPh − PPjh, ∂̇jXh − ∂̇hXj = P

j
B

| h
− P

h
B

| j
= Xjh,

∂̇jXkh = P
kj

B

| h
− P

hj
B

| k
, (∂̇jXh)η

j = Xh, (∂̇jXkh)η
j = 0,

Xkjη
j = P

k
B

| 0
− PB

| k
= Xk0.

(4.27)

By means of these, the changes (4.26) become

K̃i
kh = Ki

kh +Xkhη
i +Xhδ

i
k −Xkδ

i
h,

K̃i
jkh = Ki

jkh + (∂̇jXkh)η
i +Xkhδ

i
j + (∂̇jXh)δ

i
k − (∂̇jXk)δ

i
h.

(4.28)

Now, we introduce the hh- Ricci tensor Kkh = Ki
ikh. Another important tensor is Hjk =

Ki
jki. The link between these horizontal curvature tensors is Hkj −Hjk = Kjk. Summing by

i = j and then i = h together with a contraction by ηj , in the second relation from (4.28), it
yields

Xkh =
1

n+ 1
(K̃kh −Kkh) =

1

n+ 1
[(H̃hk − H̃kh)− (Hhk −Hkh)], (4.29)

H̃0k = H0k +Xk0 − (n− 1)Xk.

From here, it turns out that

Xk0 =
1

n+ 1
[(H̃0k − H̃k0)− (H0k −Hk0)], (4.30)

Xk = − 1

n+ 1
(H̃k −Hk), with Hk =

1

n− 1
(nH0k +Hk0),

for any n ≥ 2. Moreover,

Kjk = ∂̇jHk0 − ∂̇kHj0 = ∂̇kH0j − ∂̇jH0k, with Hjk = ∂̇jH0k. (4.31)

Now, substituting (4.29) and (4.30) in (4.28) we obtain the following invariants

W i
kh = Ki

kh +
1

n+ 1
A(k,h)(Hkhη

i +Hhδ
i
k), (4.32)

W i
jkh = Ki

jkh +
1

n+ 1
A(k,h)[(∂̇jHkh)η

i +Hkhδ
i
j + (∂̇jHh)δ

i
k],

in which the second formula is a projective curvature invariant of Weyl type. We note that,
if (M,F ) is Kähler, then W i

jkh = 0.
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Theorem 4.2.19. Let (M,F ) be a weakly Kähler n-dimensional complex Finsler space, n ≥ 2.
i) W i

jkh = 0 if and only if W i
kh = 0;

ii) If Kkh = 0 then W i
jkh = Ki

jkh +
1

n−1(Hjhδ
i
k −Hjkδ

i
h);

iii) If Hkh = 0 then W i
jkh = Ki

jkh.

Proof. i) If W i
jkh = 0, then

Ki
jkh = − 1

n+ 1
A(k,h)[(∂̇jHkh)η

i +Hkhδ
i
j + (∂̇jHh)δ

i
k],

which contracted by ηj give Ki
kh = − 1

n+1A(k,h)(Hkhη
i +Hhδ

i
k) and hence, W i

kh = 0.

Conversely, ifW i
kh = 0 thenKi

kh = − 1
n+1A(k,h)(Hkhη

i+Hhδ
i
k). Di�erentiating with respect

to ηj , it results

Ki
jkh = − 1

n+ 1
A(k,h)[(∂̇jHkh)η

i +Hkhδ
i
j + (∂̇jHh)δ

i
k],

that is, W i
jkh = 0.

ii) If Kkh = 0 then Hkj = Hjk. Substituting into (4.32) and using (4.30) and (4.31), it results
our claim. iii) immediately results by (4.32) and (4.30).

Aiming to obtain another projective curvature invariant of Weyl type, we assume that the
weakly Kähler complex Finsler metric F is generalized Berwald. Therefore, we have Ki

jk̄h̄
= 0,

Ki
jk̄h

= −
c
δk̄G

i
jh and by Bianchi identities, we get ∂̇rKi

jkh
= 0 and ∂̇r̄Ki

jkh
= 0.

We note that by a projective change, the generalized Berwald property of the metric L
is transferred to the metric L̃. Moreover, the generalized Berwald property together with
the weakly Kähler assumption implies that F and F̃ are Kähler-Berwald metrics (Theorem
3.2.2). Hence, Ki

jk̄h
= −δk̄Lijh. Therefore, under these assumptions, the function P from the

projective change (4.24) is holomorphic with respect to η, i.e. Pk̄ = 0 (see Proposition 3.2.16),
and

Ñ i
j = N i

j + Pjη
i + Pδij , δ̃k = δk − (Pkη

i + Pδik)∂̇i, (4.33)

L̃ijk = Lijk + Pjkη
i + Pkδ

i
j + Pjδ

i
k, G̃ijk̄ = Gijk̄ = 0.

Consequently,

K̃i
jk̄h = Ki

jk̄h − Pjh|k̄η
i − Pj|k̄δ

i
h − Ph|k̄δ

i
j , (4.34)

0 = Pjhr|k̄η
i + Pjh|k̄δ

i
r + Pjr|k̄δ

i
h + Phr|k̄δ

i
j .

Next, we consider the hh̄-Ricci tensor Kk̄h = Ki
ik̄h
. Since F is Kähler, Ki

ik̄h
= Ki

hk̄i
.

Making i = j in (4.34), it turns out

Ph|k̄ = − 1

n+ 1
(K̃k̄h −Kk̄h) and Phr|k̄ = 0, (4.35)

which substituted into the �rst equation from (4.34), give a new projective curvature invariant
of Weyl type, which is valid only for the Kähler-Berwald spaces, namely

W i
jk̄h = Ki

jk̄h −
1

n+ 1
(Kk̄jδ

i
h +Kk̄hδ

i
j). (4.36)
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We note that for any Kähler-Berwald space, the hh̄-curvatures coe�cients of Chern-Finsler
connection can be rewritten as Ri

jk̄h
= Ki

jk̄h
+K l

mk̄h
ηmCijl. Thus,

Rr̄jk̄h = Kr̄jk̄h +K l
mk̄hη

mCjr̄l,

where Kr̄jk̄h = Ki
jk̄h
gir̄, and Rr̄jk̄hη

j = Kr̄jk̄hη
j . This implies that the holomorphic curvature

of the Kähler-Berwald space (M,F ) in direction η can be expressed as

KF (z, η) =
2

L2
Kr̄jk̄hη̄

rηj η̄kηh.

Theorem 4.2.20. Let (M,F ) be a connected n-dimensional Kähler-Berwald spaces, n ≥ 2.
Then, W i

jk̄h
= 0 if and only if Km̄jk̄h = KF

4 (gjk̄ghm̄ + ghk̄gjm̄). In this case, KF = c, where c

is a constant on M and the space is either pure Hermitian with Kk̄j =
c(n+1)

4 gjk̄ or non-pure
Hermitian with c = 0 and Ki

jk̄h
= 0.

Proof. Using (4.36) and W i
jk̄h

= 0, it results

Ki
jk̄h =

1

n+ 1
(Kk̄jδ

i
h +Kk̄hδ

i
j) (4.37)

which contracted with gim̄ gives

Km̄jk̄h =
1

n+ 1
(Kk̄jghm̄ +Kk̄hgjm̄), (4.38)

and

Rm̄jk̄h =
1

n+ 1
(Kk̄jghm̄ +Kk̄hgjm̄ +Kk̄lη

lCjm̄h), (4.39)

where Cjm̄h = ∂̇hgjm̄. Since Rr̄jk̄h = Rr̄hk̄j (see [1, p. 105]), it results Rr̄jk̄h = Rk̄jr̄h, and
therefore,

Kr̄jk̄hη
j = Kk̄jr̄hη

j . (4.40)

From (4.38) also follows that KF = 4
L(n+1)Kk̄jη

j η̄k, which indeed, can be rewritten as

LKF = 4
n+1Kk̄jη

j η̄k. Di�erentiating this last formula with respect to η̄m and using again the

Bianchi identity ∂̇m̄Kkh = 0, it follows that KF η̄m + L(∂̇m̄KF ) = 4
n+1Km̄jη

j . Now, due to
(4.40), we obtain

KF η̄m =
4

n+ 1
Km̄jη

j . (4.41)

Thus, L(∂̇m̄KF ) = 0 and so, KF depends only on z. Di�erentiating (4.41) with respect to ηl,
it gives Km̄l =

(n+1)KF

4 glm̄, which plugged into (4.38) yields Km̄jk̄h = KF
4 (gjk̄ghm̄ + ghk̄gjm̄).

Conversely, since Ki
jk̄h

= KF
4 (gjk̄δ

i
h + ghk̄δ

i
j) and Kk̄h = (n+1)KF

4 ghk̄, the relation (4.36)

implies W i
jk̄h

= 0.

In order to prove that KF is a constant on M we use the Bianchi identity Ki
jr̄k|h̄ = Ki

jh̄k|r̄
from (4.5). Contracting by gim̄η̄mηj η̄rηk, it gives

KF |h =
1

L
KF |0̄ηh. (4.42)
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Taking into account KF |h|j = KF |j|h = 0, where '|k ' is the vertical covariant derivative with
respect to Chern-Finsler connection, and di�erentiating (4.42), we easily deduce

0 = KF |h|j =
1

L
KF |0̄(gjh −

1

L
ηjηh),

which multiplied by gh̄j , it turns out that 1
L(n− 1)KF |0̄ = 0. Plugging it into (4.42), it follows

that KF |h = 0, i.e. ∂KF

∂zh
= 0. By conjugation, ∂KF

∂zh
= 0 and so, KF is a constant c on M . This

implies Kk̄j =
c(n+1)

4 gjk̄ and its derivative with respect to ηl leads to c(∂̇lgjk̄) = 0, and hence
the last claim.

4.3 Locally projectively �at complex Finsler metrics

The purpose of this section is to survey the locally projectively �at complex Finsler metrics.
Let L̃ be a locally Minkowski complex Finsler metric on the underlying manifold M.

According to [5], this means that corresponding to L̃, at any point of M there exist local
charts in which the fundamental metric tensor g̃ij̄ depends only on �ber coordinate η. Thus,
it turns out that the spray coe�cients G̃i = 0 and the functions θ̃∗i = 0 (in such local charts).
The complex Finsler metrics L is called locally projectively �at if it is projectively related
to the locally Minkowski metric L̃. Since the weakly Kähler property is preserved under the
projective change, any locally projectively �at metric is weakly Kähler. Taking into account
Theorem 3.2.10 (or [25, Theorem 3.3]), we state the following result.

Theorem 4.3.1. L is locally projectively �at if and only if it is weakly Kähler and

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) = 2P (∂̇r̄L̃), r = 1, n, (4.43)

where P = 1
2L̃

(δkL̃)η
k. Moreover, Gi = −Pηi.

Proof. The above equivalence results by Theorem 3.2.10 in which L̃ is a locally Minkowski
metric on M . Taking into account (δkL̃)ηk = −2Gl(∂̇lL̃), the condition (4.43) is equivalent to
−Glg̃lr̄ = P (∂̇r̄L̃). By contraction with g̃r̄i, we obtain Gi = −Pηi.

Proposition 4.3.2. If L is locally projectively �at then Gi = 1
2L

∂L
∂zk

ηkηi and L is generalized
Berwald.

Proof. Since Gi = 1
2g
m̄i ∂grm̄

∂zk
ηkηr and L is locally projectively �at, then

gm̄i
∂grm̄
∂zk

ηkηr = −2Pηi.

Contracting with ηi, it leads to P = − 1
2L

∂L
∂zk

ηk. So that, Gi = 1
2L

∂L
∂zk

ηkηi.

Moreover, we have gm̄i ∂grm̄
∂zk

ηkηr = 1
L
∂L
∂zk

ηkηi, which implies

∂̇r̄G
i = − 1

2L2
∂L
∂zk

ηkηiη̄r +
1
2L

∂2L
∂zk∂η̄r

ηkηi = − 1
LG

iη̄r +
1
2L

∂gjr̄
∂zk

ηjηkηi = − 1
LG

iη̄r +
1
LG

iη̄r = 0,

i.e. F is generalized Berwald.

Proposition 4.3.3. Let (M,F ) be a complex Finsler space. If F is locally projectively �at
then it is a Kähler-Berwald metric with W i

jk̄h
= 0.
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Proof. By Proposition 4.3.2 and Theorem 3.2.2, it follows that L is a complex Berwald metric.
Since K̃i

jk̄h
= K̃k̄h = 0, the relations (4.34) and (4.35), give Ki

jk̄h
= 1

n+1(Kk̄jδ
i
h +Kk̄hδ

i
j) and

so, W i
jk̄h

= 0.

By Theorem 4.2.20 we have proved the following result.

Theorem 4.3.4. Let (M,F ) be a connected n-dimensional complex Finsler space, n ≥ 2. If
F is locally projectively �at then it is of constant holomorphic curvature. Moreover, if the
constant value of the holomorphic curvature is non-zero, then (M,F ) is a pure Hermitian
space.

Some re�nements of the above results on locally projectively �at metrics we obtained in
[14, Theorem 2.4]. Namely, if F is a Kähler-Berwald metric on domain D from Cn with
Gi = 1

F
∂F
∂zk

ηkηi, then according to Theorem 3.2.18, it is projectively related to the standard
Euclidean metric on D, and thus it is locally projectively �at. Conversely, if F is locally
projectively �at, then by Propositions 4.3.2 and 4.3.2 it is Kähler-Berwald and Gi = 1

F
∂F
∂zk

ηkηi.
So, we have justi�ed the following result.

Theorem 4.3.5. Let F be a complex Finsler metric on domain D from Cn. F is locally
projectively �at if and only if it is Kähler-Berwald and Gi = 1

F
∂F
∂zk

ηkηi.

Next we study as an application the weakly Kähler complex Finsler metrics L with the
spray coe�cients Gi = ρrη

rηi, where ρ is a smooth complex function depending only on
z ∈M , ρr =

∂ρ
∂zr and ρrh̄ = ∂ρr

∂z̄h
is Hermitian, i.e. ρrh̄ = ρhr̄, and it is nondegenerated.

Theorem 4.3.6. Let (M,F ) be a connected weakly Kähler n-dimensional complex Finsler
space, n ≥ 2, with Gi = ρrη

rηi. Then,
i) L is locally projectively �at;
ii) L is a Kähler-Berwald metric;
iii) L is a pure Hermitian of non-zero constant holomorphic curvature KF = − 4

Lρrh̄η
rη̄h.

iv) ρ satis�es the di�erential equations

ρrh̄k = ρrρkh̄ + ρkρrh̄, (4.44)

where ρrh̄k =
∂ρrh̄
∂zk

=
∂ρkh̄
∂zr = ∂ρrk

∂z̄h
and ρrh̄k = ρkh̄r

Proof. In order to prove i), we use Theorem 4.3.1. Let L̃ be a locally Minkowski metric
on M. Since L is weakly Kähler, we must show only that the equation (4.43) is satis�ed.
Indeed, we have ∂̇r̄Gl = 0, (δkL̃)η

k = −2Gl(∂̇lL̃) = −2ρrη
rηl(∂̇lL̃) = −2L̃ρrη

r, and thus
∂̇r̄(δkL̃)η

k = −2(∂̇r̄L̃)ρlη
l, which implies the equation (4.43).

Since ∂̇r̄Gl = 0, L is generalized Berwald. Thus, Theorem 3.2.2 yields ii).
iii) Theorem 4.3.4 together with i) and ii) show thatW i

jk̄h
= 0 and L is of constant holomorphic

curvature. Since L is a Kähler-Berwald metric, δk̄ =
c
δk̄ and L

i
jh = Gijh. HenceK

i
jk̄h

= −δk̄Lijh,
which will be rewritten in terms of derivatives of ρ. Indeed, two successive di�erentiations of
the equations Gi = ρrη

rηi lead to Lijk = ρkδ
i
j + ρjδ

i
k. Consequently, K

i
jk̄h

= −ρjk̄δih − ρhk̄δ
i
j

which gives Kr̄jk̄h = −ρjk̄ghr̄ − ρhk̄gjr̄ and thus,

KF = − 4

L
ρrh̄η

rη̄h. (4.45)
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Since ρrh̄ is nondegenerated, KF ̸= 0 and by Theorem 4.3.4 it results that L is a pure Hermitian
metric.
iv) To justify that ρ satis�es (4.44), we use (4.45). This implies

L = − 4

KF
ρrh̄η

rη̄h = grh̄η
rη̄h, (4.46)

which gives

grh̄ = − 4

KF
ρrh̄ and δkgrh̄ = − 4

KF
ρrh̄k. (4.47)

Now, using (1.5) and Lijk = ρkδ
i
j + ρjδ

i
k, it turns out that

δkgjm̄ = ρkgjm̄ + ρjgkm̄ (4.48)

The substitution of (4.47) into (4.48) implies (4.44). Moreover, the Kähler property of L gives
ρrh̄k = ρkh̄r.

4.4 Some results on complex Douglas spaces

Considering z = z(s) a geodesic curve of (M,F ), it satis�es (5.29). Taking an arbitrary
transformation of the parameter t = t(s), with dt

ds > 0, the equations (5.29) are generally

not preserved. Indeed, for the new parameter t we have the following relations dzi

ds = dzi

dt
dt
ds ,

d2zi

ds2
= d2zi

dt2

(
dt
ds

)2
+ dzi

dt
d2t
ds2

and θ∗k
(
z, dzds

)
=
(
dt
ds

)2
θ∗k(z, dzdt ), which yield that[

d2zi

dt2
+ 2Gi(z, dzdt )− θ∗i(z, dzdt )

] (
dt
ds

)2
= d2zi

ds2
− dzi

dt
d2t
ds2

+ 2Gi(z, dzds )− θ∗i(z, dzds ) = −dzi

dt
d2t
ds2
.

Therefore, the equations (5.29) in t parameter became,

d2zi

dt2
+ 2Gi(z(t),

dz

dt
) = θ∗i(z(t),

dz

dt
)− dzi

dt

d2t

ds2
1(
dt
ds

)2 , i = 1, n, (4.49)

which are equivalent to

d2zi

dt2
+ 2Gi(z, dzdt )− θ∗i(z, dzdt )

dzi

dt

= − d2t

ds2
1(
dt
ds

)2 , i = 1, n. (4.50)

We can rewrite (4.50), taking two di�erent values for i, as

d2zj

dt2
+ 2Gj(z, dzdt )− θ∗j(z, dzdt )

dzj

dt

=
d2zk

dt2
+ 2Gk(z, dzdt )− θ∗k(z, dzdt )

dzk

dt

= − d2t

ds2
1(
dt
ds

)2 , (4.51)

for any j, k = 1, n, and the �rst equation in (4.51) leads to

d2zj

dt2
dzk

dt
− d2zk

dt2
dzj

dt
+ 2Gj

dzk

dt
− 2Gk

dzj

dt
= θ∗i

dzk

dt
− θ∗k

dzi

dt
. (4.52)

Since ηk = dzk

dt , along the geodesic curve z = z(t(s)) of (M,F ) the di�erential equations
hold

d2zj

dt2
ηk − d2zk

dt2
ηj + 2Djk = 0, (4.53)
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where Djk = Gjηk −Gkηj − 1
2(θ

∗jηk − θ∗kηj).

The homogeneity property of the spray coe�cients Gi and of the functions θ∗i leads to

Djk
r η

r +Djk
r̄ η̄

r = 3Djk and Djk
r̄ η̄

r = −1

2
(θ∗jηk − θ∗kηj), (4.54)

where Djk
r = ∂̇rD

jk and Djk
r̄ = ∂̇r̄D

jk. Furthermore, di�erentiating (4.54) with respect to η
gives

Djk
rhη

r +Djk
r̄hη̄

r = 2Djk
h , Djk

rhlη
r +Djk

r̄hlη̄
r = Djk

hl ,

Djk
rhlmη

r +Djk
r̄hlmη̄

r = 0, Djk
m̄rhlη

r +Djk
m̄r̄hlη̄

r = 0,
(4.55)

where Djk
rh = ∂̇hD

jk
r , D

jk
r̄h = ∂̇hD

jk
r̄ , D

jk
rhl = ∂̇lD

jk
rh, and all that. We note that the sequence of

the subscripts does not matter; for example Djk
rhl is same with Djk

rlh.
Successive di�erentiations of Djk with respect to η or η̄ yield the tensors

Djk
hlrm = (∂̇mG

j
hlr)η

k +Gjhlrδ
k
m +Gjhlmδ

k
r +Gjhmrδ

k
l +Gjmlrδ

k
h + θ∗jhlrmη

k

+ θ∗jhlrδ
k
m + θ∗jhlmδ

k
r + θ∗jhmrδ

k
l + θ∗jmlrδ

k
h − [j, k],

Djk

hl̄r̄m
= (∂̇mG

j

hl̄r̄
)ηk +Gj

hl̄r̄
δkm +Gj

ml̄r̄
δkh + θ∗j

hl̄r̄m
ηk + θ∗j

hl̄r̄
δkm + θ∗j

ml̄r̄
δkh − [j, k],

Djk

hl̄rm
= (∂̇mG

j

hl̄r
)ηk +Gj

hl̄r
δkm +Gj

hl̄m
δkr +Gj

ml̄r
δkh + θ∗j

hl̄rm
ηk

+ θ∗j
hl̄r
δkm + θ∗j

hl̄m
δkr + θ∗j

ml̄r
δkh − [j, k],

(4.56)

where [j, k] denotes interchanges of indices j and k of the preceding terms.

Lemma 4.4.1. The tensors Djk
hrm and Djk

hl̄m
depend only on z and z̄ if and only if Djk

hl̄rm
=

Djk

hl̄r̄m
= 0. Moreover, given any of them, Djk

rhlm = 0.

Proof. The direct implication is obvious. Conversely, Djk

hl̄rm
= Djk

hl̄r̄m
= 0 with (4.55) implies

thatDjk
hrm andDjk

hl̄m
are holomorphic with respect to η and (0, 0)-homogeneous. Thus, applying

the strong maximum principle (see [26]), it results Djk
hrm(z, z̄) and D

jk

hl̄m
(z, z̄). Any of these

gives Djk
rhlm = 0.

Theorem 4.4.2. Let (M,F ) be a complex Finsler space. (M,F ) is Douglas if and only if it
is generalized Berwald with Djk

hrm and Djk

hl̄m
depending only on z and z̄.

Proof. Whether or not the space is Douglas, according to Theorem 4.2.7, it is generalized
Berwald with (4.20). Using the fact that Gijk(z, z̄) (i.e. the generalized Berwald property), it
follows that

Djk
hlrm = θ∗jhlrmη

k + θ∗jhlrδ
k
m + θ∗jhlmδ

k
r + θ∗jhmrδ

k
l + θ∗jmlrδ

k
h − [j, k], (4.57)

Djk

hl̄r̄m
= θ∗j

hl̄r̄m
ηk + θ∗j

hl̄r̄
δkm + θ∗j

ml̄r̄
δkh − [j, k],

Djk

hl̄rm
= θ∗j

hl̄rm
ηk + θ∗j

hl̄r
δkm + θ∗j

hl̄m
δkr + θ∗j

ml̄r
δkh − [j, k];

Substituting (4.20) into (4.57), then yields Djk
hlrm = Djk

hl̄r̄m
= Djk

hl̄rm
= 0 and thus,

Djk
hrm(z, z̄) and D

jk

hl̄m
(z, z̄).
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Conversely, under assumption of generalized Berwald the tensors Djk
hlrm, D

jk

hl̄r̄m
and Djk

hl̄rm
are given by (4.57). Summing in these by k = m and bearing (4.7), we obtain

Djk
hlrk = n{θ∗jhlr −

1

n
[(∂̇hθ

∗k
klr)η

j +
∑
(k,h,l)

θ∗kkhlδ
j
r ]},

Djk

hl̄r̄k
= n{θ∗j

hl̄r̄
− 1

n
[(∂̇r̄θ

∗k
khl̄)η

j + θ∗kkl̄r̄δ
j
h]},

Djk

hl̄rk
= n{θ∗j

hl̄r
− 1

n
[(∂̇hθ

∗k
krl̄)η

j + θ∗kkhl̄δ
j
r + θ∗kkrl̄δ

j
h]},

which with (4.15), lead to

Djk
hlrk = (n+ 1)Dj

hlr, Djk

hl̄r̄k
= (n+ 1)Dj

hl̄r̄
, Djk

hl̄rk
= (n+ 1)Dj

hl̄r
. (4.58)

However, under our assumptions we also have Djk
rhlm = Djk

hl̄rm
= Djk

hl̄r̄m
= 0. These, along

with (4.58) prove that the space is Douglas.

Theorem 4.4.3. Let (M,F ) be a complex Finsler space. (M,F ) is Douglas if and only if it
is generalized Kähler with Djk

hrm and Djk

hl̄m
depending only on z and z̄.

Proof. The direct implication follows from Theorems 4.2.7 and 4.4.2. Conversely, under as-
sumption that the space is generalized Kähler, the conditions (4.20) are identically checked

and Djk
j = −(n+1)Gk+

c

N j
j η

k−φkr̄sη̄rηs, where φkr̄s are smooth functions which depends only
on z and z̄. After three derivations of these last relations with respect to η or η̄, it follows that

Djk
jrhm = −(n+ 1)Girhm + (∂̇mDrh)η

k +
∑

(j,h,k)

Djhδ
i
k,

Djk

jrh̄m̄
= −(n+ 1)Girh̄m̄ + (∂̇rDh̄m̄)η

k +Dh̄m̄δ
k
r ,

Djk

jrh̄m
= −(n+ 1)Girh̄m + (∂̇rDh̄m)η

k +Dh̄rδ
k
m +Dh̄mδ

k
r .

Our assumptions Djk
hrm(z, z̄) and D

jk

hl̄m
(z, z̄), along with the conditions (4.20) and (4.15), then

lead to Di
jkh = Di

jk̄h̄
= Di

jk̄h
= 0, that is, the space is Douglas.

Lemma 4.4.4. Let (M,F ) be a complex Finsler space. Then, Gi = Pηi, where P is a smooth
function on T ′M, if and only if Djk = −1

2(θ
∗jηk − θ∗kηj). Moreover, given any of them, the

functions Djk are (2, 1)-homogeneous and (M,F ) is a generalized Berwald space.

Proof. Supposing thatGi = Pηi, it immediately results that Djk = −1
2(θ

∗jηk − θ∗kηj). Con-
versely, the fact that Djk = −1

2(θ
∗jηk−θ∗kηj) implies Gjηk−Gkηj = 0, for which contraction

with ηk leads to

Gi =
1

L
Gkηkη

i =
1

2L
gr̄k

∂gjr̄
∂zh

ηjηhηkη
i =

1

2L

∂gjr̄
∂zh

ηjηhη̄rηi = Pηi,

where P = 1
2L

∂gjr̄
∂zh

ηjηhη̄r is a smooth function on T ′M.
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A trivial computation shows that Djk are (2, 1)-homogeneous. Since Gi = 1
2g
m̄i ∂grm̄

∂zk
ηkηr,

we write 1
2g
m̄i ∂grm̄

∂zk
ηkηr = Pηi. Contraction with ηi, leads to P = 1

2L
∂L
∂zk

ηk. Further on, the

equality gm̄i ∂grm̄
∂zk

ηkηr = 1
L
∂L
∂zk

ηkηi implies

∂̇r̄G
i = − 1

2L2

∂L

∂zk
ηkηiη̄r +

1

2L

∂2L

∂zk∂η̄r
ηkηi = − 1

L
Giη̄r +

1

2L

∂gjr̄
∂zk

ηjηkηi

= − 1

L
Giη̄r +

1

L
Giη̄r = 0,

that is, F is generalized Berwald.

Corollary 4.4.5. Let (M,F ) be a complex Finsler space. If Djk
hrm and Djk

hl̄m
depend only on

z and z̄ and either Djk = −1
2(θ

∗jηk − θ∗kηj) or Gi = Pηi, where P is a smooth function on
T ′M, then the space is Douglas.

Proof. It results by Theorem 4.4.2 and Lemma 4.4.4.

Lemma 4.4.6. Let (M,F ) be a complex Finsler space. Then, the functions Djk are holomor-
phic with respect to η if and only if they are homogeneous polynomials in η of degree three and
in η̄ of degree zero. Moreover, given any of them, the space (M,F ) is weakly Kähler.

Proof. IfDjk are holomorphic with respect to η, thenDjk
r̄ = 0 and by (4.54), we haveDjk

r ηr =
3Djk and θ∗jηk − θ∗kηj = 0. Therefore, Djk = Gjηk − Gkηj which are (3, 0)-homogeneous
with respect to η. In addition, we have Djk

r̄hlm = 0 and owing to (4.55), Djk
rhlmη

r = 0. The last
two conditions mean that Djk

rhl are holomorphic with respect to η and (0, 0)-homogeneous.
Thus, by the strong maximum principle, the functions Djk

rhl depend only on z and z̄. Taking
into account (4.55), we then obtain Djk = 6Djk

rhl(z)η
rηhηl, which proves our claim.

Conversely, if Djk are homogeneous polynomials in η of degree three and in η̄ of degree
zero, then there exists the functions f jkrhl(z, z̄, η̄) such that Djk = f jkrhl(z, z̄, η̄)η

rηhηl, with
f jkrhl = f jkhrl = f jkhlr. Hence, D

jk
hlm = 6f jkhlm(z, z̄, η̄) and Djk

rhlm = 0, and from (4.55) it follows

that Djk
r̄hlmη̄

r = 0. By conjugation, Dj̄k̄

r̄h̄l̄m̄
= 0 and Dj̄k̄

rh̄l̄m̄
ηr = 0 which means that the

functions Dj̄k̄

h̄l̄m̄
are holomorphic with respect to η and (0, 0)-homogeneous. Applying again

the strong maximum principle, Dj̄k̄

h̄l̄m̄
does not depend on η or η̄. Therefore, their conjugation

Djk
hlm depend only on z and z̄ which implies Djk = 1

6D
jk
rhl(z, z̄)η

rηhηl and thus Djk
r̄ = 0.

Finally, after contraction on θ∗jηk − θ∗kηj = 0 with ηk we deduce θ∗j = 0, that is, (M,F )
is weakly Kähler.

Theorem 4.4.7. Let (M,F ) be a complex Finsler space. The functions Djk are holomorphic
with respect to η if and only if (M,F ) is a Kähler-Berwald space.

Proof. If Djk are holomorphic with respect to η, then θ∗j = 0 and Djk = Gjηk−Gkηj . Thus,
(4.56) becomes

Djk
hlrm = (∂̇mG

j
hlr)η

k +Gjhlrδ
k
m +Gjhlmδ

k
r +Gjhmrδ

k
l +Gjmlrδ

k
h − [j, k],

Djk

hl̄r̄m
= (∂̇mG

j

hl̄r̄
)ηk +Gj

hl̄r̄
δkm +Gj

ml̄r̄
δkh − [j, k],

Djk

hl̄rm
= (∂̇mG

j

hl̄r
)ηk +Gj

hl̄r
δkm +Gj

hl̄m
δkr +Gj

ml̄r
δkh − [j, k].
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Figure 4.1: Inclusion diagram

Setting k = m and using the formulas (4.2) and (4.4), these yield

Djk
hlrk = (n+ 1){Gjhlr −

1

n+ 1
[(∂̇rDhl)η

j +
∑
(h,l,r)

Dhlδ
j
r ]},

Djk

hl̄r̄k
= (n+ 1){Gj

hl̄r̄
− 1

n+ 1
[(∂̇hDl̄r̄)η

j +Dl̄r̄δ
j
h]},

Djk

hl̄rk
= (n+ 1){Gj

hl̄r
− 1

n+ 1
[(∂̇rDl̄h)η

j +Dl̄hδ
j
r +Dl̄rδ

j
h]}.

Substituting (4.15) with θ∗j = 0 into these, we obtain Djk
hlrk = (n+1)Dj

hlr, D
jk

hl̄r̄k
= (n+1)Dj

hl̄r̄

and Djk

hl̄rk
= (n+ 1)Dj

hl̄r
. However, we also have Djk

rhlm = Djk

hl̄rm
= Djk

hl̄r̄m
= 0. Thus, Dj

hlr =

Dj

hl̄r̄
= Dj

hl̄r
= 0, that is, the space is Douglas. Moreover, by Theorem 4.2.17 it is Kähler-

Berwald.
Conversely, if the space is Kähler-Berwald, then θ∗j = 0 and ∂̇r̄G

i = 0. These lead to
Djk = Gjηk −Gkηj and Djk

r̄ = 0.

Using Lemma 4.4.6 and Theorem 4.4.7, it is justi�ed the following result.

Corollary 4.4.8. Let (M,F ) be a complex Finsler space. Then, the functions Djk are ho-
mogeneous polynomials in η of degree three and in η̄ of degree zero if and only if (M,F ) is a
Kähler-Berwald space.

Consider F a complex Finsler metric on the complex manifold M which is locally pro-
jectively �at. Thus, as we already proved, the spray coe�cients corresponding to F are
Gi = 1

2L
∂L
∂zk

ηkηi and F is weakly Kähler (i.e. θ∗i = 0, see Section 4.3 and [24]), which
give Djk = 0. Moreover, any locally projectively �at complex Finsler metric is a complex
Kähler-Berwald metric. The converse is not true, but any complex Kähler-Berwald metric
with Gi = Pηi, where P is a smooth function on T ′M, is a locally projectively �at metric.

Combining all the results proved above, we can present the inclusion diagram shown in
Figure 4.1. In the next section we describe an interesting family of complex Douglas spaces.

4.5 Complex Douglas spaces with Randers metrics

Let ã = aij̄(z)dz
i ⊗ dz̄j be a pure Hermitian metric and let b = bi(z)dz

i be a di�erential
(1, 0)-form, both onM. By these objects we have de�ned (for more details see [27, 26, 25]) the
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complex Randers metric F (z, η) = α+ |β|, where α(z, η) =
√
aij̄(z)η

iη̄j and β(z, η) = bi(z)η
i.

We note that the complex Randers metrics are arresting in complex Finsler geometry,
and they represent a medium such that Hermitian geometry interferes with complex Finsler
geometry properly. Since any pure Hermitian metric is a complex Douglas metric, our next
study is focused on the complex Randers metrics with β ̸= 0. Recall that for a complex
Randers metric we have

∂α

∂ηi
=

1

2α
li,

∂|β|
∂ηi

=
β̄

2|β|
bi, ηi =

∂L

∂ηi
=
F

α
li +

Fβ̄

|β|
bi, (4.59)

gij̄ =
F

α
aij̄ −

F

2α3
lilj̄ +

F

2|β|
bibj̄ +

1

2L
ηiηj̄ ,

gj̄i =
α

F
aj̄i +

|β|(α||b||2 + |β|)
Lγ

ηiη̄j − α3

Fγ
bib̄j − α

Fγ
(β̄ηib̄j + βbiη̄j),

N i
j =

a

N i
j +

1

γ
(lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r)ξi +
β

2|β|
kri

∂br̄
∂zj

,

where kr̄i = 2αar̄i + 2(α||b||2+2|β|)
γ ηiη̄r − 2α3

γ bib̄r − 2α
γ (β̄ηib̄r + βbiη̄r), γ = L + α2(||b||2 − 1),

ξi = β̄ηi + α2bi,
a

Nk
j = am̄k ∂alm̄

∂zj
ηl, with the settings bi = aj̄ibj̄ , ||b||2 = aj̄ibibj̄ , b

ı̄ = b̄i.
Therefore, the spray coe�cients are

Gi =
a

Gi +
1

2γ
(lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r)ξiηj +
β

4|β|
kri

∂br̄
∂zj

ηj . (4.60)

and for the generalized Berwald Randers spaces we have proven Theorem 2.3.5 which attest
that a connected complex Randers space (M,F ) is a generalized Berwald space if and only if

(β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0. Moreover, one has that Gi =

a

Gi.
All subsequent reasoning is under assumptions of generalized Berwald property. Since

Gi =
a

Gi, then
c

Nk
j = 1

2a
m̄k(∂alm̄

∂zj
+

∂ajm̄
∂zl )η

l, which together with (4.59), leads to

c
δm̄L = −F

2
Γlr̄m̄τ

lη̄r − Fβ

|β|
Ωm̄, (4.61)

where Γlr̄m̄ = ∂alm̄
∂z̄r −∂alr̄

∂z̄m , Ωm̄ =
a

N s̄
m̄bs̄ − ∂br̄

∂z̄m η̄
r − β̄2

|β|2
∂bl
∂z̄m η

l, τ l = 1
F a

m̄lη̄m = 1
αη

l + β
|β|b

l.
From (4.61) and (4.59), it follows that

a

θ∗i = −Γlr̄m̄a
m̄iηlη̄r, (4.62)

θ∗i = −α(Γlr̄m̄τ lη̄r +
2β

|β|
Ωm̄)(h

m̄i − β̄

γ
bm̄ηi),

where hm̄i = am̄i − α2

γ b
m̄bi.

Once we obtain θ∗i and
a

θ∗i, a technical computation yields the expressions for Ki and
a

Ki.
This involves some trivial calculus, which leads to

a

Ki = −Γlr̄m̄(a
m̄iηl − 1

na
m̄lηi)η̄r,

Ki = −Γlr̄m̄[αh
m̄iτ l − 1

n(a
m̄l − ωαβ̄

γ bm̄τ l)ηi]η̄r − 2Ωm̄[
αβ
|β|h

m̄i + α|β|
nγ (1− α

|β| −
α2ω
γ )bm̄ηi],

(4.63)

where ω = 1− α
|β| +

2α2(1−||b||2)
γ .
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Theorem 4.5.1. Let (M,F ) be a connected complex Randers space. (M,F ) is a complex

Douglas space if and only if (β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0 and Ki =

a

Ki. Given any of them,
Ωm̄ = −1

2Γlr̄m̄b
lη̄r. Moreover, if α is Kähler, then (M,F ) is a Kähler-Berwald space.

Proof. If (M,F ) is complex Douglas space, then (β̄lr̄
∂b̄r

∂zj
+β ∂br̄

∂zj
η̄r)ηj = 0 andKi = φir̄s(z, z̄)η̄

rηs,
which means that Ki are homogeneous polynomials in η and in η̄ of �rst degree. Thus, using
(4.63) we have

α|β|
{
Ki + Γlr̄m̄

[
hm̄iη̄rηl − 1

n [a
m̄l − β̄

γ (1−
2α2||b||2

γ )bm̄ηl + α2(α2||b||2+|β|2)
γ bm̄bl)]η̄rηi

]
+2α2

nγ (1 +
α2||b||2+|β|2

γ )Ωm̄b
m̄ηi
}
+ Γlr̄m̄

[
α2βhm̄iη̄rbl − 1

nγ [
α2β̄(α2||b||2+|β|2)

γ bm̄ηl

−α2|β|2(1− 2α2||b||2
γ )bm̄bl]η̄rηi

]
+ 2Ωm̄

[
α2βhm̄i + α2|β|2

nγ (1− 2α2||b||2
γ )bm̄ηi

]
= 0,

which contains an irrational part and a rational part. We can deduce that

Ki = −Γlr̄m̄{hm̄iη̄rηl − 1
n [a

m̄l − β̄
γ (1−

2α2||b||2
γ )bm̄ηl + α2(α2||b||2+|β|2)

γ bm̄bl)]η̄rηi}
− 2α2

nγ (1 +
α2||b||2+|β|2

γ )Ωm̄b
m̄ηi and

Γlr̄m̄{α2βhm̄iη̄rbl − 1
nγ [

α2β̄(α2||b||2+|β|2)
γ bm̄ηl − α2|β|2(1− 2α2||b||2

γ )bm̄bl]η̄rηi}
= −2Ωm̄{α2βhm̄i + α2|β|2

nγ (1− 2α2||b||2
γ )bm̄ηi}.

(4.64)

Contractions with li and bi in the second formula in (4.64) yield the homogeneous linear system{
|β|2(n− 1 + 2α2||b||2

γ )X + β̄(α2||b||2+|β|2)
γ Y = 0

[n(γ − α2||b||2) + |β|2(1− 2α2||b||2
γ )]X − β̄(α2||b||2+|β|2)

γ Y = 0
(4.65)

with the unknowns X = (Γlr̄m̄η̄
rbl + 2Ωm̄)b

m̄ and Y = Γlr̄m̄η
lη̄rbm̄. Since its determinant is

nonzero, ∆ = −2nβ̄|β|F (α2||b||2+|β|2)
γ ̸= 0, then the system (4.65) admits only the null solution,

that is,

(Γlr̄m̄η̄
rbl + 2Ωm̄)b

m̄ = 0, (4.66)

Γlr̄m̄η
lη̄rbm̄ = 0.

By derivations with respect to η and η̄, the second relation in (4.66) implies Γlr̄m̄b
m̄ = 0.

When substituted in the �rst relation in (4.66), this yields Ωm̄b
m̄ = 0. These, along with

(4.64), lead to Ki =
a

Ki.

Conversely, since
a

Ki are always homogeneous polynomials in η and in η̄ of �rst degree

and Ki =
a

Ki, then (M,F ) is a generalized Kähler space. This together with Theorem 2.3.5
completes our claim.

If the space is complex Douglas, then Γlr̄m̄b
m̄ = Ωm̄b

m̄ = 0. When substituted into the
second formula in (4.64), this yields Ωm̄ = −1

2Γlr̄m̄b
lη̄r.

Moreover, if α is Kähler, then Ki =
a

Ki = 0. According to Theorem 4.2.17, (M,F ) is a
Kähler-Berwald space.

Theorem 4.5.2. Let (M,F ) be a connected complex Randers space. If (M,F ) is a generalized

Berwald space then, Ki =
a

Ki if and only if θ∗i =
a

θ∗i.
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Proof. Under the assumption of generalized Berwald property, we have the relations (4.62)

and (4.63). If Ki =
a

Ki then, the second formula in (4.63) can be rewritten as the sum of an
irrational part and a rational part. This implies that

{−α2

γ η
lbi + 1

n [
β̄
γ (1−

2α2||b||2
γ )ηl − α2(α2||b||2+|β|2)

γ bl)]ηi}Γlr̄m̄bm̄η̄r

+ 2α2

nγ (1 +
α2||b||2+|β|2

γ )Ωm̄b
m̄ηi = 0

and the second formula (4.64). Similar reasoning to that in the proof of Theorem 4.5.1, gives
Γlr̄m̄b

m̄ = 0 and Ωm̄b
m̄ = 0. Therefore, Ωm̄ = −1

2Γlr̄m̄b
lη̄r. Substitution of the last three

relations in (4.62), leads to θ∗i =
a

θ∗i.

Conversely, if θ∗i =
a

θ∗i then, the second formula (4.62) is

−α|β|
γ

Γlr̄m̄η
lη̄r(α2bi + β̄ηi)bm̄ + α2β(Γlr̄m̄η̄

rbl + 2Ωm̄)(h
m̄i − β̄

γ
bm̄ηi) = 0,

which contains an irrational part and a rational part. It follows that

Γlr̄m̄η
lη̄r(α2bi + β̄ηi)bm̄ = 0, (4.67)

(Γlr̄m̄η̄
rbl + 2Ωm̄)(h

m̄i − β̄

γ
bm̄ηi) = 0.

Contracting in (4.67) with either li or bi, we obtain Γlr̄m̄b
m̄ = 0, Ωm̄b

m̄ = 0 and Ωm̄ =

−1
2Γlr̄m̄b

lη̄r. Substituted in (4.63), these give Ki =
a

Ki.

An immediate consequence of above theorems follows.

Theorem 4.5.3. Let (M,F ) be a connected complex Randers space. (M,F ) is a complex

Douglas space if and only if (β̄lr̄ ∂b̄
r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0 and θ∗i =

a

θ∗i.

To establish another characteristic of complex Douglas spaces with Randers metric, we
recall Theorem 3.3.2 i).

Theorem 4.5.4. Let (M,F ) be a connected complex Randers space. Then, α and F are
projectively related if and only if F is generalized Berwald and Bi = −Pηi, for any i = 1, n,

where P = − β̄
4F |β|Γlr̄m̄b

m̄ηlη̄r.

Theorem 4.5.5. Let (M,F ) be a connected complex Randers space. (M,F ) is a complex
Douglas space if and only if α and F are projectively related.

Proof. If (M,F ) is a complex Douglas space, then by Theorem 4.5.3, we have θ∗i =
a

θ∗i and

thus, Bi = 0. Moreover, by Theorem 2.3.5, we have Gi =
a

Gi. Hence P = 0 and, according
to Theorem 4.5.4, the metrics α and F are projectively related. Conversely, if α and F are
projectively related and since α is a complex Douglas metric, according to Theorem 4.2.8, the
Randers metric F is also a complex Douglas metric.
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Now we consider a connected complex Randers metric F = α+ |β|, on a two-dimensional
complex manifold M . Assuming that F = α+ |β| is a complex Douglas metric, it satis�es the
conditions

Γlr̄1̄b
1̄ + Γlr̄2̄b

2̄ = 0, with l, r = 1, 2. (4.68)

Since Γlm̄m̄ = 0 and Γl1̄2̄ = −Γl2̄1̄, with l,m = 1, 2, (4.68) reduces to Γl1̄2̄b
1̄ = 0 and

Γl1̄2̄b
2̄ = 0. These give Γl1̄2̄ = 0, because at least one of coe�cients bm̄ is nonzero. This means

that the metric α is Kähler, and thus, by Theorem 4.5.1, a complex Randers Douglas space
of dimension two is Kähler-Berwald space.

However, there exist the complex Randers Douglas spaces that are not Kähler-Berwald for
dimension n ≥ 3. We show this fact using an example. Hereinafter, we construct an explicit
example of complex Randers metric that is complex Douglas, i.e. it satis�es the conditions of
Theorems 4.5.1 and 4.5.3.

On M = C3 we set the pure Hermitian metric

α2 = ez
1+z̄1

∣∣η1∣∣2 + ez
2+z̄2

∣∣η2∣∣2 + ez
1+z̄1+z3+z̄3

∣∣η3∣∣2 (4.69)

and we choose the (1, 0)-di�erential form β given byβ = ez
2
η2. Then, |β|2 = ez

2+z̄2
∣∣η2∣∣2 and

thus bi = bi = 0, i ∈ {1, 3}, b2 = ez
2
and b2 = e−z

2
. In addition, we have Γlr̄m̄ = 0, excepting

the coe�cients Γ31̄3̄ = −Γ33̄1̄ = ez
1+z̄1+z3+z̄3 ̸= 0. Thus, the metric (4.69) is not Kähler. With

these tools we construct the complex Randers metric

F =

√
ez1+z̄1 |η1|2 + ez2+z̄2 |η2|2 + ez1+z̄1+z3+z̄3 |η3|2 +

√
ez2+z̄2 |η2|2, (4.70)

which has det(gij̄) =
F 5

2α4|β| det(aij̄) > 0, i, j = 1, 2, 3. Some computations lead to the conclu-
sion that the the metric (4.70) is generalized Berwald, this is,

(β̄lr̄
∂b̄r

∂zj
+ β

∂br̄
∂zj

η̄r)ηj = (β̄l2̄
∂b̄2

∂zj
+ β

∂b2̄
∂zj

η̄2)ηj = 0.

Moreover, we have Γlr̄m̄b
m̄ = Γlr̄2̄b

2̄ = 0, Γlr̄m̄bl = Γ2r̄m̄b
2 = 0, Ωr̄ = 0, r = 1, 2, 3. If we

substitute these into (4.62) and (4.63), it turns out
a

θ∗i = θ∗i and
a

Ki = Ki, i = 1, 2, 3. Thus,
by Theorems 4.5.1 and 4.5.3, (4.70) is a complex Douglas metric.

We note that the above example can be generalized to examples of complex Douglas metric,

taking on M = Cn, α2 =
n∑

k=1, k ̸=3

ez
k+z̄k

∣∣ηk∣∣2 + ez
1+z̄1+z3+z̄3

∣∣η3∣∣2 . For β we can choose one

of the following possibilities β = ez
k
ηk, where k = 1, n, excepting k = 1 and 3.
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Chapter 5

Zermelo's deformation of Hermitian
metrics

In this chapter, mainly based on the paper [9], we �rst present Zermelo's navigation on Hermi-
tian manifolds making use of the real homogeneous complex Finsler metrics (brie�y R-complex
Finsler metrics). More precisely, R-complex Randers metrics are obtained by Zermelo's defor-
mation of the Hermitian metrics, with space-dependent ship's relative speed under the action
of weak complex vector �elds. Next, we indicate the behaviour of certain properties of a
Hermitian metric under Zermelo deformation in a special holomorphic wind.

5.1 Motivation and the main results

In Zermelo's navigation problem, formulated initially by E. Zermelo in [157], the objective
is to �nd the paths which minimize travel time of the ship proceeding from one point to
another point in the presence of perturbing wind W , under assumption the ship sails at
constant maximum speed relative to the surrounding sea. Exploration of this problem has led
to important generalizations and results in Riemann-Finsler geometry. It was shown that the
solutions of Zermelo's problem on Riemannian manifold (M,h) are represented by geodesics
of a Randers metric (in weak wind) or Kropina metric (in critical wind) [45, 124, 76, 154, 93,
96]. This subject is still being addressed because of its various applications in the essential
theoretical investigations [45, 124, 76, 84, 154, 93, 96] as well as in the real world problems
[104, 95, 94].

Zermelo's navigation was also considered by us on Hermitian manifolds, where the solu-
tions are represented by the complex Randers and complex Kropina metrics [40, 14, 15]. It is
worth mentioning that, in contrast to a real analogue, a complex Randers metric commenced
to be studied much later (2007, cf. [36]). In order to bene�t from similar interest like this
given by real Randers metrics, it was natural to �nd some applications for them. Thus, the
concepts in real setting presented in [45] were referred by us in [40], where the navigation
problem was investigated on a Hermitian manifold. The application of a navigation represen-
tation in a complex landscape enabled to obtain the concrete examples of complex Randers
metrics [40] and to point out the essential di�erence in comparison to the analogous problem
on Riemannian manifolds. Namely, the complex Randers metrics are not of constant holomor-
phic curvature by perturbation of some Hermitian metrics of constant holomorphic sectional
curvature via the Zermelo's navigation [40]. Nevertheless, it was necessary to work out the
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additional geometric assumptions which come from the complex homogeneity requirement for
complex Finsler metrics [14, 15]. Without this restriction, the solutions of the problem are
only real homogeneous, actually R-complex Finsler metrics. These have been developed in
[120, 41, 21, 22]. Thus, the �rst purpose of this chapter is to describe R-complex Finsler met-
rics as solutions of Zermelo's navigation problem on Hermitian manifolds (M,h), under action
of weak winds W and with variable space-dependent ship's relative speed ||u||h. The second
objective is to investigate the holomorphic curvature of a class of R-complex Finsler metrics
obtained by Zermelo's navigation, that is, as the deformation of some Hermitian metrics by
certain holomorphic vector �elds.

An overview of the chapter's content. In Section 5.2 we summarize some preliminary
notions on n-dimensional R-complex Finsler spaces. In Section 5.3, following [93], we describe
the generalized Zermelo navigation problem (brie�y, generalized ZNP) on Hermitian manifolds,
the main result being Theorem 5.3.3, which attests that the R-complex Hermitian Finsler
metrics are of Randers type if and only if they solve the generalized ZNP on Hermitian
manifolds. Besides the meaning that the generalized ZNP provides a concrete application for
the R-complex Hermitian Randers metrics, more valuable is the fact that by generalized ZNP
we can construct explicit non-Hermitian metrics (called W -Zermelo deformations), deforming
the background Hermitian metric h by given data W and ||u(z)||h. This is followed in Section
5.4, where we study the holomorphic curvature of some W -Zermelo deformations F , taking
into consideration holomorphic vector �elds. Assuming that the holomorphic curvature of
W -Zermelo deformation F is only space-dependent and W is a special holomorphic wind, we
prove that the holomorphic curvature of F is vanishing (Theorem 5.4.8). Moreover, we study
the e�ects of the Zermelo deformation on some properties of a Hermitian metric h, e.g. Kähler
property and the holomorphic sectional curvature (Theorems 5.4.6, 5.4.7 and Corollary 5.4.9).

5.2 Few rudiments of R-complex Finsler geometry

To begin with, we point out some basic notions from R-complex Finsler geometry [1, 116, 120,
41, 21, 22, 26]. Next, we introduce the class of R-complex Randers metrics which solve the
Zermelo's navigation problem in the Hermitian landscape. This is more general approach to
the subject than the class studied in [41, 22].

Basic notions and notations. LetM be an n-dimensional complex manifold and (zk)k=1,n

be the complex coordinates in a local chart in z ∈ M . We recall that T ′M denotes the
holomorphic tangent bundle, T ′M being a 2n-dimensional complex manifold with (zk, ηk)k=1,n

the local coordinates in (z, η) ∈ T ′M.

De�nition 5.2.1. [120] An R-complex Finsler space is a pair (M,F ), where F is a continuous
function F : T ′M −→ R+ satisfying the conditions:
i) L = F 2 is smooth on M̃ = T ′M\{0};
ii) F (z, η) ≥ 0 for all (z, η) ∈ T ′M ; the equality holds if and only if η = 0;
iii) F (z, λη, z̄, λη̄) = λF (z, η, z̄, η̄), for all λ > 0.

We note that this de�nition refers to complex Finsler metrics, where we restrict the ho-
mogeneity condition iii) to the real scalars. The Hessian and the Levi matrices of L induce
the tensors

gij =
∂2L

∂ηi∂ηj
, gij̄ =

∂2L

∂ηi∂η̄j
, gı̄j̄ =

∂2L

∂η̄i∂η̄j
, (5.1)
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that obey the below properties

(∂̇iL)η
i + (∂̇ı̄L)η̄

i = 2L, gijη
i + gjı̄η̄

i = ∂̇jL, L = Re{gijηiηj}+ gij̄η
iη̄j ,

(∂̇jgik)η
j + (∂̇j̄gik)η̄

j = 0, (∂̇jgik̄)η
j + (∂̇j̄gik̄)η̄

j = 0.
(5.2)

They are obtained as consequences of the real homogeneity condition iii).
Subsequently, a smooth function φ(z, η) with (∂̇iφ)η

i+(∂̇ı̄φ)η̄
i = sφ is called R-homogenous

of degree s in the �bre variable η. Thus, according to (5.2) L is R-homogenous of degree 2 in
the �bre variable and the tensors gik and gik̄ are R-homogenous of degree 0.

As mentioned in the Chapter 1, a strong pseudoconvexity is assumed in complex Finsler
geometry. This implies the matrix (gij̄) is positive de�nite on M̃ . But here, due to the
real homogeneity condition the fundamental function L acquires a more general form than in
complex Finsler geometry, namely L = Re{gijηiηj}+gij̄ηiη̄j by (5.2). Consequently, there are
highlighted two general classes of R-complex Finsler spaces. Namely, the class of R-complex
Hermitian Finsler spaces, i.e. the Levi matrix (gij̄) is positive de�nite on M̃ , and the class of
R-complex non-Hermitian Finsler spaces, i.e. the Hessian matrix (gij) is positive de�nite on
M̃ . Thus, in this way two di�erent geometries were developed on T ′M . That is, Hermitian
and non-Hermitian, related by L (see [120]) and actually also the geometry of the strongly
convex R-complex Finsler spaces, where both matrices (gij̄) and (gij) are positive de�nite on

M̃ (see [21]).
Further on, for our purpose we ought to focus on the class of R-complex Hermitian Finsler

spaces. In particular, if gij̄ depends only on z, then we called an R-complex Hermitian Finsler
space with gij̄(z) a pure Hermitian space. Note that also gij depends only on z (cf. [22]) and
the fundamental function L is smooth on whole T ′M in this case.

In R-complex Hermitian Finsler geometry Chern-Finsler complex nonlinear connection
(with the local coe�cients N i

j = gm̄i ∂2L
∂zk∂η̄m

= gm̄i[(∂kgr̄m̄)η̄
r + (∂kgsm̄)η

s]) is the main tool
to study [120]. Thus, from now on, δk is considered with respect to the above nonlinear
connection.

Also, Chern-Finsler complex nonlinear connection induces a complex spray

S = ηi
∂

∂zi
− 2Gi(z, η)∂̇i,

where 2Gi = N i
jη
j . Since L is R-homogenous of degree 2 in the �bre variables, the local

coe�cients N i
j and G

i are R-homogeneous of degree 1 and 2, respectively, with respect to the
�bre variables.

Moreover, the Chern-Finsler connection D : Γ(T ′M̃) → Γ(T ∗
CM̃ ⊗ T ′M̃) (i.e. metrical

compatible and of (1, 0)− type, see [120, 21]) is retrieved in an R-complex Hermitian Finsler
space. Locally D is given by

Lijk = gm̄i(δjgkm̄), Cijk = gm̄i(∂̇jgkm̄), Lijk̄ = Cijk̄ = 0, (5.3)

and it has the properties Lijk = ∂̇jN
i
k and N i

k = Lijkη
j + (∂̇r̄N

i
k)η̄

r [21].
If in addition F is assumed to satisfy T ijk = 0 or T ijkη

j = 0, where T ijk = Lijk−Likj , then the
R-complex Hermitian Finsler space (M,F ) is called strongly Kähler or Kähler, respectively.
Any strongly Kähler metric is a Kähler metric and, in the pure Hermitian case both these
types are the same with ∂gjm̄

∂zi
= ∂gim̄

∂zj
.
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Let γ : [0, 1] → M, γ(t) = (γk(t)) = (zk(t)), k = 1, n with a real parameter t and the

velocity dγk

dt = ηk(t), be a regular curve with F
(
γ(t), dγ(t)dt

)
= c > 0. γ is a geodesic curve

corresponding to the R-complex Hermitian Finsler function F on M i� d
dt

(
∂L
∂ηi

(γ, γ̇)
)

=

∂L
∂zi

(γ, γ̇) , where L = F 2, and γ̇ = dγ
dt (see [120]). The last equation is equivalent to(

gij
d2γj

dt2
+

∂2L

∂zj∂ηi
ηj − ∂L

∂zi

)
+

(
gik̄

d2γ̄k

dt2
+

∂2L

∂z̄k∂ηi
η̄k
)

= 0, i = 1, n, (5.4)

in which the brackets cannot be vanished like in [120] due to real homogeneity of L. The
equation (5.4) of the geodesic curve γ(t) can be written in the local coordinate as follows

gij

(
d2γj

dt2
+ 2Gj (γ, γ̇)

)
+ T̃i (γ, γ̇) + gik̄

(
d2γ̄k

dt2
+ 2Gk̄ (γ, γ̇)

)
− θ∗i (γ, γ̇) = 0, i = 1, n, (5.5)

where T̃i = 1
2(2δlgij − δiglj)η

lηj − 1
2glk̄(∂̇r̄N

l
i )η̄

kη̄r and θ∗i = glk̄T
l
jiη

j η̄k.

The holomorphic curvature of a complex Finsler space is the analogue of the holomorphic
sectional curvature from Hermitian geometry [1]. Following [1, 120], the holomorphic curvature
of R-complex Hermitian Finsler function F in direction η is

KF (z, η) =
2

L̃2
gim̄R

i
jhk
ηj η̄hηkη̄m, (5.6)

where Ri
jhk

= −δhL
i
jk−(δhN

l
k)C

i
jl are the horizontal curvature coe�cients of the Chern-Finsler

connection D and L̃ = gim̄η
kη̄m.

R-complex Randers metrics. Next, we have introduced an important class of R-complex
Hermitian Finsler metrics. Considering z ∈ M, η ∈ T ′

zM, η = ηi ∂
∂zi

, an R-complex Randers
function is de�ned by

F (z, η) = α(z, η, z̄, η̄) + β(z, η, z̄, η̄), (5.7)

where α2(z, η, z̄, η̄) = Re{aijηiηj} + aij̄η
iη̄j , β(z, η, z̄, η̄) = Re{biηi}, with b = bi(z)dz

i a
di�erential (1, 0)-form, b ̸= 0, and aij̄ = aij̄ (z) which comes from a Hermitian metric a =
aij̄dz

i⊗ dz̄j on M [138, 90]. Note that α gives us an example of R-complex Hermitian Finsler
metric which is pure Hermitian and, by (5.1), aij̄(z) = ∂̇i∂̇j̄α

2 and aij(z) = ∂̇i∂̇jα
2.

In [41] we studied a particular R-complex Hermitian Finsler space with Randers metrics,
setting (5.7) with aij = 0. Here we treat aij a bit more general, namely

aij = xbibj , (5.8)

where x ∈ [0, 1) is a real parameter. Considering the notations bk = aj̄kbj̄ and ||b||2 = aj̄ibibj̄
(bj̄ means b̄j), we prove (as in [43]) that the condition ||b||2 ∈ (0, 1

1−x) guarantees the positivity
of F given by (5.7) with (5.8). The below shown proof is for x = 1

2 , i.e. aij =
1
2bibj .

Lemma 5.2.2. Let F = α+β be an R-complex Randers function with aij = 1
2bibj . Then, F is

positive on M̃ if and only if ||b||2 < 2. Moreover, any of these assertions implies α2 − β2 > 0.
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Proof. We assume that F > 0 on M̃ . This leads to
√
Re{aijηiηj}+ aij̄η

iη̄j > −Re{biηi} for

all η ̸= 0, which can be equivalently rewritten as
√

1
2Re{(biηi)2}+ aij̄η

iη̄j > −Re{biηi}. Since
b ̸= 0, substituting in the last relation ηi with −bi, it results that ||b||2 < 2. Conversely, under
the assumptions ||b||2 < 2 and η ̸= 0, the Cauchy-Schwarz inequality yields

|biηi|2 < aij̄η
iη̄j ||b||2 < 2aij̄η

iη̄j , (5.9)

where |biηi|2 = (biη
i)(bj̄ η̄

j).

The inequality (5.9) is equivalent to
(
Re{biηi}

)2
< 1

2Re{(biη
i)2} + aij̄η

iη̄j which implies

α2 − β2 > 0, and −Re{biηi} <
∣∣Re{biηi}∣∣ < √1

2Re{(biηi)2}+ aij̄η
iη̄j , that is, F is positive.

By some technical computations and making use of [27, Propositin 2.2], we get the result:

Proposition 5.2.3. Let F = α+β be an R-complex Randers function with aij = 1
2bibj . Then

i) gij̄ =
F
α (aij̄ −

1
2α2 lilj̄ +

α
2F 3 ηiηj̄) and L̃ = F 2(2α−β)(α2−β2+εε̄)

2α3 ;
ii) gij = F

2α(bibj −
1
α2 lilj +

α
F 3 ηiηj);

iii) gj̄i = α
F (a

j̄i + 4
H ζ

iζ̄j − 2α
FHJ ϑ

iϑ̄j);

iv) det(gij̄) =
(
F
α

)n J
8α2 det(aij̄), where

α2 = l̃iη
i +

ε2 + ε̄2

4
, l̃i = aij̄ η̄

j , ε = bjη
j , ε+ ε̄ = 2β,

li = l̃i +
ε

2
bi, ηi =

F

α

(
l̃i +

ε+ 2α

2
bi

)
,

ζi =
ε̄

2
bi + ηi, ϑi =

[
4F − ε(2− ||b||2)

]
ηi + 2F (F − ε)bi,

H = 4(α2 − β2) + εε̄(2− ||b||2), J = H + 2αF (2 + ||b||2).

We notice that the condition ||b||2 < 2 also assures positive-de�niteness of gij̄ . Thus, F
given by (5.7) with aij = 1

2bibj is an R-complex Hermitian Randers metric (brie�y R-complex
Randers metric).

5.3 Generalized Zermelo navigation under weak wind

Let (M,h) be an n-dimensional Hermitian manifold, where h = hij̄dz
i⊗dz̄j is a pure Hermitian

metric determined by the components hjk̄(z) = h( ∂
∂zj

, ∂
∂z̄k

) in the local coordinates (zk)k=1,n

of z ∈ M [138, 90]. The norm of the tangent vectors η ∈ T ′
zM, η = ηj ∂

∂zj
with respect to h,

(i.e. its h-length), is ||η||h =
√
h(η, η̄) =

√
hjk̄(z)η

j η̄k. We consider the Zermelo navigation

problem on the imaginary sea represented by (M,h) in the presence of wind determined by
a vector �eld W ∈ T ′

zM, W = W j ∂
∂zj

. Like in the standard formulation of the problem [45],
we denote by u the velocity of a ship in the absence of wind, but in order to follow the idea
of the generalizations from [93, 96, 14, 15], it need not have h-unit length. Actually, as in
[93] we admit that ||u||h ∈ (||W ||h, 1]. This implies the ship's relative speed ||u||h may be
space-dependent because also the wind speed ||W ||h has this property and it is more realistic
model from a practical point of view.
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Further on, by notation (h, f(z),W ) we mean the generalized navigation data, where f(z) =
||u(z)||h. Function f : M → (||W ||h, 1] is assumed to be a smooth, positive and real valued
which depends on z (also on z̄), and W is a weak wind, i.e. 0 < ||W ||h < ||u(z)||h ≤ 1. Due to
the existence of perturbing vector �eldW a ship's resulting velocity will be represented by the
tangent vector v = u+W which starts from z. Substituting u = v−W into ||u||h =

√
h(u, ū),

it results that ||u||h =
√
||v||2h − 2Reh(v, W̄ ) + ||W ||2h. Since Reh(v, W̄ ) = ||v||h||W ||h cos θ,

where here θ is the angle between v and W, the last relation can be rewritten as

||v||2h − 2||v||h||W ||h cos θ − ψ = 0, (5.10)

with ψ = ||u||2h − ||W ||2h.
In particular, on the calm Hermitian sea (M,h), i.e. W = 0, the solutions of the standard

Zermelo navigation problem (with ||u||h = 1) are the geodesics of h. However, in the presence
of wind (W ̸= 0), the pure Hermitian metric h is deformed into a function F on T ′M such that
F (z, v) = 1 [45]. Since ||W ||h < ||u||h, the quadratic equation (5.10) admits a positive root

which is expressed by ||v||2h = q + p, where q =
√
[Reh(v, W̄ )]2 + ||v||2hψ and p = Reh(v, W̄ ).

All these lead to

F (z, v) = ||v||2h
q − p

q2 − p2
=

√
[Reh(v, W̄ )]2 + ψ||v||2h−Reh(v, W̄ )

ψ
. (5.11)

In order to obtain F (z, η) for arbitrary non-zero vector η ∈ T ′
zM , we take into consideration

the fact that every non-zero η is written as a complex (in particular, real) multiple λ of some
v, η = λv. In general, the function F obtained in (5.11) is not complex homogeneous. In [14]
a strong condition is required for the purpose of complex homogeneity and then solves the
generalized problem. But without any additional condition, F is only real homogeneous, i.e.
F (z, η) = F (z, λv) = λF (z, v) = λ, where λ > 0. And thus from (5.11) it is derived as the
smooth function on M̃

F (z, η) =

√
[Reh(η, W̄ )]2 + ||η||2hψ

ψ
−Reh(η, W̄ )

ψ
(5.12)

which may be an R-complex Finsler metric. Actually, the resulting function F is a sum
F = α+ β, with

α =

√
[Reh(η, W̄ )]2 + ||η||2hψ

ψ2
=
√
Re{aijηiηj}+ aij̄η

iη̄j , β = −Reh(η, W̄ )

ψ
= Re{biηi},

where α is a pure Hermitian metric and Reh(η, W̄ ) ̸= 0 and

aij̄ =
hij̄
ψ

+
WiWj̄

2ψ2
, aij =

WiWj

2ψ2
, bi = −Wi

ψ
, (5.13)

Wi = hij̄W
j̄ , W j̄ = W̄ j , Wj̄ = W̄j . Some computations lead to the inverse of aij̄(z) from

(5.13) and also other terms of F , i.e.

aj̄i = ψ(hj̄i − ψ

ψ + f2
W iW j̄), bi =

−2ψ

ψ + f2
W i, ||b||2 =

2||W ||2h
2f2 − ||W ||2h

, ψ =
f2(2− ||b||2)
2 + ||b||2

.

(5.14)
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Moreover, ||b||2 ∈ (0, 2) because the wind W is weak, i.e. 0 < ||W ||h < f(z) ≤ 1 and
Reh(η, W̄ ) ̸= 0. Hence, it ensures the positivity of the function F (z, η) from (5.12) and the
positive de�nitness of gij̄ = ∂̇i∂̇j̄F

2. Therefore, it is an R-complex Randers metric with x = 1
2 .

Note that in absence of wind, formula (5.12) simpli�es to F (z, η) = 1
f(z) ||η||h. Thus, it

is a pure Hermitian metric conformal to the background metric h, i.e. gij̄ = 1
f2(z)

hij̄ . In
particular, for f(z) = 1, F (z, η) = ||η||h. Here we can observe the in�uence of the variable
factor f(z). More precisely, if W = 0, then the geodesics of the background Hermitian metric
h are not necessarily the solutions to the problem as they are in the standard case, i.e. with
f(z) = 1 [14].

The obtained solutions of the generalized ZNP can be summarized by the following propo-
sition. Thus, we have

Proposition 5.3.1. Let (M,h) be a Hermitian manifold. The generalized navigation data
(h, f(z),W ) induce on the holomorphic tangent bundle T ′M the following:
i) If ||W ||h ∈ (0, 1), then the solution of the generalized ZNP is the R-complex Randers metric
F = α+ β from (5.12);
ii) If W = 0, then the solution of the generalized ZNP is the pure Hermitian metric F (z, η) =
1

f(z) ||η||h, conformal to h.

Since the generalized ZNP also produces pure Hermitian metrics which are conformal to
the background metric h, it is natural to ask whether the converse is true. Namely, we have
the following result

Corollary 5.3.2. If F = 1√
ψ
||η||h is a conformal solution of the generalized ZNP, then W = 0

and
√
ψ = f .

Proof. If F (z, η) = 1
f(z) ||η||h stands for a solution of the generalized ZNP, then by equation

(5.12) we have Reh(η, W̄ ) = 0, for any η. This implies W = 0 and
√
ψ = f .

Concluding, the generalized navigation data (h, f(z),W ) generate R-complex Randers
metrics and the corresponding geodesics are the solutions of the generalized ZNP.

The inverse problem is also of our interest. Namely, can every R-complex Randers metric
F (z, η) = α + β be achieved via the perturbation of the pure Hermitian metric h by some
vector �eld W which satisfy 0 < ||W ||h < f(z) ≤ 1, where f(z) = ||u||h? Although the proof
for the inverse problem runs along similar lines likewise [14], there are subtle adjustments
necessary to �t the argument to each new situation. Considering the R-complex Randers

metric F (z, η) = α+β, with α =
√
Re{aijηiηj}+ aij̄η

iη̄j , β = Re{biηi}, aij = 1
2bibj , b

i = aj̄ibj̄

and ||b||2 = bibi ∈ (0, 2), we construct h, f(z) and W in the following way

hij̄(z) = ω̃(aij̄ −
1

2
bibj̄), ||u||h= f(z), W i(z) =

−
(
ω̃ + f2

)
bi

2ω̃
, (5.15)

where ω̃ = f2(2−||b||2)
2+||b||2 . By (5.15), some straightforward computations give

Wi = hij̄W
j̄ = ω̃(aij̄ −

1

2
bibj̄)

−
(
ω̃ + f2

)
b̄j

2ω̃
= −f

2(2− ||b||2)
2 + ||b||2

bi = −ω̃bi,

||W ||2h = hij̄W
iW j̄ = −ω̃bi

−
(
ω̃ + f2

)
bi

2ω̃
=

(
ω̃ + f2

)
||b||2

2
=

2f2||b||2

2 + ||b||2
.
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Since ||b||2 < 2, then ||W ||h < f(z). Moreover,

ψ = f2 − 2f2||b||2

2 + ||b||2
= ω̃, ||η||2h = ω̃(aij̄η

iη̄j − εε̄

2
) = ω̃(α2 − β2), ε = biη

i

and thus, h(η, W̄ ) = hij̄η
iW j̄ = Wiη

i = −ω̃ε which turns out that Reh(η, W̄ ) = −ω̃β.
Replacing the obtained expressions for ψ, ||η||2h and Reh(η, W̄ ) with (5.12), we rediscover the
R-complex Randers metric F (z, η) = α+ β under consideration.

Summarizing, we get

Theorem 5.3.3. An R-complex Hermitian Finsler metric F is of Randers type, i.e. F = α+β
with (5.13), if and only if it solves the generalized Zermelo navigation problem on a Hermitian
manifold (M,h), with space-dependent ship's relative speed ||u(z)||h ≤ 1 and under action of
weak wind W . Moreover, F is a pure Hermitian metric conformal to h, with the conformal
factor 1

||u(z)||h , if and only if W = 0.

Further on, an R-complex Randers metric F = α + β with (5.13) which describe the
Zermelo deformation of the Hermitian metric h by weak wind W , with a space-dependent
ship's relative speed ||u||h will be called brie�y W -Zermelo deformation.

5.4 W -Zermelo metric

Next, our aim is to investigate how some properties of a Hermitian metric h, i.e. Kähler
property and the holomorphic sectional curvature, behave by the Zermelo deformation, if
the weak wind W is a special vector �eld. For that attempt, �rst of all we need to �nd
the connections among the geometric tools corresponding to the metric h and W -Zermelo
deformation F .

5.4.1 From h to W -Zermelo metric F via α

The study of R-complex Hermitian Randers metrics was developed in a few papers [41, 22], but
only in particular case aij = 0. In contrast, for the investigation on the Zermelo deformation
we need to have developed geometry of R-complex Randers metrics with aij = 1

2bibj . Some of
the elements and properties of such metrics were pointed out in Section 5.2. Now, we come
with some new results from point of view of our purposes. Once obtained the metric tensor
of an R-complex Randers metric F (Proposition 5.2.3) it is a technical computation to give
the local coe�cients of the Chern-Finsler complex nonlinear connection, N i

j = gm̄i ∂2F 2

∂zk∂η̄m
.

Certainly, it involves some simple calculus which leads to

N i
j =

a

N i
j +

2

J
(
a
δjβ)κi +

1

J

∂br̄
∂zj

kri, (5.16)

where J is de�ned in Proposition 5.2.3 and
a

N i
j = am̄i

∂2α2

∂zj∂η̄m
= am̄i

(
∂asm̄
∂zj

ηs +
ε̄

2

∂bm̄
∂zj

)
+

1

2

∂br̄
∂zj

η̄rbi,

2(
a
δjβ) =

∂β

∂zj
−

a

Nk
j (∂̇kβ) =

∂b̄r

∂zj
l̃r̄ +

1

2

∂br̄
∂zj

[
(2− ||b||2)η̄r − ε̄br̄

]
,

kri = αJari + 2(2β + α||b||2)ηiη̄r − ακibk̄ − 2F (2α− ε̄)biη̄r,

κi = 2(2α− ε)ηi + (2Fα− εε̄)bi.

(5.17)
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Here the di�erential (1, 0)-form b = bi(z)dz
i is said to be biholomorphic, if the functions bi

and bi are holomorphic, i.e. ∂bi
∂z̄k

= ∂bi

∂z̄k
= 0, for all i, k = 1, n.

Lemma 5.4.1. The di�erential (1, 0)-form b is biholomorphic if and only if
a
δjβ = 0.

Proof. Since
a
δj = ∂

∂zj
−

a

N i
j
∂
∂ηi

, we get 2(
a
δjβ) =

∂b̄r

∂zj
l̃r̄ +

1
2
∂br̄
∂zj

[
(2− ||b||2)η̄r − ε̄br̄

]
, and thus

the direct implication results immediately. Conversely, the condition
a
δjβ = 0 can be rewritten

as
∂b̄r

∂zj
l̃r̄ +

1

2

∂br̄
∂zj

[
(2− ||b||2)η̄r − ε̄br̄

]
= 0. (5.18)

Di�erentiating (5.18) with respect to η results that ∂bm̄

∂zj
aim̄ = 0. Thus, ∂b

m̄

∂zj
= 0, and so bi are

holomorphic. Moreover, (5.18) becomes ∂br̄
∂zj

[
(2− ||b||2)η̄r − ε̄br̄

]
= 0. Now, di�erentiating

the last relation with respect to η̄ yields

∂bm̄
∂zj

(2− ||b||2)− br̄
∂br̄
∂zj

bm̄ = 0 (5.19)

which contracted by bm̄ leads to bm̄ ∂bm̄
∂zj

(1 − ||b||2) = 0. We distinguish two cases. First, if
||b||2 ̸= 1, then bm̄ ∂bm̄

∂zj
= 0. By (5.19) it follows that ∂bm̄

∂zj
= 0, i.e. bi are holomorphic. Second,

if ||b||2 = 1, then bm̄ ∂bm̄
∂zj

= 0, because bi are holomorphic. Using again by (5.19), it turns out
that bi are holomorphic.

Lemma 5.4.2. Let F = α + β be an R-complex Randers metric with aij = 1
2bibj and b

biholomorphic. Then,

i) N i
j =

a

N i
j and G

i =
a

Gi, where
a

Gi = 1
2

a

N i
jη
j are the spray coe�cients of α;

ii)
∂

a

N i
j

∂z̄k
bi = 0;

iii) α is Kähler if and only if F is strongly Kähler;
iv) the holomorphic curvature in direction η corresponding to F is

KF (z, η) = P (α2 − β2 +
εε̄

2
)2Kα(z, η), (5.20)

where P = α[2α2(2α−β)F−3(α−β)(α2−β2+εε̄)β]
F 3(2α−β)2(α2−β2+εε̄)2

and Kα(z, η) is the holomorphic curvature in di-
rection η which corresponds to α.

Proof. Since b is biholomorphic, the formula (5.16) is reduced to N i
j =

a

N i
j = am̄i ∂asm̄

∂zj
ηs. The

last relation leads to
∂

a

N i
j

∂z̄k
bi =

∂
∂z̄k

(
a

N i
jbi) =

∂
∂z̄k

( ∂bs
∂zj

)ηs = ∂
∂zj

( ∂bs
∂z̄k

)ηs = 0, i.e. ii). Moreover,

N i
j =

a

N i
j implies T ijk =

a

T ijk which justi�es iii), where T ijk was de�ned in Section 5.2 and
a

T ijk = ∂̇j
a

N i
k − ∂̇k

a

N i
j . Now, using i), ii), iii), (5.6) and Proposition 5.2.3, by straightforward

computations we obtain (5.20).

Next step is to �nd some links between a and h in terms of the generalized navigation data
(h, f(z),W ). Remark that the pure Hermitian metric a is only an intermediary step on the
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way to W -Zermelo deformation F. Thus, starting with the relations between the Hermitian
metrics a and h, i.e. (5.13) and (5.14), after a straightforward computation we are led to

a

N i
j =

h

N i
j −

∂ logψ

∂zj
ηi +

W0 +W0̄

2ψ
hm̄i

(
∂Wm̄

∂zj
− ∂ logψ

∂zj
Wm̄

)
+

1

2
W i

a
δj
W0 +W0̄

ψ
, (5.21)

where
h

N i
j = hm̄i ∂hrm̄

∂zj
ηr denotes the coe�cients of Chern-Finsler complex nonlinear connec-

tions corresponding to the Hermitian metric h and the indices 0 and 0̄ mean the contractions
by η and η̄, respectively.

5.4.2 Holomorphic Zermelo deformation

The vector �eld W (or the weak wind in our approach) is the section of T ′M and in terms of
local complex coordinates (zk)k=1,n it is W = W k ∂

∂zk
. Following [110], we say that the weak

wind W is the holomorphic vector �eld, if the components W k are the holomorphic functions,
i.e. ∂Wk

∂z̄r = 0, for all k = 1, n. Further on, we pay our attention to the holomorphic vector
�elds W with

W k
|j =

∂ log f2

∂zj
W k, (5.22)

where W k
|j =

∂Wk

∂zj
+ hm̄k ∂hrm̄

∂zj
W r and they will be called f -holomorphic. In particular, if h is

Kähler, then hm̄k ∂hrm̄
∂zj

= Γkjr which denotes the Christo�el symbols corresponding to h.

Lemma 5.4.3. Let (h, f(z),W ) be the generalized navigation data. If W is f -holomorphic,
then
i) ∂Wm̄

∂zj
= ∂ log f2

∂zj
Wm̄;

ii) ∂ log f2

∂zj
= ∂ logψ

∂zj
=

∂ log ||W ||2h
∂zj

;

iii) ||W ||2h = cf2, ψ = (1− c)f2, where c is a constant, c ∈ (0, 1).

Proof. We assume that W is an f -holomorphic vector �eld. Di�erentiating Wm̄ = hkm̄W
k

and ||W ||2h = Wm̄W̄
m with respect to z yield ∂Wm̄

∂zj
= ∂ log f2

∂zj
Wm̄, i.e. i), and moreover, it

follows that ∂ log f2

∂zj
=

∂ log ||W ||2h
∂zj

. Since ψ = f2 − ||W ||2h, its di�erentiation with respect to z
gives

∂ logψ

∂zj
=
∂f2

∂zj
−
∂ log ||W ||2h

∂zj

which leads to ∂ log f2

∂zj
= ∂ logψ

∂zj
, and thus ii). Having integrated ii) with respect to z yields

the relations in iii), where c is the constant of integration. Since W is weak, it results that
c ∈ (0, 1).

Corollary 5.4.4. Let (h, f(z),W ) be the generalized navigation data. Then the vector �eld W
is f -holomorphic if and only if the di�erential (1, 0)-form b is biholomorphic, with bi = −Wi

ψ .

Proof. Whether or not W is f -holomorphic and b is biholomorphic, since bm̄ = −2ψ
ψ+f2

W m̄,
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bm̄ = −Wm̄
ψ and ||b||2 = bm̄bm̄ =

2||W ||2h
2f2−||W ||2h

, it follows that

∂bm̄

∂zj
=

2ψf2

(ψ + f2)2

(
∂ log f2

∂zj
− ∂ logψ

∂zj

)
W m̄ − 2ψ

ψ + f2
∂W m̄

∂zj
,

∂bm̄
∂zj

=
1

ψ

(
∂ logψ

∂zj
Wm̄ − ∂Wm̄

∂zj

)
,

∂bm̄

∂zj
bm̄ + bm̄

∂bm̄
∂zj

=
4f2||W ||2h

(2f2 − ||W ||2h)2

(
∂ log f2

∂zj
−
∂ log ||W ||2h

∂zj

)
.

(5.23)

If W is f -holomorphic, then from (5.23) and Lemma 5.4.3 it results that b is biholomorphic.
Conversely, since b is biholomorphic, the conditions (5.23) lead to the fact that W is f -
holomorphic.

Corollary 5.4.5. Let (h, f(z),W ) be the generalized navigation data. If the vector �eld W is
f -holomorphic, then the local coe�cients of the Chern-Finsler complex nonlinear connection
corresponding to W -Zermelo deformation F are given by

N i
j =

h

N i
j −

∂ log f2

∂zj
ηi. (5.24)

In particular, if f is constant, then N i
j =

h

N i
j ,

∂Wm̄

∂zj
= 0 and W k

|j = 0.

Proof. The proof follows from Corollary 5.4.4, Lemma 5.4.3 and (5.21).

Further on, an f -holomorphic weak wind W , with f = const., is said to be biholomorphic.

Theorem 5.4.6. Let (M,h) be an n-dimensional Kähler manifold, n ≥ 2, and (h, f(z),W )
be the generalized navigation data, with W an f -holomorphic vector �eld. Then, W is biholo-
morphic if and only if W -Zermelo deformation F is strongly Kähler.

Proof. Under our assumptions the direct implication results by Corollary 5.4.5. Conversely,
since F is strongly Kähler, the equation (5.24) implies that ∂ log f2

∂zj
δik−

∂ log f2

∂zk
δij = 0. Summing

with i = j, we deduce that (n− 1)∂ log f
2

∂zk
= 0. Thus, f is constant.

Next, also by the assumption that the weak wind W is f -holomorphic and using (5.24),
some computations lead to the link between holomorphic curvatures in direction η, corre-
sponding to h and a. Namely, we obtain

Kα(z, η) =
h̃4

(1− c)f2(α2 − β2 + εε̄
2 )

2

(
Kh(z, η) +

2

h̃2
∂2 log f2

∂zj∂z̄m
ηj η̄m

)
, (5.25)

where Kh(z, η) =
2
h̃2
him̄

h

Rijr̄kη
j η̄rηkη̄m,

h

Rijr̄k = − ∂
∂z̄r (∂̇j

h

N i
k) and h̃ = ||η||h =

√
ψ(α2 − β2).

We thus have the following result.

Theorem 5.4.7. Let (M,h) be an n-dimensional Hermitian manifold and (h, f(z),W ) be the
generalized navigation data, with W an f -holomorphic vector �eld. Then, the holomorphic
curvature in direction η, corresponding to W -Zermelo deformation F is

KF (z, η) =
h̃4P

(1− c)f2

(
Kh(z, η) +

2

h̃2
∂2 log f2

∂zj∂z̄m
ηj η̄m

)
, (5.26)

where c ∈ (0, 1). If ∂ log f2

∂zj
is a holomorphic function, then KF (z, η) =

h̃4P
(1−c)f2Kh(z, η).
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Proof. Substituting (5.25) into (5.20), we obtain (5.26). The particular case is obvious.

Theorem 5.4.8. Let (M,h) be an n-dimensional Hermitian manifold and (h, f(z),W ) be
the generalized navigation data, with W an f -holomorphic vector �eld. If the holomorphic
curvature KF (z, η) of W -Zermelo deformation F depends only on z, KF (z, η) = k(z), then
k(z) = 0 and

Kh(z, η) = − 2

h̃2
∂2 log f2

∂zj∂z̄m
ηj η̄m. (5.27)

Proof. Since A = h̃4

(1−c)f2

(
Kh(z, η) +

2
h̃2

∂2 log f2

∂zj∂z̄m
ηj η̄m

)
is a polynomial in η and η̄ of second

degree and KF (z, η) = k(z), formula (5.26) can be rewritten as

α[(4α4 − β4 + α2β2)k(z)− (4α4 − 3β4 + α2β2 + 3εε̄β2)A]

+β[(8α4 + β4 − 5α2β2)k(z) + (α4 − 3α2β2 + 3εε̄α2)A] = 0,

which contains an irrational part and a rational part. This implies the following homogeneous
linear system {

(4α4 − β4 + α2β2)k(z)− (4α4 − 3β4 + α2β2 + 3εε̄β2)A = 0
(8α4 + β4 − 5α2β2)k(z) + (α4 − 3α2β2 + 3εε̄α2)A = 0

, (5.28)

with the unknowns k(z) and A. Since the associated determinant is nonzero, system (5.28)
admits only the null solution, i.e. k(z) = 0 and A = 0.

Note that, if there exists an f -holomorphic vector �eld W such that (5.27) holds, then by
(5.26) it follows that KF (z, η) = 0. Owing to Theorem 5.4.7, we have the following corollaries

Corollary 5.4.9. Let (M,h) be an n-dimensional Hermitian manifold and (h, f(z),W ) be the
generalized navigation data, with an f -holomorphic vector �eld W , and ∂2 log f2

∂zj
is a holomor-

phic function. Then, Kh(z, η) = 0 if and only if KF (z, η) = 0.

Corollary 5.4.10. Let (M,h) be an n-dimensional Kähler manifold and (h, f(z),W ) be the
generalized navigation data, with a biholomorphic vector �eld W . Then, the geodesic curves
γ(t) corresponding to W -Zermelo deformation F are the solutions of the system

gij

(
d2γj

dt2
+ 2

h

Gj (γ, γ̇)

)
+ gik̄

(
d2γk̄

dt2
+ 2

h

Gk̄ (γ, γ̇)

)
+ T̃i (γ, γ̇) = 0, (5.29)

where T̃i(z, η) =
1

8α3

∂ajm̄
∂zl

{(p̃bi + ql̃i)b
m̄ + (q̃bi − 4β)l̃i]η̄

m}ηjηl, i = 1, n, q̃ = 2(2α2 − βε) and
p̃ = 8α3 + 4α2β − βε2 + 4α2ε.

Proof. Under our assumptions, making use of (5.5), it yields (5.29).

Lastly, we exemplify the Zermelo deformation by a few relevant models based on the
generalized navigation data (h, f(z),W ), where W is an f -holomorphic vector �eld.

Example 5.4.11 Let h be the standard Euclidean metric (hij̄ = δij̄) on Cn and let W
be a weak wind with constant components, i.e. W k = λk, λk ∈ C, k = 1, n, such that
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||W ||2h =
∑

k=1 |λk|2 < f2(z) = 1. These lead to ψ = 1 −
∑

k=1 |λk|2 = const., bi =
1
ψ λ̄i,

aij̄ =
δij̄
ψ + 1

2ψ2 λ̄iλk and thus, gij̄ and gij corresponding to W -Zermelo deformation F depend
only on η, i.e. F is locally Minkowski. Moreover, it follows that KF = Kh = 0.

In what follows we consider the Hermitian manifold M represented by C2 or a subset of
C2. As in dimension two we denote the local position coordinates (z1, z2) by (z, w), and the
�bres (η1, η2) by (η, ϱ).

Example 5.4.12 On C2 we consider the generalized navigation data (h, f = 1, W = e−w

2
∂
∂w )

with
(
hij(z, w)

)
=

(
e2Rez 0
0 e2Rew

)
. These imply that ||W ||2h = 1

4 , W1 = 0, W2 = ew

2 ,

ψ = 3
4 and then, b1 = 0, b2 =

−2ew

3 as well as
(
aij(z, w)

)
= 2

9

(
6e2Rez 0
0 7e2Rew

)
.

Consequently, we obtain b1 = 0, b2 = −9e−w

4 and ||b||2 = 3
2 . Thus, W is biholomorphic and

W -Zermelo deformation F = α+ β has the components

α2 =
2

9

[
6ez+z̄ |η|2 + 7ew+w̄ |ϱ|2 + Re(e2wϱ2)

]
, β = −2

3
Re(ewϱ).

Since N1
1 =

h

N1
1 = η1, N1

2 =
h

N1
2 = N2

1 =
h

N2
1 = 0, N2

2 =
h

N2
2 = η2, it follows that F is strongly

Kähler and KF = Kh = 0.

Example 5.4.13 We consider the Hartogs triangle ∆ =
{
(z, w) ∈ C2, |w| < |z| < 1

}
with

the generalized navigation data
(
hij(z, w)

)
=

(
|z|2 0
0 1

)
, f2 = |z|2 and W = z

2
∂
∂w .

It turns out that ||W ||2h = |z|2
4 , W1 = b1 = 0, W2 = z̄

2 , ψ = 3|z|2
4 , b2 = − 2

3z and(
aij(z, w)

)
= 2

9

(
6 0
0 7

|z|2

)
. In this case W is f -holomorphic and the components of W -

Zermelo deformation F = α+ β are

α2 =
2

9

(
6 |η|2 + 7 |ϱ|2

|z|2
+ Re

ϱ2

z2

)
, β = −2

3
Re
ϱ

z
. (5.30)

Moreover, by Corollary 5.4.9, KF = 0 because Kh = 0 and ∂ log f2

∂z = 1
z .

Example 5.4.14 On the Hartogs triangle ∆ =
{
(z, w) ∈ C2, |w| < |z| < 1

}
we consider the

pure Hermitian metric
(
hij(z, w)

)
=

(
|z|2 − |w|2 0

0 1

)
and the same data as in the last

example, f2 = |z|2 and W = z
2
∂
∂w .

These lead to the same tools, namely, ||W ||2h = |z|2
4 , W1 = b1 = 0, W2 = z̄

2 , ψ = 3|z|2
4 ,

b2 = − 2
3z , excepting aij which here is

(
aij(z, w)

)
= 2

9|z|2

(
6(|z|2 − |w|2) 0

0 7

)
.

Thus, this also in�uences W -Zermelo deformation F = α+ β which has the same β as in
(5.30) and

α2 =
2

9

[
6(|z|2 − |w|2)

|z|2
|η|2 + 7 |ϱ|2

|z|2
+ Re

ϱ2

z2

]
.

75



Habilitation thesis Codruµa Nicoleta Aldea

Although for any j,m = 1, 2 we have ∂2 log f2

∂zj∂z̄m
= 0, the holomorphic curvature of F is not

vanishing (KF ̸= 0) because Kh = 2|η|2|zϱ−wη|2
(|z|2−|w|2)[(|z|2−|w|2)|η|2+|ϱ|2]2 .
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slope-of-a-mountain problem
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Chapter 6

Rudiments of real Finsler geometry

In this chapter we brie�y recall the notions and general facts from Riemann-Finsler geometry
that are needed for presenting and proving our results. For more details, see, e.g. [71, 58, 45,
127, 155, 89, 154, 61, 85].

6.1 Finsler manifolds

Let (M,h) be a Riemannian manifold, whereM is an n-dimensional C∞-manifold, n > 1, and
h is a Riemannian metric onM . Let TxM be the tangent space at x ∈M and (xi), i = 1, ..., n
be the local coordinate system on a local chart in x ∈M . The set

{
∂
∂xi

}
, i = 1, ..., n denotes

the natural basis for the tangent bundle TM = ∪
x∈M

TxM which is itself a C∞-manifold. Thus,

for every y ∈ TxM , one has y = yi ∂
∂xi

and the coordinates on a local chart in (x, y) ∈ TM are
denoted by (xi, yi), i = 1, ..., n.

A natural generalization of a Riemannian metric is a Finsler metric. Speci�cally, the pair
(M,F ) is a Finsler manifold if F : TM → [0,∞) is a continuous function with the following
properties:

i) F is a C∞-function on the slit tangent bundle TM0 = TM\{0};
ii) F is positively homogeneous of degree one with respect to y, i.e. F (x, cy) = cF (x, y), for
all c > 0;

iii) the Hessian gij(x, y) = 1
2
∂2F 2

∂yi∂yj
is positive de�nite for all (x, y) ∈ TM0.

Denoting by IF = {(x, y) ∈ TM | F (x, y) = 1} the indicatrix of F , one can remark that
the property iii) refers to the fact that IF is strongly convex. In particular, the Finsler metric
F is a Riemannian metric if and only if gij(x, y) does not depend on y, i.e. gij(x, y) = gij(x).

Let A be a conic open subset of TM0. According to [61, 87, 88], this means that for each
x ∈ M, Ax = A ∩ TxM is a conic subset, i.e. if y ∈ Ax, then λy ∈ Ax for every λ > 0. In
particular, a conic Finsler metric is a Finsler metric on A, i.e. F : A → [0,∞) is a continuous
function satisfying i), ii) and iii) for all (x, y) ∈ A (see [61, 87]).

A smooth vector �eld on TM0, locally expressed by S = yi ∂
∂xi

− 2Gi ∂
∂yi
, is called a spray

on M . The functions Gi = Gi(x, y), i = 1, ..., n are positively homogeneous of degree two with
respect to y, i.e. Gi(x, cy) = c2Gi(x, y), for all c > 0, and they are called the spray coe�cients
[71]. In the case where the spray is induced by a Finsler metric F =

√
gij(x, y)yiyj , the spray

79



Habilitation thesis Codruµa Nicoleta Aldea

coe�cients are given by

Gi(x, y) = 1

4
gil
{
[F 2]xkyly

k − [F 2]xl
}
=

1

4
gil
(
2
∂gjl
∂xk

−
∂gjk
∂xl

)
yjyk, (6.1)

(gil) being the inverse matrix of (gil).
Let us consider a regular piecewise C∞-curve on M, γ : [0, 1] → M , γ(t) = (γi(t)),

i = 1, ..., n, where the velocity vector of γ is denoted by γ̇(t) = dγ
dt . The curve γ is called

F -geodesic if γ̇(t) is parallel along the curve, i.e. in the local coordinates, γi(t), i = 1, ..., n
are the solutions of the ODE system

γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0. (6.2)

It is worthwhile to mention that Zermelo's navigation, apart from the fact that it is a
classic optimal control problem, provides a technique to construct a new Finsler metric by
perturbing a given Finsler metric (the so called background metric) by a vector �eld W, i.e. a
time-independent wind on a manifoldM , under some constraints. In particular, by considering
that the background metric is a Riemannian one, denoted by h, the Randers metric solves
Zermelo's problem of navigation in the case of weak wind W , i.e. ||W ||h < 1 [45, 71]. When
W is a critical wind, i.e. ||W ||h = 1, the problem is solved by the Kropina metric [154]. In
this respect, we mention the following result (see [127, Lemma 3.1], [61, Proposition 2.14], [71,
Lemma 1.4.1]).

Proposition 6.1.1. Let (M,F ) be a Finsler manifold and W a vector �eld on M such that
F (x,−W ) < 1. Then the solution of the Zermelo's navigation problem with the navigation
data (F,W ) is a Finsler metric F̃ obtained by solving the equation

F (x, y − F̃ (x, y)W ) = F̃ (x, y), (6.3)

for any nonzero y ∈ TxM , x ∈M.

Since the indicatrix IF is strongly convex and it is assumed that F (x,−W ) < 1, (6.3) admits a
unique positive solution F̃ for any nonzero y ∈ TxM [61, 127]. Another key remark regarding
the inequality F (x,−W ) < 1 is that it assures the fact that F̃ is a Finsler metric, having

the indicatrix IF̃ =
{
(x, y) ∈ TM | F̃ (x, y) = 1

}
strongly convex, as well as, for any x ∈M ,

y = 0 belongs to the region bounded by IF̃ ; for more details, see [61]. Additionally, any
regular piecewise C∞-curve γ : [0, 1] →M , parametrized by time, that represents a trajectory
in Zermelo's navigation problem has unit F̃ -length, i.e. F̃ (γ(t), γ̇(t)) = 1, where γ̇(t) is the
velocity vector [71, Lemma 1.4.1].

6.2 General (α, β)-metrics

Various examples of Finsler manifolds can be found in the literature and a few of them are
outlined in the sequel. Let α2 = aij(x)y

iyj be a quadratic form, where aij(x) is a Riemannian
metric on M , and β = bi(x)dx

i be a di�erential 1-form on M , also expressed as β = biy
i.

The pair (M,F ) is called Finsler manifold with general (α, β)-metric if the Finsler metric
F can be read as F = αϕ(b2, s), where ϕ(b2, s) is a positive C∞-function in the variables
b2 = ||β||2α = aijbibj and s =

β
α , with |s| ≤ b < b0 and 0 < b0 ≤ ∞; for more details, see [155].
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The examples of general (α, β)-metrics are provided by the slippery slope, slippery-cross-slope
metrics and (η, η̃)-slope metric, which have been presented recently in [10, 11, 12, 13]. In the
case where ϕ depends only on the variable s, the function F = αϕ(s) is known as (α, β)-metric.
Such an example is the Randers metric F = α+ β, with ϕ(s) = 1 + s which solves Zermelo's
navigation problem under the in�uence of a weak wind, i.e. |s| ≤ b < 1 [71]. Another example
is provided by the Matsumoto metric F = α2

α−β , with ϕ(s) = 1
1−s and |s| ≤ b < 1

2 , which
carries out the solution to Matsumoto's slope-of-a-mountain problem [106].

From the theory of the general (α, β)-metrics we recall only a few key results for our
arguments.

Proposition 6.2.1. [155] Let M be an n-dimensional manifold. F = αϕ(b2, s) is a Finsler
metric for any Riemannian metric α and 1-form β, with ||β||α < b0 if and only if ϕ = ϕ(b2, s)
is a positive C∞-function satisfying

ϕ− sϕ2 > 0, ϕ− sϕ2 + (b2 − s2)ϕ22 > 0,

when n ≥ 3 or
ϕ− sϕ2 + (b2 − s2)ϕ22 > 0,

when n = 2, where s = β
α and b = ||β||α satisfy |s| ≤ b < b0.

We notice that ϕ1 and ϕ2 denote the derivatives of the function ϕ with respect to the �rst
variable b2 and the second variable s, respectively. Similarly, ϕ12 and ϕ22 denote the derivatives
of ϕ1 and ϕ2 with respect to s. When ϕ is a function only of variable s, the derivatives ϕ2 and
ϕ22 are simply denoted by ϕ′ and ϕ′′, respectively.

To conclude the presentation of the desired results, we also need to recall the following
notations

rij =
1
2(bi|j + bj|i), ri = bjrji, ri = aijrj , r00 = rijy

iyj , r0 = riy
i, r = biri,

sij =
1
2(bi|j − bj|i), si = bjsji, si = aijsj , si0 = aijsjky

k, s0 = siy
i,

(6.4)

with bj = ajibi, bi|j =
∂bi
∂xj

− Γkijbk and Γkij =
1
2a

km
(
∂ajm
∂xi

+ ∂aim
∂xj

− ∂aij
∂xm

)
being the Christo�el

symbols of the Riemannian metric aij . We point out that the di�erential 1-form β is closed if
and only if sij = 0 (see [71]).

Proposition 6.2.2. [155] For a general (α, β)-metric F = αϕ(b2, s), its spray coe�cients Gi
are related to the spray coe�cients Giα of α by

Gi = Giα + αQsi0 +
[
Θ(−2αQs0 + r00 + 2α2Rr) + αΩ(r0 + s0)

] yi
α

+
[
Ψ(−2αQs0 + r00 + 2α2Rr) + αΠ(r0 + s0)

]
bi − α2R(ri + si),

where

Q =
ϕ2

ϕ− sϕ2
, Θ =

(ϕ− sϕ2)ϕ2 − sϕϕ22
2ϕ[ϕ− sϕ2 + (b2 − s2)ϕ22]

,

Ψ =
ϕ22

2[ϕ− sϕ2 + (b2 − s2)ϕ22]
, Π =

(ϕ− sϕ2)ϕ12 − sϕ1ϕ22
(ϕ− sϕ2)[ϕ− sϕ2 + (b2 − s2)ϕ22]

,

Ω =
2ϕ1
ϕ

− sϕ+ (b2 − s2)ϕ2
ϕ

Π, R =
ϕ1

ϕ− sϕ2
.
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Chapter 7

Time geodesics on a slippery slope
under gravitational wind

The current chapter, which is based on the paper [10], presents the concept of a slippery
mountain slope and the purely geometric solutions for time-minimal navigation on such a
slope by means of Finsler geometry. This approach allowed us to generalize and interlink
Matsumoto's slope-of-a-mountain problem with Zermelo's navigation problem on Riemannian
manifolds under the in�uence of a weak gravitational wind.

7.1 Slippery slope model

Prior to stating the navigation problem on a slippery slope and formulating the main results,
it is necessary to introduce some basic concepts, to set up a new terminology and notation.

7.1.1 Gravitational wind

Let (M,h) be a surface embedded in R3, i.e. a 2-dimensional Riemannian manifold, and πO be
the tangent plane to M at an arbitrary point O ∈ M . Considering that G is a gravitational
�eld in R3 that a�ects a mountain slope M , this can be decomposed into two orthogonal
components, G = GT + G⊥, where G⊥ is orthogonal and GT is tangent to M in O. The
latter acts along an anti-gradient (a negative gradient), i.e. the steepest descent (downhill)
direction. Further on, GT will be called a gravitational wind, and the norm of GT with respect
to h is ||GT ||h =

√
h(GT ,GT ). In general, GT depends on the gradient vector �eld related

to the slope M and a given acceleration of gravity. Note that we set up this terminology in
order to be later on in line with the standard nomenclature widely used in di�erent studies
on the Zermelo navigation in Finsler geometry [45, 124, 154, 61].

Matsumoto formulated and solved the slope-of-a-mountain problem on the surface (M,h) in
1989 by a purely geometric approach in Finsler geometry [106]. By constructing a rectangular
basis {e1, e2} in the tangent plane πO, where e1 has the same direction with GT , he considered
a person who walks or runs on πO expressed by the coordinates X, Y with respect to {e1, e2}
in the clockwise direction θ and with a constant self-speed ||u||h = a. Thus, the distance range
reached in all possible directions in unit time, i.e. the indicatrix is represented by a limaçon
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described in the polar coordinates (r, θ) of the plane πO as

r = a+ w cos θ1, (7.1)

where w = g
2 sin ε, g is the gravitational acceleration, ε is the angle of inclination of πO with

respect to the horizontal plane z = 0, and sin ε is the norm of the surface gradient with respect
to h. The convexity of the limaçon (7.1) is assured under the condition a > 2w [63, 131, 106].

Figure 7.1: A model of a planar slippery slope (an inclined plane of the slope angle ε) under the

gravity �eld, G = GT + G⊥, normal to the horizontal plane (base of the slope), where GT is the

gravitational wind acting tangentially to the slope in the steepest downhill direction X and G⊥ is

the component of gravity normal to the slope; OX ⊥ OY . On further reading, the boundary cases

represented by the resultant velocities vZNP (blue), vMAT (green) are denoted by vη, where η = 0, 1,

i.e. the tangent vectors to the Zermelo-Randers and Matsumoto geodesics, respectively. The lateral

component
−−→
AB (a cross wind; red) of the active wind Gη =

−−→
OB depends in particular on the traction

coe�cient η.

It is worth pointing out that our approach presented in [10] substantially extends the
original Matsumoto's reasoning. Namely, while the earth's gravity acts on a runner on the
slope, the component of a gravitational wind perpendicular to a desired direction of motion
represented by a control vector u (cross-gravity e�ect, i.e. the transversal component of the
gravitational wind) is not regarded to be cancelled now, i.e. ||

−−→
AB||h ≥ 0 (see Figure 7.1).

Obviously, another component
−→
OA pushes a runner downhill continuously. In this new setting

the slide caused by gravity is also considered o� the planned track, that is, not only the gravity
additive along the self-velocity u (along-gravity e�ect, i.e. the longitudinal component of the
gravitational wind). As a consequence, the resulting velocity and the self-velocity are not
collinear in general, unlike the situation considered in [106], where the cross-gravity e�ect is
omitted2 or, in other words, completely compensated, i.e. B = A. The velocities are collinear,
if the steepest route is followed, i.e. the gradient (uphill) or anti-gradient (downhill) direction.

The proposed model refers to a slippery slope of a hill or a mountain in real world, ad-
mitting the cross-track slides, the range of which depends on, among others, the interaction
between the type of ground on a slope and tread, e.g., shoes, tyres, skis. On the other hand,
observe that if the cross-component

−−→
AB of the gravitational wind is not compensated at all,

i.e. B = C, then such setting becomes a scenario like in the Zermelo navigation (with the
wind navigation data W = GT ), which has been intensively investigated and widely used

1The original notation in Matsumoto's paper ([106]) is: r = v + a cos θ, where a = w sinα.
2Matsumoto justi�es this issue in a word, assuming that the component perpendicular to u is regarded to

be cancelled by planting runner's legs on the desired road determined by u [106, p. 19].
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as the e�cient geometric method in Finsler geometry over the last twenty years; see, e.g.
[45, 76, 127]. This case models a full slide or an undisturbed drift (without any loss of free
wind e�ect) like perfect sailing or �ying in water or air currents.

As already mentioned, on the mountainsides in real world situations some speci�c or
external circumstances, e.g. type of ground (wet, muddy, icy) or the tread can cause the slope
to be slippery. Due to this fact, we introduce a cross-traction coe�cient η ∈ [0, 1], which has
an impact on the sliding e�ect on a slippery slope being represented by the norm ||

−−→
AB||h in the

plane πO; for clarity, see Figure 7.1. The lesser the traction, the greater the sliding. Roughly
speaking, this parameter generally refers to the outcome of sliding, and not to its causes. In
its usual sense, traction means the ability, for instance, of a wheel, tyre or shoe to hold the
ground without sliding. Here, due to traction, the gravitational wind acting on the slope can
now be written as GT =

−−→
OB +

−−→
BC. The vector

−−→
OB is called an active wind, denoted by Gη,

and the vector
−−→
BC is called a dead wind, since the former is the actual impact of gravity on

the motion and the latter represents the o�set (vanished) e�ect of gravity on the slope due
to the existing traction. In short, the norm of dead wind is a measure of compensation of
the acting gravitational wind. One can say that the in�uence of the gravitational wind GT

�blowing� on a slope is weakened because of η-e�ect, if we do not follow the steepest routes.
Furthermore, the active wind is decomposed as

Gη =
−→
OA+

−−→
AB, (7.2)

where
−→
OA is the orthogonal projection of GT (or Gη) on the self-velocity u, and it is called

an e�ective wind, denoted by GMAT . Thus, ||Gη||h ∈
[
||GMAT ||h, ||GT ||h

]
, for any η ∈ [0, 1]

and ||GMAT ||h ∈
[
0, ||GT ||h

]
. Moreover, we call the vector

−−→
AB a cross wind. Its norm is the

sliding measure on a slippery slope, generally depending on the traction coe�cient η, direction
of motion θ and gravitational wind force ||GT ||h.

This movement can be compared to the vessel's sideways sliding motion (called sway) on
a dynamic surface of a sea. For the convenience of the reader and ease of presentation, the
decompositions of a gravitational wind as well as the corresponding terminology introduced
above are shown in Figure 7.1, right.

In particular, if η = 0, then the slide reaches a maximum (B = C) and consequently, the
active wind is also maximal, i.e. Gη = GT . Namely, GT =

−→
OA +

−−→
AB and the dead wind

vanishes. There is a maximal slide (hence, a maximal drift as well) in this case3. After having
paid a little thought, as already mentioned, we can see that this scenario leads directly to the
navigation problem of Zermelo. If η ̸= 0, then the cross wind becomes shorter, since B ̸= C
any more, so that the slide e�ect on a slope is now smaller. On the other hand, if η = 1, then
B = A and the e�ect of the active wind is minimal (for a given θ and GT ), i.e. Gη = GMAT .
Therefore, there is no sliding (and no drift, either) at all, like in the original Matsumoto's
setting [106]. One can say that the impact of the gravitational wind GT is reduced in the
last case as much as possible, since its cross-component is completely compensated. In other
words, the dead wind becomes maximal (for a given θ and GT ) then.

Thus, for any η ∈ [0, 1] we can write
−−→
AB = (1 − η)

−→
AC and since GT = GMAT +

−→
AC, by

3A norm of a cross wind, ||
−→
AB||h, is the linear measure of a slide on the slippery slope, while a drift (a.k.a.

a drift angle) is the corresponding angular measure of a slide, i.e. the angle |θ̃− θ| between the self-velocity u
and the resultant velocity vη, where θ̃ = ∡{X, vη} measured clockwise.
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(7.2) it results that the active wind can be rephrased as follows

Gη = ηGMAT + (1− η)GT . (7.3)

Because of the slope being slippery, the self-velocity u is actually perturbed by Gη. Hence,
the resulting velocity will be given by the composed vector vη = u + Gη, η ∈ [0, 1]. This
general relation de�nes the equation of motion on a slippery slope.

7.1.2 Main results

Bearing in mind the ones above stated, the navigation problem on a slippery slope can be
formulated as follows:

Suppose a person walks on a horizontal plane at a constant speed, while the gravity
acts orthogonally to this plane. Imagine the person endeavours to walk now on the
slippery mountainside with a given traction coe�cient and under the in�uence of
gravity. How should the person navigate on the slippery slope of a mountain in
order to travel from one point to another in the shortest time?

The main theorem of our work is giving the answer 4 presented below in the general context
of an n-dimensional Riemannian manifold with GT = −ḡω♯, where ω♯ is the gradient vector
�eld (7.7) and ḡ is the rescaled gravitational acceleration g.

Theorem 7.1.1. (Slippery slope metric) Let a slippery slope of a mountain be an n-
dimensional Riemannian manifold (M,h), n > 1, with the gravitational wind GT on M and
the cross-traction coe�cient η ∈ [0, 1]. The time-minimal paths on (M,h) in the presence of
an active wind Gη as in (7.3) are the geodesics of the slippery slope metric F̃η which satis�es

F̃η

√
α2 + 2(1− η)ḡβF̃η + (1− η)2||GT ||2hF̃ 2

η = α2 + (2− η)ḡβF̃η + (1− η)||GT ||2hF̃ 2
η , (7.4)

with α = α(x, y), β = β(x, y) given by (7.14), where either η ∈ [0, 12 ] and ||GT ||h < 1, or
η ∈ (12 , 1] and ||GT ||h < 1

2η . In particular, if η = 1, then the slippery slope metric is reduced
to the Matsumoto metric, and if η = 0, then it is the Randers metric which solves the Zermelo
navigation problem on a Riemannian manifold under a gravitational wind GT .

It is worth noting that the metric F̃η belongs to the class of the general (α, β)-metrics [155]
and it stands for a natural and actual model of Finsler spaces, as well as for a new application
of this type of Finsler metrics.

In order to solve the problem stated above completely, we hereinafter aim at �nding the
corresponding (local) time-minimal paths, which are the geodesics of the slippery slope metric.
With (7.26) we can determine all such geodesics as follows.

Theorem 7.1.2. (Time geodesics) Let a slippery slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with the gravitational wind GT on M and the cross-
traction coe�cient η ∈ [0, 1]. The time-minimal paths on (M,h) in the presence of an active
wind Gη as in (7.3) are the time-parametrized solutions γ(t) = (γi(t)), i = 1, ..., n of the ODE
system

γ̈i(t) + 2G̃iη(γ(t), γ̇(t)) = 0, (7.5)

4The local solution is given ultimately by a time-minimal trajectory (time geodesic) or, equivalently, by the
corresponding direction of self-velocity (optimal control) as a function of time.
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where

G̃iη(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)
α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

] wi
ḡ

− R̃wi|j
α2wj

ḡ2
,

with

Giα(γ(t), γ̇(t)) = 1
4h

im
(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
γ̇j(t)γ̇k(t),

r00 = −1
ḡwj|kγ̇

j(t)γ̇k(t), r0 =
1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

R̃ = (1−η)ḡ2
2B̃α4

(B̃α2 + 2η), Θ̃ = ḡ2α(ÃB̃2α2−2D̃2β)

2Ẽ
, Ψ̃ = ḡ2α2(Ã2B̃+2D̃2)

2Ẽ
,

Ω̃ = (1−η)ḡ2
B̃Ẽα2

[(B̃α2 + 2η)(ḡ2B̃3α2 + 2D̃2||GT ||2h)− 4ηD̃(ḡ2B̃β + Ã||GT ||2h)],

Π̃ = (1−η)ḡ4
B̃Ẽα3

[4ηC̃D̃α+ (B̃α2 + 2η)(ÃB̃2α2 − 2D̃2β)],

Ã = − 2ḡ
α2

{
(1− η)[1− (2− η)||GT ||2h]− (2− η)2ḡβ − (2− η)α2

}
,

B̃ = − 2
α2

{
[1− 2(1− η)||GT ||2h]− 2(2− η)ḡβ − 2α2

}
, C̃ = 1

α

(
B̃α2 + Ãβ

)
,

D̃ = 2Ã− (2− η)ḡB̃, Ẽ = ḡ2B̃C̃2α2 + (||GT ||2hα2 − ḡ2β2)(Ã2B̃ + 2D̃2)

(7.6)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)).

We note that the notation wj|k means the covariant derivative of GT (written as GT = wi ∂
∂xi

)
with respect to h.

The main results are proved in the next section.

7.2 Proofs of the main results

In order to prove Theorem 7.1.1 we proceed in two steps which include a sequence of lemmas.
We consider the navigation problem on a slippery slope that is the n-dimensional Riemannian
manifold (M,h), n > 1, under the in�uence of an active wind Gη given by (7.3).

Let p :M → R be a C∞-function onM . The image of a di�erential 1-form ω = dp = ∂p
∂xi
dxi

by the musical isomorphism ♯ is the gradient vector �eld

ω♯ = hji
∂p

∂xj
∂

∂xi
(7.7)

and ||ω♯||2h = hji ∂p
∂xi

∂p
∂xj

. Since a gravitational wind GT acts along the anti-gradient, we set
GT = −ḡω♯, where ḡ is the rescaled magnitude of the acceleration of gravity g, i.e. ḡ = λg,
λ > 0. Moreover, ||ω♯||h = 1

ḡ ||G
T ||h.

Let u be the self-velocity with the assumption that ||u||h = 1 as it is usually set up in the
theoretical investigations on the Zermelo navigation. This means that the self-speed ||u||h is
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normalized and thus, it requires the norm of the active wind Gη to be rescaled accordingly, so
that they correspond to each other. We mention that the walker's self-speed on a slope and a
gravitational acceleration were not normalized in the original work of Matsumoto [106].

Furthermore, by analogy to other studies on the Zermelo navigation (see e.g. [45, 71, 154,
61]), we set similar classi�cation of types of winds with respect to their force. Namely, if
||Gη||h < 1 for any η ∈ [0, 1], then Gη is weak ; if ||Gη||h = 1 for any η ∈ [0, 1], then Gη is
critical, and if ||Gη||h > 1 for any η ∈ [0, 1], then Gη is strong.

Under the e�ect of the weak active wind Gη, having the resulting velocity vη = u +Gη,
η ∈ [0, 1], it seems that the metric obtained by the Zermelo navigation method is a Finsler
metric of Randers type like, for example in [45, 71, 78]. However, as it will be shown below, it is
in fact much more complicated because only the gravitational windGT is known (a priori), and
the vector GMAT depends on the direction of the self-velocity, being the orthogonal projection
of GT on u. Therefore, we conveniently split this proof into two main steps including some
cases. First, we deform the background Riemannian metric by the vector �eld ηGMAT , which
is the direction-dependent deformation. In the second step, the resulting Finsler metric F
(obtained in the �rst step) is deformed by the vector �eld (1 − η)GT , under the condition
F (x,−(1− η)GT ) < 1 which guarantees that the walker on the slippery mountainside can go
forward in any direction.

7.2.1 Step I: direction-dependent deformation

In this step we show that, when η||GMAT ||h < 1, the direction-dependent deformation of the
background Riemannian metric h by the vector �eld ηGMAT de�nes a Finsler metric if and
only if ||GT ||h < 1

2η , for any η ∈ (0, 1]. More precisely, the deformation of the Riemannian
metric h by the vector �eld ηGMAT invokes the expression of the resulting velocity, i.e.
v = u + ηGMAT , for any η ∈ (0, 1]. Notice that if η = 0, this turns out v = u. Otherwise,
when η||GMAT ||h ≥ 1 at some direction, this deformation cannot provide a Finsler metric.

Let θ be the angle between GT and u, in other words, it represents the desired direction
of motion. Since GMAT =ProjuGT , the vectors v, u and GMAT are collinear. It follows that
the angle between u and GMAT , denoted by θ̄ is 0 or π, or it is not determined, if θ is π

2 or
3π
2 (i.e. u and GT are orthogonal and GMAT = 0 in that event).

Taking into account all possibilities for the force of ηGMAT , we analyze the following
cases: 1. ||ηGMAT ||h < 1; 2. ||ηGMAT ||h = 1; and 3. ||ηGMAT ||h > 1.

Case 1. Due to the condition ||ηGMAT ||h < 1, the angle between GT and v is also θ (the
vectors u and v point to the same direction). Regarding of θ̄, we study two subcases:
i) First, if θ̄ = 0 (going downhill), then θ ∈ [0, π2 ) ∪ (3π2 , 2π), and the angle between GT and
GMAT is θ or 2π − θ. It results that ||GMAT ||h = ||GT ||h cos θ and also,

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Furthermore, we have η||GT ||h cos θ < 1 and h(v,GT )
||v||h < 1

η , η ∈ (0, 1].

ii) Second, if θ̄ = π (going uphill), then θ ∈ (π2 ,
3π
2 ). This means that the angle between GT

and GMAT is θ − π or π − θ, and it implies that ||GMAT ||h = −||GT ||h cos θ and

h(v,GMAT ) = −||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

It follows that −η||GT ||h cos θ < 1 and −h(v,GT )
||v||h < 1

η , η ∈ (0, 1].
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To sum up, by both above possibilities and noting that v = u if θ ∈ {π2 ,
3π
2 }, we have

obtained
h(v,GMAT ) = h(v,GT ) = ||v||h||GT ||h cos θ, for any θ ∈ [0, 2π), (7.8)

and the condition ||ηGMAT ||h < 1 is equivalent to

η||GT ||h| cos θ| < 1 or
|h(v,GT )|

||v||h
<

1

η
, (7.9)

for any η ∈ (0, 1] and θ ∈ [0, 2π). We note that, due to the condition η||GMAT ||h < 1, there is
not any direction where the resultant vector v vanishes. Now, taking into account (7.8) and
(7.9), the relation 1 = ||u||h = ||v − ηGMAT ||h leads to

||v||2h − 2η||v||h||GT ||h cos θ − (1− η2||GT ||2h cos2 θ) = 0.

This admits only one positive root

||v||h = 1 + η||GT ||h cos θ, for any θ ∈ [0, 2π). (7.10)

Using again (7.8), it can be rewritten as g1(x, v) = 0, where

g1(x, v) = ||v||2h − ||v||h − ηh(v,GT ). (7.11)

Applying Okubo's method [106], we obtain the function F (x, v) =
||v||2h

||v||h+ηh(v,GT )
as the so-

lution of the equation g1(x, vF ) = 0. The extension of F (x, v) to an arbitrary nonzero vector
y ∈ TxM, for any x ∈M, is the positive homogeneous C∞-function on TM0

F (x, y) =
||y||2h

||y||h + ηh(y,GT )
, for any η ∈ (0, 1]. (7.12)

This is because any nonzero y can be expressed as y = cv, c > 0, and F (x, v) = 1.
Actually, we are able to prove that η||GMAT ||h < 1 is a neccesary and su�cient condition

for F (x, y), obtained in (7.12), to be positive on all TM0. Indeed, the positivity of (7.12) on
TM0 means that

||y||h + ηh(y,GT ) > 0, (7.13)

for all nonzero y and any η ∈ (0, 1]. If the positivity holds on TM0, we can substitute y with
−GT ̸= 0 into (7.13) and thus, η||GT ||h < 1. Since ||GMAT ||h ≤ ||GT ||h in any direction
(||GMAT ||h = ||GT ||h| cos θ|, for any θ ∈ [0, 2π)) it turns out that η||GMAT ||h < 1 on all TM0.
Conversely, suppose that η||GMAT ||h < 1 on all TM0 (the case GMAT = 0 is also included).

Using (7.9), it follows that |h(y,GT )|
||y||h < 1

η for any nonzero y, which assures (7.13). Thus, F (x, y)
is positive on TM0.

With the notation

α2 = ||y||2h = hijy
iyj and β = −1

ḡ
h(y,GT ) = h(y, ω♯) = biy

i, (7.14)

α = α(x, y), β = β(x, y) and ||β||h = ||ω♯||h, the function (7.12) is of Matsumoto type, namely

F (x, y) =
α2

α− ηḡβ
, for any η ∈ (0, 1], (7.15)
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with the corresponding indicatrix IF =
{
(x, y) ∈ TM0 | α2(α− ηḡβ)−1 = 1

}
.Moreover, F (x, y)

can be extended continuously to all TM, i.e. F (x, 0) = 0 for any x ∈ M, because y = 0 does
not lie in the closure in TM of the indicatrix IF [61].

In order to establish the necessary and su�cient conditions for the function (7.15) to be a
Finsler metric for any η ∈ (0, 1], let us write F (x, y) = αϕ(s), where ϕ(s) = 1

1−ηḡs and s = β
α .

Since the second inequality in (7.9) can be read as |s| < 1
ηḡ , for arbitrary nonzero y ∈ TxM

and x ∈M , it turns out that ϕ is a positive C∞-function in this case.
Now, we are able to prove some additional properties regarding ϕ and to control the force

of the gravitational wind GT via the variable s. More precisely, we have

Lemma 7.2.1. For any η ∈ (0, 1], fhe following statements are equivalent:
i) ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, where b = ||ω♯||h;
ii) |s| ≤ b < b0, where b0 = 1

2ηḡ ;

iii) ||GT ||h < 1
2η .

Proof. i) ⇔ ii). Applying the Cauchy-Schwarz inequality |h(y, ω♯)| ≤ ||y||h||ω♯||h, it yields
|s| ≤ ||ω♯||h and thus, |s| ≤ b. Since |s| < 1

ηḡ , we have

(b2 − s2)ϕ′′(s) = (b2 − s2)
2η2ḡ2

(1− ηḡs)3
≥ 0

and the minimum value of (b2 − s2)ϕ′′(s) is achieved when |s| = b.

Therefore, if ϕ(s) − sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, then for s = b it yields 1 − 2ηḡb > 0, so
b < 1

2ηḡ . Thus, |s| ≤ b < 1
2ηḡ .

Conversely, if |s| ≤ b < 1
2ηḡ , then

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) =
(1− ηḡs)(1− 2ηḡs) + 2η2ḡ2(b2 − s2)

(1− ηḡs)3

≥ (1− ηḡs)(1− 2ηḡs)

(1− ηḡs)3
=

1− 2ηḡs

(1− ηḡs)2
> 0.

ii) ⇔ iii). If ||GT ||h < 1
2η and making use of the inequality |s| ≤ ||ω♯||h and ||ω♯||h =

1
ḡ ||G

T ||h, it implies that |s| ≤ 1
ḡ ||G

T ||h < 1
2ηḡ . The converse implication is immediate from

b = 1
ḡ ||G

T ||h.

We note that the statement |s| ≤ b < 1
2ηḡ , for any η ∈ (0, 1] also implies ϕ(s)− sϕ′(s) > 0.

Next, applying [71, Lemma 1.1.2] and Proposition 6.2.1 we have proved the following
result.

Lemma 7.2.2. For any η ∈ (0, 1], the following statements are equivalent:
i) F (x, y) = α2

α−ηḡβ is a Finsler metric;

ii) ||GT ||h < 1
2η .

In summary, we emphasize that the indicatrix IF is strongly convex if and only if ||GT ||h < 1
2η ,

for any η ∈ (0, 1].
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Case 2. Now we assume that ||ηGMAT ||h = 1. We notice that a traverse of a mountain, i.e.
θ ∈ {π2 ,

3π
2 } cannot be followed here because it gives η||GMAT || = 0, which contradicts our

assumption.
Due to the fact that ||GMAT ||h ≤ ||GT ||h, it turns out that ||GT ||h ≥ 1

η , for any η ∈ (0, 1].

Again we have to analyse both possibilities for θ̄:
i) First, if θ̄ = 0, then θ ∈ [0, π2 ) ∪ (3π2 , 2π) and u = ηGMAT . The vectors u and v have the
same direction and ∡(GT ,GMAT ) ∈ {θ, 2π − θ}. These lead to ||GMAT ||h = ||GT ||h cos θ.
Furthermore,

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Since v = u + ηGMAT , then v = 2ηGMAT and thus, ||v||h = 2. Moreover, also it turns out
that cos θ = 1

η||GT ||h
.

ii) Second, if θ̄ = π, then θ ∈ (π2 ,
3π
2 ) and u = −ηGMAT , so ||v||h = 1 − ||ηGMAT ||h = 0.

Thus, the resultant velocity v vanishes, while attempting to climb up the slope.
Summing up the above �ndings, when v does not vanish, we have ||v||h = 2 and among

the directions corresponding to θ ∈ [0, π2 ) ∪ (3π2 , 2π) only such directions for which cos θ =
1

η||GT ||h
, i.e. h(v,GT )

||v||h = 1
η , can be followed in this case. Let us consider g2(x, v) = 0, where

g2(x, v) = ||v||h − 2. By Okubo's method [106], we get the function

F (x, v) =
1

2
||v||h (7.16)

as the solution of the equation g2(x, vF ) = 0.
The extension of F (x, v) to an arbitrary non-zero vector y ∈ Ax = A ∩ TxM, for any

x ∈ M, is F (x, y) = 1
2 ||y||h, where A = {(x, y) ∈ TM0 | ||y||h − ηh(y,GT ) = 0} is an open

conic subset of TM0. Since GT ̸= 0 and ||GT ||h ≥ 1
η it results that cGT ∈ Ax, c > 0, if

and only if GT = GMAT . Indeed, if we substitute y with cGT into ||y||h − ηh(y,GT ) = 0,
we get η||GT ||h = 1 and thus, the angle θ can be only 0 and GT = GMAT = Gη, for any
η ∈ (0, 1]. Concluding, the function (7.16) can be treated as a conic Finsler metric on A which
is homothetic with the background Riemannian metric h on A [61, 87]. Anyway, this case
does not provide a Finsler metric.

Case 3. The condition ||ηGMAT ||h > 1 implies that the resultant velocity vector v and
GMAT point to the same (downhill) direction irrespective of θ̄. It also gives ||GT ||h > 1

η . As
above we split our investigation into some subcases:
i) First, under the assumption θ̄ = 0 it follows that θ ∈ [0, π2 ) ∪ (3π2 , 2π) and ∡(GT , v) =
∡(GT ,GMAT ) ∈ {θ, 2π − θ}. Accordingly, it follows that ||GMAT ||h = ||GT ||h cos θ and

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Furthermore, we have η||GT ||h cos θ > 1 and h(v,GT )
||v||h > 1

η , for any η ∈ (0, 1].

ii) Second, if θ̄ = π, then θ ∈ (π2 ,
3π
2 ) and ∡(GT , v) = ∡(GT ,GMAT ) = |θ−π|. In consequence,

||GMAT ||h = −||GT ||h cos θ and

h(v,GMAT ) = ||v||h||GMAT ||h = −||v||h||GT ||h cos θ = h(v,GT ).

Moreover, it yields −η||GT ||h cos θ > 1 and h(v,GT )
||v||h > 1

η , for any η ∈ (0, 1].
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Finally, if θ ∈ {π2 ,
3π
2 }, then v = u. This yields η||GMAT ||h = 0, which is contrary to our

assumption. To sum up, by both of the above subcases and since GMAT cannot be vanished,
we obtain

h(v,GMAT ) = h(v,GT ) = ||v||h||GT ||h| cos θ|, for any θ ∈ [0, 2π)∖ {π/2, 3π/2}, (7.17)

and the assumption ||ηGMAT ||h > 1 is equivalent to

| cos θ| > 1

η||GT ||h
or

h(v,GT )

||v||h
>

1

η
, (7.18)

for any η ∈ (0, 1]. Thus, among the directions corresponding to θ ∈ [0, 2π)∖ {π/2, 3π/2} only
such directions for which | cos θ| > 1

η||GT ||h
can be followed in this case. Also, η||GMAT ||h > 1

attests that there is not any direction where the resultant vector v vanishes.
Now using (7.17), (7.18) and 1 = ||u||h = ||v − ηGMAT ||h, we are led to

||v||2h − 2η||v||h||GT ||h| cos θ| − (1− η2||GT ||2h cos2 θ) = 0.

This admits two positive roots

||v||h = ±1 + η||GT ||h| cos θ| (7.19)

due to the assumed condition | cos θ| > 1
η||GT ||h

, for any θ ∈ [0, 2π)∖ {π/2, 3π/2}.
Having (7.17), we can express (7.19) as g3(x, v) = 0, where g3(x, v) = ||v||2h∓||v||h−ηh(v,GT ).
Again by Okubo's method [106], the solutions of the equation g3(x, vF ) = 0 are the functions

F1,2(x, v) =
||v||2h

±||v||h+ηh(v,GT )
. They can be extended to an arbitrary nonzero vector y ∈ A∗

x =

A∗ ∩ TxM, for any x ∈ M, because any such nonzero y can be expressed as y = cv, c > 0,
where

A∗ = {(x, y) ∈ TM | ||y||h − ηh(y,GT ) < 0}
is an open conic subset of TM0, for any η ∈ (0, 1]. Note that GT ∈ A∗

x and −cGT /∈ A∗
x, with

c > 0. Therefore, we obtain the positive homogeneous functions

F1,2(x, y) =
||y||2h

±||y||h + ηh(y,GT )
, (7.20)

on A∗, with F1,2(x, v) = 1. Following the notation (7.14), the functions (7.20) are of Mat-
sumoto type, i.e.

F1,2(x, y) =
α2

±α− ηḡβ
. (7.21)

However, F1,2 can give us at most conic Finsler metrics due to their conic domain A∗, rewritten
as A∗ = {(x, y) ∈ TM | α+ηḡβ < 0}. Applying [87, Corollary 4.15], we obtain that both F1,2

are strongly convex on A∗ and thus, they are conic Finsler metrics on A∗, for any η ∈ (0, 1].
Indeed, for F1,2 the strongly convex conditions (α∓ 2ηḡβ)(α∓ ηḡβ) > 0 are satis�ed for any
(x, y) ∈ A∗ and η ∈ (0, 1].

Consequently, the direction-dependent deformation of the background Riemannian metric
h by the vector �eld ηGMAT , restricted to η||GMAT ||h < 1 for every direction (which is
equivalent to ||GT ||h < 1

η ) provides the Finsler metric of Matsumoto type F (x, y) = α2

α−ηβ if

and only if ||GT ||h < 1
2η , for any η ∈ (0, 1]. In dimension 2 this means that the Riemannian

indicatrix which is unit time circle with respect to h is deformed into limaçon (the locus of unit
time destinations in windy conditions), instead of being rigidly translated as in the Zermelo
navigation.
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7.2.2 Step II: rigid translation

Taking into consideration [61], the second step concerns the fact that the addition of the
gravitational wind GT only generates a rigid translation to the indicatrix provided by the
equation of motion v = u+ηGMAT in the �rst step. We can discard the case η||GMAT ||h ≥ 1
because this gave us only conic Finsler metrics and thus, going forward in any direction is not
possible. Moreover, the translations of the resulting conic Finsler metrics (from Cases 2 and
3 ) may not exist for any η ∈ (0, 1].

Proposition 6.1.1 forms the basis for our subsequent study. Namely, we consider the
Zermelo navigation on the Finsler manifold (M,F ) with the navigation data (F, (1− η)GT ),
for any η ∈ [0, 1] and under the condition

F (x,−(1− η)GT ) < 1, (7.22)

where F is the Finsler metric (7.15) if η ∈ (0, 1], and F = h if η = 0. The solution of
Zermelo's navigation problem yields the Finsler slippery slope metric F̃ which is the unique
positive solution of the equation

F (x, y − (1− η)F̃ (x, y)GT ) = F̃ (x, y), (7.23)

for any (x, y) ∈ TM0. In particular, if η = 1, then F̃ = α2

α−ḡβ , i.e. F from (7.15) with η = 1.

Writing the Finsler metric F as F (x, y) = α2

α−ηḡβ , for any η ∈ [0, 1], our next objective is

to use it in (7.23) in order to reach the slippery slope metric F̃ . A direct computation gives

α2
(
x, y − (1− η)F̃ (x, y)GT

)
= α2(x, y) + 2(1− η)ḡβ(x, y)F̃ (x, y) + (1− η)2||GT ||2hF̃ 2(x, y)

and
β
(
x, y − (1− η)F̃ (x, y)GT

)
= β(x, y) + (1− η)

1

ḡ
||GT ||2hF̃ (x, y),

because β(x,GT ) = −1
ḡ ||G

T ||2h. Thus, (7.23) leads to the irrational equation

F̃

√
α2 + 2(1− η)ḡβF̃ + (1− η)2||GT ||2hF̃ 2 = α2 + (2− η)ḡβF̃ + (1− η)||GT ||2hF̃ 2, (7.24)

for any η̃ ∈ [0, 1], where α, β and F̃ are evaluated at (x, y).
From (7.24) we can extract two classic cases that are well known in literature on Finsler

geometry. Namely, �rst, if η = 1 and ḡ = 1, then (7.24) yields the standard Matsumoto metric
F̃ (x, y) = α2

α−β , with ||GT ||h < 1
2 and this solves Matsumoto's slope-of-a-mountain problem.

Second, if η = 0, then the gravitational wind GT is not compensated at all. More precisely,
the dead wind is zeroed or, equivalently, the cross wind is maximal. It has the same nature as
a wind included in the standard navigation data of the Zermelo problem, namely, wind force
is not reduced, although its direction is �xed, i.e. the steepest descent. Therefore, η = 0 in
(7.24) leads to

F̃

√
α2 + 2ḡβF̃ + ||GT ||2hF̃ 2 = α2 + 2ḡβF̃ + ||GT ||2hF̃ 2. (7.25)

Since α2 + 2ḡβF̃ + ||GT ||2hF̃ 2 > 0, (7.25) is reduced to

(1− ||GT ||2h)F̃ 2 − 2ḡβF̃ − α2 = 0,
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which admits only the positive root F̃ (x, y) =
√
α2(1−||GT ||2h)+ḡ2β2+ḡβ

1−||GT ||2h
, under the weak gravi-

tational wind, ||GT ||h < 1. With the notation

α̃2 =
α2(1− ||GT ||2h) + ḡ2β2

(1− ||GT ||2h)2
and β̃ =

ḡβ

1− ||GT ||2h
,

we have F̃ (x, y) = α̃ + β̃. This is the Randers metric which solves Zermelo's navigation
problem under the weak gravitational wind GT .

Now coming back to the general case, where η ∈ [0, 1], (7.24) is equivalent to the polynomial
equation of degree four, that is

(1− η)2 ||GT ||2h
(
1− ||GT ||2h

)
F̃ 4 + 2 (1− η)

[
1− (2− η) ||GT ||2h

]
ḡβF̃ 3

+
{[

1− 2 (1− η) ||GT ||2h
]
α2 − (2− η)2 ḡ2β2

}
F̃ 2 − 2 (2− η) ḡα2βF̃ − α4 = 0,

(7.26)

which admits four roots if (1− η)2
(
1− ||GT ||2h

)
̸= 0. However, taking into consideration the

condition (7.22) (see [61, p. 10 and Proposition 2.14]) it follows that there is a unique positive
root, i.e. the slippery slope metric. Subsequently, it is denoted by F̃η and it satis�es (7.24), for
each η ∈ [0, 1]. We note that along any regular piecewise C∞-curve γ, parametrized by time
that represents a trajectory in Zermelo's problem, F̃ (γ(t), γ̇(t)) = 1, i.e. the time in which a
craft or a vehicle goes along it. We remark that using a computational software system, e.g.
Wolfram Mathematica one can generate all four roots of the last equation, but their explicit
forms are very complicated.

Now, we pay more attention to the condition (7.22), which assures that the indicatrix of
F̃η (i.e. the unique positive solution of the equation (7.23)) is strongly convex.

Lemma 7.2.3. The following statements are equivalent:
i) the indicatrix IF̃η

of the slippery slope metric F̃η is strongly convex;

ii) the gravitational wind GT is weak with either ||GT ||h < 1 and η ∈ [0, 12 ], or ||GT ||h < 1
2η

and η ∈ (12 , 1];
iii) the active wind Gη given by (7.3) is weak with either ||Gη||h < 1 and η ∈ [0, 12 ], or
||Gη||h < 1

2η and η ∈ (12 , 1].

Proof. i) ⇔ ii). Having developed the expression

F (x,−(1− η)GT ) =
|| − (1− η)GT ||2h

|| − (1− η)GT ||h + ηh(−(1− η)GT ,GT )
=

(1− η)||GT ||h
1− η||GT ||h

,

an elementary calculation shows that (7.22) is equivalent to ||GT ||h < 1, for any η ∈ (0, 1).
Since for η = 0, F = h and then the condition (7.22) also means that ||GT ||h < 1.

If we combine the last condition with the strong convexity restriction for the indicatrix
IF (more precisely, with ||GT ||h < 1

2η ), for any η ∈ (0, 1], we see that the indicatrix IF̃η
is

strongly convex if and only if either ||GT ||h < 1 and η ∈ [0, 12 ], or ||G
T ||h < 1

2η and η ∈ (12 , 1].

Since 1
2η < 1, for any η ∈ (12 , 1], we outline that the gravitational wind GT is weak for any

η ∈ [0, 1].

ii) ⇔ iii). The main key to prove that ii) is equivalent to iii) is the remark that ||Gη||h ≤
||GT ||h, for any η ∈ [0, 1] and moreover, the maximum of ||Gη||h coincides with ||GT ||h, since
GMAT must vanish for some directions.
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Therefore, as it is emphasized by Lemma 7.2.3, the situation on the slippery slope under
weak active wind Gη can be described in the terms of the weak gravitational wind GT instead,
for any η ∈ [0, 1].

Remark that in general the Finslerian geodesics do not minimize time locally, if the related
indicatrix is not strongly convex, since the triangle inequality does not hold in such situation.

Summarizing the results obtained in Steps I and II, we have proved Theorem 7.1.1.

7.2.3 Geodesics of the slippery slope metric

This subsection mainly presents the proof of Theorem 7.1.2 which is based on some technical
computations which we split in a few lemmas. It is worth pointing out that even if we have not
an explicit formula for the slippery slope metric F̃η, for each η ∈ [0, 1], we can �nd the time-
minimal paths as the geodesics γ of F̃η, taking into account the fact that F̃η(γ(t), γ̇(t)) = 1
along them.

First of all, analyzing (7.26), we can conclude that F̃η depends on the variables ||GT ||h and
s = β

α , where η being only a parameter. Thus, the slippery slope metric F̃η is a general (α, β)-
metric, F̃η(x, y) = αϕ̃η(||GT ||2h, s), since ḡ2b2 = ||GT ||2h, where ϕ̃η is a positive C∞-function
as well as α and β are given by (7.14).

Furthermore, ϕ̃η is the unique positive solution of the polynomial equation

(1− η)2||GT ||2h
(
1− ||GT ||2h

)
ϕ̃4 + 2(1− η)

[
1− (2− η)||GT ||2h

]
ḡsϕ̃3

+
{[
1− 2(1− η)||GT ||2h

]
− (2− η)2ḡ2s2

}
ϕ̃2 − 2(2− η)ḡsϕ̃− 1 = 0.

(7.27)

The last relation is derived from Eq. (7.26). Since the slippery slope metric F̃η, for each
η ∈ [0, 1], is a Finsler metric with

||GT ||h < b̃0, where b̃0 =

{
1, η ∈

[
0, 12
]

1
2η , η ∈

(
1
2 , 1
] , (7.28)

and applying Proposition 6.2.1, the function ϕ̃η satis�es the following inequalities

ϕ̃η − sϕ̃η2 > 0, ḡ2(ϕ̃η − sϕ̃η2) + (||GT ||2h − ḡ2s2)ϕ̃η22 > 0,

when n ≥ 3 or only
ḡ2(ϕ̃η − sϕ̃η2) + (||GT ||2h − ḡ2s2)ϕ̃η22 > 0,

when n = 2, for any s such that |s| ≤ ||GT ||h
ḡ < b̃0

ḡ . In order to arrive at the equations of

the geodesics corresponding to the slippery slope metric F̃η, for each η ∈ [0, 1], we need to
determine the spray coe�cients of F̃η. A key ingredient for this is Proposition 6.2.2.

We now work toward the establishment of some relations between the function ϕ̃η̃ and its
derivatives.

Lemma 7.2.4. Let M be an n-dimensional manifold, n > 1, with the slippery slope metric
F̃η(x, y) = αϕ̃η(||GT ||2h, s). The function ϕ̃η and its derivative with respect to s, i.e. ϕ̃η2 hold
the following relations

Cϕ̃η2 = Aϕ̃η, C(ϕ̃η − sϕ̃η2) = B, Cϕ̃η = B +Asϕ̃η, (7.29)
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or each η ∈ [0, 1], where

A = −2(1− η)[1− (2− η)||GT ||2h]ḡϕ̃2η + 2(2− η)2ḡ2sϕ̃η + 2(2− η)ḡ,

B = −2[1− 2(1− η)||GT ||2h]ϕ̃2η + 4(2− η)ḡsϕ̃η + 4,

C = 4(1− η)2||GT ||2h(1− ||GT ||2h)ϕ̃3η + 6(1− η)[1− (2− η)||GT ||2h]ḡsϕ̃2η
+ 2

{
[1− 2(1− η)||GT ||2h]− (2− η)2ḡ2s2

}
ϕ̃η − 2(2− η)ḡs,

(7.30)

A, B, C being evaluated at (||GT ||2h, s). Moreover,
i) C(||GT ||2h, s) ̸= 0, ϕ̃η2 =

ḡA
C ϕ̃η, and ϕ̃η − sϕ̃η2 =

B
C .

ii) B(||GT ||2h, s) ̸= 0.

Proof. Since ϕ̃η is a root of (7.27), it checks this identically, namely

(1− η)2||GT ||2h(1− ||GT ||2h)ϕ̃4η + 2(1− η)
[
1− (2− η)||GT ||2h

]
ḡsϕ̃3η

+
{[
1− 2(1− η)||GT ||2h

]
− (2− η)2ḡ2s2

}
ϕ̃2η − 2(2− η)ḡsϕ̃η − 1 = 0.

(7.31)

The derivative of the identity (7.31) with respect to s leads to the �rst relation from (7.29).
Then, it immediately results the second identity of (7.29). The last one is justi�ed by the
notations (7.30) and (7.31).

Now in order to prove i) we suppose, towards a contradiction, that there exists s0 ∈ [−b, b],
b = ||GT ||h

ḡ < b̃0
ḡ , with b̃0 given by (7.28), such that C(||GT ||2h, s0) = 0. Under this assumption,

the relations (7.29) imply A(||GT ||2h, s0) = B(||GT ||2h, s0) = 0. If we substitute this outcome
in the identity (7.31), we obtain

(1− η)2||GT ||2h(1− ||GT ||2h)ϕ̃4η + [(2− η)ḡs0ϕ̃η + 1]2 = 0, (7.32)

which is impossible. Indeed, if η ̸= 1, then (1 − η)2||GT ||2h(1 − ||GT ||2h)ϕ̃4η ̸= 0 because
||GT ||h < 1 and ϕ̃η > 0, or if η = 1, then ḡs0ϕ̃η + 1 = 1

1−ḡs0 ̸= 0. Thus, C ̸= 0 everywhere
here.

To show the statement ii), we again argue by contradiction. Assume that there is s̃ ∈ [−b, b],
b = ||GT ||h

ḡ < b̃0
ḡ , with b̃0 given by (7.28), such that B(||GT ||2h, s̃) = 0. Thus, we are searching

for s̃ in the interval [−b, b]. If we take s = s̃ in the third formula in (7.29), an immediate
consequence is s̃ ̸= 0, because of ϕ̃η(||GT ||2h, s̃) > 0, C(||GT ||2h, s̃) ̸= 0 and B(||GT ||2h, s̃) = 0.
Moreover, under our assumption, the second formula in (7.30) turns out that ϕ̃η(||GT ||2h, s̃)
satis�es the polynomial equation

[1− 2(1− η)||GT ||2h]ϕ̃2η − 2(2− η)ḡs̃ϕ̃η − 2 = 0 (7.33)

and (7.31) is reduced to

2 (1− η)2 ||GT ||2h(1− ||GT ||2h)ϕ̃2η +
[
2− 3η − 2 (2− η) (1− η) ||GT ||2h

]
ḡs̃ϕ̃η

+1− 2 (1− η) ||GT ||2h = 0,

(7.34)
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for s = s̃ and for any η ∈ [0, 1]. Since ||GT ||h < b̃0, with b̃0 given by (7.28), 1 − ||GT ||2h ̸= 0
for any η ∈ [0, 1], but may exist some η ∈ [0, 12) such that 1− 2(1− η)||GT ||2h = 0. Thus, two
cases must be distinguished.
a) if 1− 2(1− η)||GT ||2h ̸= 0, for any η ∈ [0, 1], then by (7.33) and (7.34) we obtain that
[1− 4η (1− η) ||GT ||2h]ϕ̃η − 4ηḡs̃ = 0, which provide a contradiction if η = 0. Thus, η ̸= 0 and
taking into account that s̃ ̸= 0 and ϕ̃η(||GT ||2h, s̃) > 0, we get 1− 4η (1− η) ||GT ||2h ̸= 0 and

ϕ̃η(||GT ||2h, s̃) =
4ηḡs̃

1− 4η (1− η) ||GT ||2h
. (7.35)

If we substitute (7.35) in (7.33) it yields s̃2 =
[1−4η(1−η)||GT ||2h]

2

4ηḡ2[3η−2+4η(1−η)2||GT ||2h]
which contradicts

s̃2 ∈ (0, b2], due to the condition ||GT ||h < b̃0, where b̃0 is given by (7.28).
b) if 1− 2(1− η)||GT ||2h = 0 for some η ∈ [0, 12), then (7.33) leads to

ϕ̃η(||GT ||2h, s̃) = − 1

(2− η)ḡs̃
, (7.36)

which together with (7.34) yields −ηs̃2 = 1−2η
4(2−η)ḡ2 . Obviously, the last relation provides a

contradiction (i.e. s̃2 < 0) for any η ∈ [0, 12).

Summing up, we have B(||GT ||2h, s) ̸= 0, for any s ∈ [−b, b], b = ||GT ||h
ḡ < b̃0

ḡ , with b̃0
given by (7.28).

We note that according to Proposition 6.2.1 we knew that ϕ̃η − sϕ̃η2 > 0, when n ≥ 3, for

any η ∈ [0, 1] and s such that |s| ≤ ||GT ||h
ḡ < b̃0

ḡ . Now by Lemma 7.2.4, we have established

that ϕ̃η − sϕ̃η2 ̸= 0 also when n = 2, for any η ∈ [0, 1] and |s| ≤ ||GT ||h
ḡ < b̃0

ḡ .
In addition, the functions A, B, C given in (5.11) are homogenous of degree zero with

respect to y because of the same homogeneity degree of ϕ̃η, for any η ∈ [0, 1].

Lemma 7.2.5. The derivatives of the function ϕ̃η respect to b2 =
||GT ||2h
ḡ2

and s, i.e. ϕ̃η1, ϕ̃η12
and ϕ̃η22, respectively hold the following relations

ϕ̃η1 =
(1−η)ḡ2

2C (B + 2ηϕ̃2η)ϕ̃
2
η,

ϕ̃η22 =
1
C3 (A

2B + 2D2),

ϕ̃η12 =
(1−η)ḡ2
2C3

[
(B + 2ηϕ̃2η)(2AB + 2DH +A2sϕ̃η)− 4CDϕ̃η

]
ϕ̃η,

(7.37)

and

sϕ̃η + (b2 − s2)ϕ̃η2 =
1
ḡ2C

(Bḡ2s+A||GT ||2hϕ̃η),

(ϕ̃η − sϕ̃η2)ϕ̃η2 − sϕ̃ηϕ̃η22 =
1
C3 (AB

2 − 2D2sϕ̃η),

ϕ̃η − sϕ̃η2 + (b2 − s2)ϕ̃η22 =
1

ḡ2C3 [ḡ
2BC2 + (||GT ||2h − ḡ2s2)(A2B + 2D2)],

(ϕ̃η − sϕ̃η2)ϕ̃η12 − sϕ̃η1ϕ̃η22 =
(1−η)ḡ2
C4 [4ηCDϕ̃3η + (B + 2ηϕ̃2η)(AB

2 − 2D2sϕ̃η)]ϕ̃η,

(7.38)

where D = 2A− (2− η)ḡB, H = 2 + (2− η)ḡsϕ̃η, for any η ∈ [0, 1].
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Proof. By derivation with respect to ||GT ||2h, the identity (7.31) gives

∂ϕ̃η
∂||GT ||2h

=
(1− η)

2C
(B + 2ηϕ̃2η)ϕ̃

2
η.

When substituted in ϕ̃η1 = ḡ2
∂ϕ̃η

∂||GT ||2h
, this yields the �rst expression in (7.37). The derivatives

of (7.30) with respect to s read

A2 =
2

C
[A2 − (2− η)ḡD], B2 =

2

C
[AB − 2D], C2 = −AB + 2DH

Cϕ̃η
+ 3A,

where A2 =
∂A
∂s , B2 =

∂B
∂s , C2 =

∂B
∂s . These, along with

ϕ̃η22 =
A2C +A2 −AC2

C2
ϕ̃η,

ϕ̃η12 =
(1− η)ḡ2

2C2

[
B2C + 4ηϕ̃2ηA+ (B + 2ηϕ̃2η)(2A− C2)

]
ϕ̃2η,

lead to the last two formulas in (7.37). Once we obtain ϕ̃η1, ϕ̃η2, ϕ̃η12 and ϕ̃η22, a technical
computation yields the expressions (7.38).

Beyond the force of the gravitational wind GT = −ḡω♯, we can emphasize some speci�c
features of GT which come from the properties of the gradient vector �eld ω♯ = hji ∂p

∂xj
∂
∂xi

; cf.

[20]. Thus, denoting the components of GT by wi, these have the expressions wi = −ḡhji ∂p
∂xj

.

With the notation wi = hijw
j , it follows that wi = −ḡ ∂p

∂xi
, having the property ∂wi

∂xj
=

∂wj

∂xi
.

Lemma 7.2.6. For the gravitational wind GT the following relations hold

rij = −1
ḡwi|j , ri =

1
ḡ2
wi|jw

j , ri = 1
ḡ2
wi|jw

j , r = − 1
ḡ3
wi|jw

iwj ,

r00 = −1
ḡwi|jy

iyj , r0 =
1
ḡ2
wi|jw

jyi, sij = si = si = si0 = s0 = 0,
(7.39)

where wi|j =
∂wi

∂xj
− Γkijwk, w

i
|j = hikwk|j and Γkij =

1
2h

km
(
∂hjm
∂xi

+ ∂him
∂xj

− ∂hij
∂xm

)
. In addition,

||GT ||h is constant if and only if ri = 0 and, under either of the statements of this equivalence,
ri = r = r0 = 0.

Proof. Taking into account (7.14), it implies that

aij = hij , bi = −1

ḡ
wi =

∂p

∂xi
, bi = hjibj = −1

ḡ
wi

and moreover, ∂bi
∂xj

=
∂bj
∂xi
, bi|j = bj|i (i.e. β is closed) and bi|j = −1

ḡwi|j .

Making use of (6.4), the conditions in (7.39) are ful�lled. A trivial computation shows

that ∂||GT ||h
∂xi

= 2
ḡ2
wi|jw

j = 2ri. This clearly forces ri = 0 if and only if ||GT ||h is constant.
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Proposition 7.2.7. Let M be an n-dimensional manifold, n > 1, with the slippery slope
metric F̃η, with η ∈ [0, 1]. The spray coe�cients G̃iη of F̃η are related to the spray coe�cients

Giα = 1
4h

im
(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
yjyk of α by

G̃iη(x, y) = Giα(x, y) +
[
Θ(r00 + 2α2Rr) + αΩr0

] yi
α

−
[
Ψ(r00 + 2α2Rr) + αΠ r0

] wi
ḡ

− α2Rri,

(7.40)
where

R = (1−η)ḡ2
2Bα4 (Bα2 + 2ηF̃ 2

η )F̃
2
η , Θ =

ḡ2α(AB2α2−2D2βF̃η)

2EF̃η
, Ψ = ḡ2α2(A2B+2D2)

2E ,

Ω = (1−η)ḡ2
BEα2 [(Bα2 + 2ηF̃ 2

η )(ḡ
2B3α2 + 2D2||GT ||2hF̃ 2

η )− 4ηDF̃ 3
η (ḡ

2Bβ +A||GT ||2hF̃η)],

Π = (1−η)ḡ4
BEα3 [4ηCDαF̃ 3

η + (Bα2 + 2ηF̃ 2
η )(AB

2α2 − 2D2βF̃η)]F̃η,
(7.41)

with

A = − 2ḡ
α2

{
(1− η)[1− (2− η)||GT ||2h]F̃ 2

η − (2− η)2ḡβF̃η − (2− η)α2
}
,

B = − 2
α2

{
[1− 2(1− η)||GT ||2h]F̃ 2

η − 2(2− η)ḡβF̃η − 2α2
}
,

C = 1
αF̃η

(
Bα2 +AβF̃η

)
, D = 2A− (2− η)ḡB,

E = ḡ2BC2α2 + (||GT ||2hα2 − ḡ2β2)(A2B + 2D2)

(7.42)

and the formulae for r00, r0, r and ri are given in (7.39).

Proof. The proof follows from Proposition 6.2.2 and Lemmas 7.2.5 and 7.2.6.

Note that if ||GT ||2h is constant, then the formula (7.40) is simpli�ed considerably, i.e.

G̃iη(x, y) = Giα(x, y) + r00

(
Θ
yi

α
−Ψ

wi

ḡ

)
, (7.43)

because ri = r = r0 = 0 in this particular case.
Therefore, owing to the system (6.2) and Proposition 7.2.7 with F̃η(γ(t), γ̇(t)) = 1, we

can write the ODE system (7.5) which yields the shortest time trajectories γ(t) = (γi(t)),
i = 1, ..., n on the slippery slope of a mountain. This ends the proof of Theorem 7.1.2.

Finally, we apply the general theory developed in this chapter by emphasizing a two-
dimensional example, namely Gaussian bell-shaped surface. First, we give a brief overview
of the general model of the hill slope in dimension 2 which is described in [10, 11, 12, 13].
Coming back to the particular case with M being a surface, where πO is the tangent plane
to M at O ∈M , the parametric equations of the indicatrix of the slippery slope metric F̃η in
the coordinates (X,Y ) with respect to the rectangular basis {e1, e2} are given by

X = (1 + η||GT ||h cos θ) cos θ + (1− η)||GT ||h

Y = (1 + η||GT ||h cos θ) sin θ
, (7.44)
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for any traction coe�cient η ∈ [0, 1] and the direction of the self-velocity θ ∈ [0, 2π), because
GT and e1 point in the same direction. If we eliminate θ in (7.44), it follows the equation of
the indicatrix of F̃η, namely√

(X − (1− η)||GT ||h)2 + Y 2 = X2 + Y 2 − (2− η)X||GT ||h + (1− η)||GT ||2h. (7.45)

Considering the surfaceM embedded in R3 and parametrized by (x1, x2) ∈M → (x = x1, y =
x2, z = f(x1, x2)) ∈ R3, where f is a smooth function on M , the Riemannian metric induced

on M is
(
hij(x

1, x2)
)
=

(
1 + f2x1 fx1fx2
fx1fx2 1 + f2x2

)
, i, j = 1, 2. The notations fx1 and fx2 mean

the partial derivatives of f with respect to x1 and x2, respectively. Thus, the tangent plane
πO toM is spanned by the vectors ∂

∂x1
= (1, 0, fx1) and

∂
∂x2

= (0, 1, fx2), and the gravitational
wind is

GT = − ḡ

q + 1
(fx1 , fx2 , q) = − ḡ

q + 1

(
fx1

∂

∂x1
+ fx2

∂

∂x2

)
, (7.46)

with ||GT ||h = ḡ
√

q
q+1 , where q = f2x1 + f

2
x2 . Since any tangent vector of πO can be written as

y1 ∂
∂x1

+ y2 ∂
∂x2

= Xe1+Y e2, with e1 = − 1√
q(q+1)

(fx1 , fx2 , q) and e2 =
1√
q (fx2 ,−fx1 , 0). Thus,

it turns out the following link between the coordinates (X,Y ) and (y1, y2)

X = −
√
q + 1

q

(
y1fx1 + y2fx2

)
, Y =

1
√
q

(
y1fx2 − y2fx1

)
. (7.47)

Furthermore, since y1fx1 + y2fx2 = −1
ḡh(y,G

T ), we obtain

X2 + Y 2 = (y1)2 + (y2)2 + β2 = hijy
iyj = α2, y1fx1 + y2fx2 = β. (7.48)

When substituted in (7.45) this yields√
α2 + 2(1− η)ḡβ + (1− η)2||GT ||2h = α2 + (2− η)ḡβ + (1− η)||GT ||2h. (7.49)

As a consequence, by Okubo's method we arrive at the equation (7.24) that gives the slippery
slope metric F̃η. If O is a critical point of M , i.e. a point where q(O) = 0, then GT = 0.
Although the above slippery slope metric F̃η is described only at regular points O of the
surface M (q(O) ̸= 0), it is well de�ned everywhere on M including the critical points of M ,
where it is just the background Riemannian metric h.

Let G be a surface of revolution described by the two-dimensional Gaussian function
z = 3

2e
−(x2+y2) (i.e. Gaussian bell-shaped surface). Corresponding to G the gravitational

wind (7.46) is

GT =
3ḡe−(x2+y2)

9(x2 + y2)e−2(x2+y2) + 1

(
x, y,−3(x2 + y2)e−(x2+y2)

)
,

because f(x1, x2) = 3
2e

−(x2+y2), where x = x1, y = x2 and q = 9(x2+y2)e−2(x2+y2) [10, 11, 12].
For simplicity, we choose the following parametrization for the surface of revolution

G : (ρ, φ) ∈ G → (x = ρ cosφ, y = ρ sinφ, z =
3

2
e−ρ

2
) ∈ R3,
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where ρ ≥ 0 and φ ∈ [0, 2π). This leads to

GT (ρ, φ) =
3ḡρe−ρ

2

9ρ2e−2ρ2 + 1

∂

∂ρ
, where ||GT ||h =

3ḡρe−ρ
2√

9ρ2e−2ρ2 + 1
. (7.50)

Since h11(ρ, φ) = 9ρ2e−2ρ2 + 1, h22(ρ, φ) = ρ2 and h12(ρ, φ) = h21(ρ, φ) = 0, some technical
computation yields

α2 = (9ρ2e−2ρ2 + 1)ρ̇2 + ρ2φ̇2, β = −3ρe−ρ
2
ρ̇, (7.51)

G1
α =

ρ

2(9ρ2e−2ρ2 + 1)

[
9(1− 2ρ2)e−2ρ2 ρ̇2 − φ̇2

]
, G2

α =
1

ρ
ρ̇φ̇ (7.52)

r00 = − 3e−ρ2

9ρ2e−2ρ2+1

[
(1− 2ρ2)ρ̇2 + ρ2φ̇2

]
, r0 =

9ρ(1−2ρ2)e−2ρ2

(9ρ2e−2ρ2+1)2
ρ̇

r = −27ρ2(1−2ρ2)e−3ρ2

(9ρ2e−2ρ2+1)3
, r1 = 9ρ(1−2ρ2)e−2ρ2

(9ρ2e−2ρ2+1)3
, r2 = 0.

(7.53)

Figure 7.2: The slippery slope geodesics on G with the boundary cases: η = 0.5 (dashed black), η = 1

(Matsumoto, dashed green) and η = 0 (Zermelo-Randers, dashed blue). They are compared to the

Riemannian geodesics (dashed white). The corresponding unit time fronts are shown in solid colours

and the gravitational wind GT (black arrows) �blows� in the steepest downhill direction; ḡ = 0.63,

∆t = 1, with a step of ∆θ = π/4 (8 paths in each case) and the initial point is positioned on the

parallel of the strongest gravitational wind, i.e. (ρ(0), φ(0)) = (1/
√
2,−π/4).

Lemma 7.2.8. The indicatrix of the slippery slope metric F̃η on the surface G is strongly

convex if and only if ḡ < δ2(η), where δ2(η) =

{ √
2e+9
3 ≈ 1.27, if η ∈ [0, 12 ]√
2e+9
6η ≈ 0.64

η , if η ∈ (12 , 1]
.

Proof. Since ||GT ||h = 3ḡρe−ρ2√
9ρ2e−2ρ2+1

, its maximum value is 3ḡ√
2e+9

≈ 0.79ḡ, for any ρ ≥ 0, and

it is achieved when ρ = 1√
2
≈ 0.71. Hence, ||GT ||h ≤ 3ḡ√

2e+9
, for any ρ ≥ 0. Thus, ḡ < δ2(η)

is equivalent to the strong convexity condition (7.28).
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It is easily seen that the most restrictive case regarding the convexity among all slippery
slope metrics on G is for η = 1, that is, the solution of the standard Matsumoto problem.
Next, owing to Theorem 7.1.2 and Proposition 7.2.7, the time geodesics γ(t) = (ρ(t), φ(t)) on
the slippery slope G are the solutions of the ODE system

0 = ρ̈+ ρ

9ρ2e−2ρ2+1

[
9(1− 2ρ2)e−2ρ2 ρ̇2 − φ̇2

]
+ 2

{
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

}
ρ̇
α

− 6ρe−ρ2

9ρ2e−2ρ2+1

{
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

}
− 18ρ(1−2ρ2)e−2ρ2

(9ρ2e−2ρ2+1)3
α2R̃

0 = φ̈+ 2
ρ ρ̇φ̇+ 2

{
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

}
φ̇
α

,

where Θ̃ , R̃, Ω̃ , Π̃ and Ψ̃ are given by (7.6), ||GT ||h = 3ḡρe−ρ2√
9ρ2e−2ρ2+1

, ḡ < δ2(η), ρ = ρ(t),

φ = φ(t), with (7.51) and (7.53).
The outcome is presented in Figure 7.2, where the slippery slope geodesics (η = 0.5, dashed

black) are compared with the boundary cases, i.e. the standard Matsumoto geodesics (η = 1,
dashed green) and the Zermelo-Randers (η = 0, dashed blue) under the gravitational wind
GT ; ḡ = 0.63 < δ2(η = 1). Moreover, the corresponding unit time fronts are shown in the
respective solid colours. As expected, the time geodesics and fronts referring to η = 1/2 lie
entirely between the corresponding Matsumoto and Randers paths.
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Chapter 8

The slope-of-a-mountain problem in a
cross gravitational wind

In this chapter, mainly based on the papers [11, 12], we describe additional models of slope as a
Riemannian manifold, continuing to explore the in�uences of both transverse and longitudinal
components of the gravitational wind on time-optimal paths. In contrast to the original
Matsumoto's exposition, in the �rst model presented below, the cross-gravity additive is taken
into account in the equations of motion, while the along-gravity e�ect is entirely compensated.
Exploring the properties of the cross slope metric obtained in this work, which belongs to the
class of general (α, β)-metrics and serves as a main tool, we �nd the time geodesics on a
mountain slope under the in�uence of a cross gravitational wind. The feature of the second
model, which generalizes and includes the �rst, is that the varying along-gravity e�ect depends
on traction, whereas the cross-gravity additive is taken entirely in the equations of motion,
for any direction and gravity force. The investigation of this also leads to a general (α, β)-
metric called slippery-cross-slope metric which enables us to provide the corresponding time
geodesics as well as to create a direct link between the Zermelo navigation problem and the
slope-of-a-mountain problem under the action of a cross gravitational wind.

8.1 Model of a slope under the cross-gravity e�ect

Recalling the original Matsumoto's reasoning [106], one can observe that the slope-of-a-
mountain problem was actually studied only under the in�uence of the longitudinal component
of a gravitational wind GT 1, which is collinear with self-velocity vector u (the control vector)
of a walker, whereas the e�ect of another (transverse2) component was not taken into consid-
eration in the model. Namely, the latter was assumed to be always cancelled and it did not
have therefore any in�uence on the trajectory, although the orthogonal projection of GT on
u⊥, denoted by Proju⊥G

T is in general a nonzero vector, because GT =ProjuGT+Proju⊥G
T .

More precisely, this issue was justi�ed by Matsumoto in a word, saying that "the compo-
nent perpendicular to the velocity u is regarded to be cancelled by planting the walker's legs
on the road determined by u" [106, p. 19]. Consequently, the resulting velocity then reads
v = u+ProjuGT , with ||v||h = ||u||h ± ||ProjuGT ||h (+/- for a downhill/uphill path, respec-

1In short, a gravitational wind is the component GT of a gravitational �eld G = GT +G⊥, which is tangent
to a slope and acts along the steepest downhill direction (see Figure 8.1).

2That is, collinear with u⊥, which is a perpendicular direction to u.
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tively). However, note that the impact3 of the lateral component on the resulting velocity
can be stronger than the longitudinal one, depending on the desired direction of motion on
the hillside. This motivated us to consider and to compare a di�erent scenario on the slope
including the cross-gravity e�ect, and not the along-gravity additive like in [106]. The geo-
metric construction of the corresponding Finslerian indicatrix in the new setting will also be
based on a direction-dependent deformation of the background Riemannian metric. However,
the general equations of motion will read now

v = u+ Proju⊥G
T .

As a consequence, the velocities u and v are not collinear in general, which is in contrast to
Matsumoto's model4. Such set-up refers in reality to a walker on a slope, who endeavors to keep
the e�ective speed constant5. Namely, ||Projuv||h is equal to the self-speed ||u||h continuously
on the slope by compensating the in�uence of the along-gravity additive ProjuGT that pushes
the walker forward (when going downhill) or backward (when going uphill), and at the same
time allowing the walker to be dragged o� the direction pointed by u to the side by gravity.
There is a close analogy with the linear transverse vessel's sliding motion side-to-side called
sway on a dynamic surface of a sea (generated by wind, water waves or the inertia of a ship),
while the linear front-back motion called surge is stabilized (compensated). Moreover, this
can also be compared to the craft's (e.g. a vessel, an airplane) lateral drift from its course.
In nature such type of motion has some analogy with the animals' behaviour that can move
sideways, while being in�uenced by a natural force �eld, e.g. a sidewinder rattlesnake, or a
hummingbird. Furthermore, this new setting gives rise to the description of some Finslerian
indicatrices as the algebraic (pedal) curves and surfaces; see for instance [64] in this regard.

8.1.1 Cross gravitational wind

Before stating the title problem and formulating the main results we begin by brie�y recalling
some basic concepts, which have been introduced in [10, 11, 12] and setting up terminology
and notation.

In this subsection, (M,h) is a surface embedded in R3, i.e. a 2-dimensional Riemannian
manifold. Let πO be the tangent plane to M at an arbitrary point O ∈M . Considering that
G is a gravitational �eld in R3 that a�ects a mountain slope M , this can be decomposed into
two orthogonal components, G = GT +G⊥, where G⊥ is normal and GT tangent to M in
O. The gravitational wind GT acts along an anti-gradient, i.e. the steepest descent direction
and its norm with respect to h is ||GT ||h =

√
h(GT ,GT ); see Figure 8.1. In general, GT

depends on the gradient vector �eld related to slope M and a given acceleration of gravity.
Furthermore, we can decompose the gravitational wind as GT =

−→
OA +

−−→
OA′, where

−→
OA is

the orthogonal projection of GT on the self-velocity u, denoted by GMAT , and its active, i.e.
non-compensated part is an e�ective wind. Moreover, the second component

−−→
OA′ represents a

3That is, �force� of the gravitational wind component expressed by its norm w.r.t. the background Rieman-
nian metric h.

4Both velocities are collinear only if the steepest route is followed, i.e. the gradient (uphill) or anti-gradient

(downhill) direction. Moreover, v = u, since the cross gravitational wind G† =
−→
0 in these particular cases.

5The e�ective (longitudinal) speed of a walker, i.e. ||u||h ± ||ProjuG
T ||h is the same now like the resultant

speed ||v||h when walking on a horizontal plane, where the gravity acts perpendicularly on this plane, i.e.

G⊥ = G. So, GT =
−→
0 and thus, for any direction, ||v||h = ||u||h in this case. In general, we have ||v||h =√

1 + ||Proju⊥GT ||2h.
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Figure 8.1: A model of a planar slope (an inclined plane of the slope angle ε) under gravity G =

GT + G⊥, which acts perpendicularly on the base of the slope (the horizontal plane), where GT is

the gravitational wind �blowing� tangentially to the slope in the steepest downhill direction X and

G⊥ is the component of gravity normal to the slope; OX ⊥ OY . The resultant velocity v† (red),

which determines the motion on the slope under the cross wind G† (dashed red), is compared to the

tangent vectors to the Zermelo-Randers (vZNP , blue) and Matsumoto (vMAT , green) geodesics. The

walker's self-velocity u (in other words, the Riemannian velocity) is marked in dashed black, ||u||h = 1.

The impact of either orthogonal component of gravitational wind can be stronger than the other one,

depending on the direction of motion θ on the slope; OA ⊥ OA′. In the original Matsumoto's setting

the equation of motion reads v = u+GMAT , where the cross-gravity e�ect of G† is cancelled. Now,

in contrast to [106] this yields v = u+G†, where ||Projuv||h = ||u||h, since the along-gravity e�ect of

GMAT is compensated entirely.

cross gravitational wind, denoted here by G†
6. Their norms generally depend on the direction

of motion θ and gravitational wind force ||GT ||h. Thus, it is obvious that ||G†||h ∈
[
0, ||GT ||h

]
.

In contrast to Matsumoto's exposition, we do not assume that while the Earth's gravity
acts on a walker on the slope, the cross wind perpendicular to a desired direction of motion
(represented by a control vector u) is regarded to be cancelled. However, the e�ective wind,
which pushes a walker downhill, is compensated completely regardless of the direction of
motion, so its actual outcome is reduced to 0. In this new setting the sideways e�ect caused
by gravity is taken into consideration instead. Thus, the in�uences of both components of
the gravitational wind are reversed in comparison to [106]. In other words, the proposed
model refers to a slope of a hill or a mountain, admitting the entire cross-track additive while
compensating the along-track changes at the same time.

Moreover, observe that in the new set-up the resultant speed on the slope is always greater
or equal to the self-speed of the walker, for any direction of motion θ. This property also di�ers
from the situation in the standard Matsumoto problem as well as the Zermelo navigation
problem on the slope, where the resultant speeds can be both higher or lower than unit own
speed, depending on the direction. Only in the special cases, i.e. θ ∈ {0, π} (the steepest
downhill/uphill paths) it is equal to the self-speed ||u||h, so like walking on a �at area, where
the gravitational wind vanishes (the Riemannian case). Furthermore, after having paid a
little thought, if θ ∈ {π/2, 3π/2}, then we can see that such special case 7 coincides with

6To be precise,
−→
OA is in general the maximum e�ective wind and

−−→
OA′ the maximum cross wind, for given

θ and ||GT ||h. A component of the gravitational wind GT is maximal if it is not compensated (reduced)
partially or entirely, e.g. due to traction, drag.

7Such orientation of u resembles traversing a mountain slope along an isohypse, where ||v||h = ||u||h in
Matsumoto's model in this case.
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the navigation problem of Zermelo in the presence of a weak wind GT . This also yields the
maximum possible speed ||v||h (for a given GT ) in the problem presented because G† = GT

in this case. Therefore8, ||v||h ∈ [||u||h,
√
||u||2h + ||GT ||2h].

It follows clearly that the cross gravitational wind can be expressed here as

G† = −GMAT +GT . (8.1)

Because of the cross-gravity e�ect, the self-velocity u is perturbed by G†. Hence, the resultant
velocity will be given by the composed vector

v = u+G†. (8.2)

This general relation de�nes the equation of motion on the slope under the in�uence of cross
wind.

For comparison, it is worth pointing out that if the longitudinal component of GT was
not compensated at all in the model, then such setting would in general yield a scenario
like in Zermelo's problem under a weak gravitational wind, i.e. with the navigation data
W = GT , where the solution is given by Finsler metric of Randers type [127, 45, 10, 157].
This case demonstrates the action of the entire gravitational wind, so the full e�ects of its
both components are then admitted on the slope.

8.1.2 The main results

Bearing in mind the ones above stated, the slope-of-a-mountain problem under the cross-
gravity e�ect can be formulated as follows:

Suppose a person walks on a horizontal plane at a constant speed, while gravity
acts perpendicularly on this plane. Imagine the person walks now on a slope of a
mountain under the in�uence of a cross gravitational wind. How should the person
navigate on the slope to get from one point to another in the shortest time?

As the answer in the general context of an n-dimensional Riemannian manifold with GT =
−ḡω♯ below we formulate our main theorem, where ω♯ is the gradient vector �eld and ḡ is the
rescaled gravitational acceleration g.

Theorem 8.1.1. (Cross-slope metric) Let the slope of a mountain be an n-dimensional Rie-
mannian manifold (M,h), n > 1, with the gravitational wind GT . The time-minimal paths
on (M,h) in the presence of the cross gravitational wind G† as in (8.1) are the geodesics of
the cross-slope metric F which satis�es

||GT ||2hF 4 + 2ḡβF 3 + (α2 − ḡ2β2)F 2 − 2ḡα2βF − α4 = 0,

where α = α(x, y), β = β(x, y) are given by (8.13) and ||GT ||h < 1
2 .

We emphasize that F is a Finsler metric of general (α, β) type [155] and it gives rise to a
natural and actual model of Finsler spaces as well as to a new application of this kind of
Finsler metrics. Furthermore, we �nd the time geodesics of the cross-slope metric. With
Theorem 8.1.1, all such solutions can be determined as follows.

8As it is shown on further reading, ||v||h ∈ [1,
√
5/2).

106



Habilitation thesis Codruµa Nicoleta Aldea

Theorem 8.1.2. (Time geodesics) Let the slope of a mountain be an n-dimensional Rieman-
nian manifold (M,h), n > 1, with the gravitational wind GT . The time-minimal paths on
(M,h) in the presence of the cross wind G† are the time-parametrized solutions γ(t) = (γi(t)),
i = 1, ..., n of the ODE system

γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0, (8.3)

where

Gi(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)
α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

] wi
ḡ

− R̃wi|j
α2wj

ḡ2
,

with

Giα(γ(t), γ̇(t)) = 1
4h

im
(
2
∂hjm
∂γk

− ∂hjk
∂γm

)
γ̇j(t)γ̇k(t), R̃ = − ḡ2

2α4B̃
,

r00 = −1
ḡwj|kγ̇

j(t)γ̇k(t), r0 =
1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

Θ̃ = ḡα

2Ẽ
(α6ÃB̃2 − ḡβ), Ω̃ = − ḡ2

B̃Ẽ
[α4B̃3 + ḡβB̃ + ||GT ||2h(B̃ − Ã)],

Ψ̃ = ḡ2α2

2Ẽ
(α4Ã2B̃ + 1), Π̃ = − ḡ3

2B̃Ẽα3
[2α4B̃(α2ÃB̃ − 1)− ḡβ(α2B̃ + 1)],

Ã = 1
α2 (ḡβ + α2 − 1), B̃ = 1

α2 (2ḡβ + 2α2 − 1), C̃ = 1
α

(
α2B̃ + ḡβÃ

)
,

Ẽ = B̃C̃2α6 + (||GT ||2hα2 − ḡ2β2)(α4Ã2B̃ + 1)

(8.4)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)).

The proofs of the aforementioned results are presented in the next section.

8.2 Proofs of the main results

Setting the navigation problem on a slope of a mountain represented by an n-dimensional
Riemannian manifold (M,h), n > 1 and in�uenced by a cross gravitational wind G† given
by (8.1), we provide the cross-slope metric with the necessary and su�cient conditions for its
strong convexity as well as its time geodesics.

8.2.1 The cross-slope metric

The proof of Theorem 8.1.1 includes a sequence of lemmas which collect all requirments for
a Finsler metric. The main tool in our approach is the gravitational wind GT = −ḡω♯,
where ḡ is the rescaled magnitude of the acceleration of gravity g (i.e. ḡ = λg, λ > 0), and
ω♯ = hji ∂p

∂xj
∂
∂xi

is the gradient vector �eld, with p : M → R being a C∞-function on M . For
more details we refer the reader to [10, 20, 12].

Let u be the self-velocity and u⊥ the orthogonal direction on u. By assuming the condition
||u||h = 1 as it is usually done in the theoretical investigations on the Zermelo navigation (see
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e.g. [45]), one can observe that the resultant velocity is v = u+G†, taking into account the
e�ect of the cross gravitational wind. Within this geometrical framework two distinct ways
can be followed in the proof of Theorem 8.1.1. One way is relied on the expression of G†
as in (8.1), where GMAT is the orthogonal projection of GT on u. This allows us to arrive
at the cross-slope metric in two steps, following the same technique as in Chapter 7 or [10].
First, to deform the background Riemannian metric by the vector �eld −GMAT , which is a
direction-dependent deformation. In the second step, the resulting Finsler metric F (obtained
in the �rst step) is deformed further by the vector �eld GT , i.e. a rigid translation, under
the condition F (x,−GT ) < 1 which guarantees that the walker on the mountainside can go
forward in any direction; see [127] for more details.

Another way, which we will proceed below, is to use the fact that the cross gravitational
wind G† coincides with the orthogonal projection of GT on u⊥ in this study and thus, it
depends on the direction of the self-velocity u. Consequently, the indicatrix of the resulting
cross-slope metric is the anisotropic deformation of the indicatrix of the background Rieman-
nian metric by the vector �eld G†.

Let θ be the angle betweenGT and u. Roughly speaking, it represents the desired direction
of motion and θ ∈ [0, 2π). It follows that

||G†||h = ||GT ||h| sin θ|, for any θ ∈ [0, 2π). (8.5)

This clearly forces ||G†||h ≤ ||GT ||h. In particular, if θ ∈ {0, π}, then G† =
−→
0 and u = v, or

if θ ∈ {π2 ,
3π
2 }, then G† = GT .

Moreover, the cross gravitational wind G† can also be seen as the orthogonal projection
of the resultant velocity v on u⊥ because v = u+G†. Denoting by ζ the angle between v and
u⊥, it follows that ||G†||h = ||v||h cos ζ, with ζ ∈ (0, π2 ], and thus

h(v,G†) = ||v||h||G†||h cos ζ = ||G†||2h. (8.6)

Note that ζ = π
2 corresponds to the particular case θ ∈ {0, π}. Now, taking into account (8.5)

and (8.6), the relation 1 = ||u||h = ||v −G†||h leads to

||v||h =
√
1 + ||GT ||2h sin

2 θ, for any θ ∈ [0, 2π). (8.7)

Furthermore, it turns out that

cos ζ =
||GT ||h| sin θ|

||v||h
and sin ζ =

1

||v||h
. (8.8)

Let θ̃ be the angle between GT and v. Then, h(v,GT ) = ||v||h||GT ||h cos θ̃ and regarding θ,
two cases are distinguished:

� If θ ∈ [0, π), then θ̃ = θ + ζ − π
2 and h(v,GT ) = ||v||h||GT ||h sin(θ + ζ).

� If θ ∈ [π, 2π), then θ̃ = π
2 + θ − ζ and h(v,GT ) = −||v||h||GT ||h sin(θ − ζ).

Making use of (8.8), both cases lead to

sin2 θ =
||GT ||2h −

[
1 + h(v,GT )− ||v||2h

]2
||GT ||2h

.
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This substituted into (8.7) yields g1(x, v) = 0, where

g1(x, v) = ||v||4h −
[
1 + 2h(v,GT )

]
||v||2h + h2(v,GT ) + 2h(v,GT )− ||GT ||2h. (8.9)

By applying Okubo's method [106], we obtain C∞-functions F (x, v) as the solutions of the
equation g1(x, vF ) = 0. This can be rewritten explicitly as a polynomial equation of degree
four

||GT ||2hF 4 − 2h(v,GT )F 3 +
[
||v||2h − h2(v,GT )

]
F 2 + 2||v||2hh(v,GT )F − ||v||4h = 0, (8.10)

where F is evaluated at (x, v).
Now we are going to establish some properties of the functions F (x, v), aiming to select a

strongly convex Finsler metric among the roots of (8.10).

Lemma 8.2.1. The functions F (x, v), which satisfy (8.10), are homogeneous of degree one with
respect to v.

Proof. On substituting v = vi ∂
∂xi

with cv, c > 0 into (8.10) we obtain

||GT ||2hF 4(x, cv)− 2ch(v,GT )F 3(x, cv) + c2[||v||2h − h2(v,GT )]F 2(x, cv)

+2c3||v||2hh(v,GT )F (x, cv)− c4||v||4h = 0.
(8.11)

Di�erentiating (8.11) with respect to c and then setting c = 1, we get(
∂F

∂vi
vi − F

)
ϖ = 0,

where F is evaluated at (x, v) and ϖ =
[
h(v,GT )F − ||v||2h

] [
F 2 + h(v,GT )F − 2||v||2h

]
. If

ϖ ̸= 0, then ∂F
∂vi
vi = F, i.e. F is positive homogeneous of degree one with respect to v. Ifϖ = 0,

then F =
||v||2h

h(v,GT )
or F = 1

2

[
−h(v,GT )±

√
h2(v,GT ) + 8||v||2h

]
. These are homogeneous of

degree one with respect to v, but they do not check (8.10).

Due to 8.2.1 and the fact that any nonzero y ∈ TxM can be expressed as y = cv, c > 0,
the extension of F (x, v) to arbitrary nonzero vectors y, for any x ∈M is also homogeneous of
degree one with respect to y and it satis�es the equation

||GT ||2hF 4(x, y)− 2h(y,GT )F 3(x, y) +
[
||y||2h − h2(y,GT )

]
F 2(x, y)

+2||y||2hh(y,GT )F (x, y)− ||y||4h = 0,
(8.12)

with F (x, v) = 1. Considering the notations

α2 = ||y||2h = hijy
iyj and β = −1

ḡ
h(y,GT ) = h(y, ω♯) = biy

i, (8.13)

α = α(x, y), β = β(x, y), b = ||β||h = ||ω♯||h and ||ω♯||h = 1
ḡ ||G

T ||h, (8.12) is equivalent to

||GT ||2hF 4 + 2ḡβF 3 + (α2 − ḡ2β2)F 2 − 2ḡα2βF − α4 = 0, (8.14)

where F is evaluated at (x, y). Thus, the indicatrix of F is de�ned by

IF = {(x, y) ∈ TM | (α2 + ḡβ)2 − α2 − 2ḡβ − ||GT ||2h = 0}.
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Lemma 8.2.2. The equation (8.14) admits a unique positive root.

Proof. Making use of the notation ϕ = F (x,y)
α and dividing (8.14) by α4, it can be expressed

in the following form

||GT ||2hϕ4 + 2ḡsϕ3 + (1− ḡ2s2)ϕ2 − 2ḡsϕ− 1 = 0, (8.15)

where ϕ = ϕ(||GT ||2h, s) and s = β
α . For the variable s we have |s| ≤ b = 1

ḡ ||G
T ||h which

results from the Cauchy-Schwarz inequality |h(y, ω♯)| ≤ ||y||h||ω♯||h. Let ϕi = ϕi(||GT ||2h, s),
i = 1, ..., 4 be the roots of (8.15). Among them there is at least one positive root because by

the Viété relations,
4∏
i=1

ϕi < 0, for any s ∈ [−b, b]. Moreover, basing on the Viété relations

again, we get

4∑
i=1

(ϕi)2 = − 2

||GT ||4h

[
||GT ||2h − ḡ2s2(2 + ||GT ||2h)

]
∀s ∈ [−b, b],

which is negative for s = 0. Thus, at least for s = 0 there is a conjugate pair of complex
roots among ϕi, i = 1, ..., 4. So, (8.15) admits at most two positive roots for any s ∈ [−b, b].
Since for s = b, (8.15) is reduced to (ϕ2 − 1)(ϕ||GT ||h + 1)2 = 0 and it allows only one
positive root, we can conclude that among the roots ϕi there is a sole positive root, for any
s ∈ [−b, b]. Consequently, there is also only a positive function F (x, y) = αϕ(||GT ||2h, s), for
any s ∈ [−b, b], which satis�es (8.14) as claimed.

Subsequently, we mean by F (x, y) = αϕ(||GT ||2h, s) the unique positive root of (8.14),
where ϕ(s, ||GT ||2h) > 0 is a C∞-function provided by the sole positive root of (8.15), for any
s ∈ [−b, b]. It is obvious that ϕ = ϕ(s, ||GT ||2h) is homogenous of degree zero with respect to y

and thus, F (x, y) is the general (α, β)-function with b2 = ||GT ||2h
ḡ2

as well as α and β are given
by (8.13).

The last part of the proof of Theorem 8.1.1 refers to the necessary and su�cient conditions
for strong convexity of the indicatrix IF . One can proceed by applying Proposition 6.2.1. In
order to make the argument work, however, we need the following lemma concerning some
relations among derivatives of ϕ, with respect to s, which are then used to justify the positivity
of some functions.

Lemma 8.2.3. The function ϕ and its derivative with respect to s, i.e. ϕ2 satisfy the following
relations

Cϕ2 = ḡAϕ, C(ϕ− sϕ2) = B, B − 2A = ϕ2, Cϕ = B + ḡsAϕ, (8.16)

where
A = −ϕ2 + ḡsϕ+ 1, B = −ϕ2 + 2ḡsϕ+ 2,

C = 2 ||GT ||2hϕ3 + 3ḡsϕ2 + (1− ḡ2s2)ϕ− ḡs.
(8.17)

Moreover, C ̸= 0 for any s ∈ [−b, b] and

ϕ2 =
ḡA

C
ϕ, ϕ− sϕ2 =

B

C
, ϕ22 =

ḡ2

C3
(A2B + ϕ4). (8.18)
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Proof. The main tool in the proof is (8.15) which is checked by ϕ, for any s ∈ [−b, b]. Its
derivative with respect to s leads to the �rst relation in (8.16). Then, it immediately leads to
the second identity from (8.16). The last two are justi�ed by the notations (8.17) and (8.15).

Let us suppose by contradiction that there exists s0 ∈ [−b, b] such that C(||GT ||2h, s0) = 0.
Under this assumption the �rst two relations in (8.16) imply that

A(||GT ||2h, s0) = B(||GT ||2h, s0) = 0,

and then, by the third one, we get ϕ(||GT ||2h, s0) = 0. This contradicts ϕ being nonzero for
any s ∈ [−b, b].

The �rst two relations in (8.18) are coming from (8.16). The derivatives of the functions
(8.17) with respect to s read

A2 =
ḡ

C
(2A2+ϕ2), B2 =

2ḡ

C
(AB+ϕ2), C2 =

ḡ

Cϕ
[−AB+(2+ ḡsϕ)ϕ2]+3ḡA, (8.19)

where A2 = ∂A
∂s , B2 = ∂B

∂s and C2 = ∂C
∂s . These, along with (ϕ − sϕ2)2 = 1

C2 (B2C − BC2) or
ϕ22 =

ḡ
C2 (A2C + ḡA2 −AC2)ϕ lead to the last formula in (8.18).

We can easily see that the functions A, B, C are homogenous of degree zero with respect
to y because of the same homogeneity degree of ϕ. Moreover, some additional properties of
these functions are essential for our aim.

Lemma 8.2.4. The following assertions hold:
i) C(||GT ||2h, s) > 0, for any s ∈ [−b, b];
ii) B(||GT ||2h, s) > 0, for any s ∈ [−b, b] if and only if ||GT ||h < 1

2 .

Proof. i) By Lemma 8.2.3 we know that the C∞-function C cannot be vanished on the interval
[−b, b]. So, C has a constant sign on [−b, b]. Moreover, using (8.15), one easily proves that in
the cases, where s = ±b we have

ϕ(||GT ||2h,±b) = 1, A(||GT ||2h,±b) = ±||GT ||h, B(||GT ||2h,±b) = 1± 2||GT ||h.

These together with the last formula in (8.16) imply that

C(||GT ||2h,±b) = (1± ||GT ||h)2 > 0

and thus, C(||GT ||2h, s) > 0, for any s ∈ [−b, b].
ii) We prove �rst that B(||GT ||2h, s) > 0, for any s ∈ [−b, b], under condition ||GT ||h < 1

2 .
Let us assume by contradiction that there exists s̃ ∈ [−b, b] such that B(||GT ||2h, s̃) = 0. We
are going to �nd s̃ ∈ [−b, b]. On the one hand, if we put s = s̃ in (8.15), it is reduced to

2 ||GT ||2hϕ2(||GT ||2h, s̃) + 3ḡs̃ϕ(||GT ||2h, s̃) + 1 = 0, (8.20)

because ϕ(||GT ||2h, s̃) > 0 and B(||GT ||2h, s̃) = 0. On the other hand, the second formula in
(8.17) leads to ϕ(||GT ||2h, s̃) = ḡs̃ +

√
ḡ2s̃2 + 2. If we replace the latter formula in (8.20), it

results s̃ = ± 1+4||GT ||2h
2ḡ
√

3+4||GT ||2h
, which contradicts s̃ ∈ [−b, b] due to the condition ||GT ||h < 1

2 .

Hence, B(||GT ||2h, s) ̸= 0, for any s ∈ [−b, b] and moreover, it has a constant sign on [−b, b].
The fact that B(||GT ||2h,±b) = 1 ± 2||GT ||h > 0 implies that B > 0 on [−b, b]. The direct
implication is obvious.
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An immediate consequence of Lemma 8.2.4 is that ϕ− sϕ2 > 0, for any s ∈ [−b, b] if and
only if ||GT ||h < 1

2 . Also, by Lemma 8.2.4, if ||GT ||h < 1
2 , then ϕ22 > 0, for any s ∈ [−b, b].

Remark 8.2.5. Note that the force of the gravitational wind, restricted here by the inequality
||GT ||h < 1

2 can also be formulated via the variable s. More precisely, ||GT ||h < 1
2 if and only

if |s| ≤ b < 1
2ḡ . Indeed, if ||GT ||h < 1

2 and making use of the Cauchy-Schwarz inequality, it

follows that |s| ≤ ||ω♯||h = b = 1
ḡ ||G

T ||h < 1
2ḡ . The converse implication is trivial.

Lemma 8.2.6. ϕ− sϕ2 + (b2 − s2)ϕ22 > 0 if and only if |s| ≤ b < 1
2ḡ .

Proof. According to the Cauchy-Schwarz inequality, one does have |s| ≤ b. We assume that
the inequality ϕ− sϕ2 + (b2 − s2)ϕ22 > 0 is checked, for any s ∈ [−b, b] . Then, for s = −b it
is reduced to B(||GT ||2h,−b)

C(||GT ||2h,−b)
> 0, which gives ||GT ||h < 1

2 . Thus, it results |s| ≤ b < 1
2ḡ because

of Lemma 8.2.5. Conversely, if |s| ≤ b < 1
2ḡ , then

ϕ− sϕ2 + (b2 − s2)ϕ22 =
1

C3

[
BC2 + ḡ2(b2 − s2)(A2B + ϕ4)

]
>

B

C3

[
C2 + ḡ2(b2 − s2)A2

]
> 0,

because of Lemmas 8.2.4 and 8.2.5.

Finally, by applying Proposition 6.2.1 it results that the unique positive root F (x, y) of
(8.14), i.e. the cross-slope metric is a Finsler metric if and only if ||GT ||h < 1

2 . Thus, the
indicatrix IF is strongly convex if and only if ||GT ||h < 1

2 . Besides, along any regular piecewise
C∞-curve γ on M one does have F (γ(t), γ̇(t)) = 1, i.e. the time in which a walker goes along
it, under the in�uence of the cross gravitational wind G†. By recalling all the above results,
the direction-dependent deformation of the background Riemannian metric h by G† provides
the cross-slope metric which satis�es (8.14), with ||GT ||h < 1

2 and thus, Theorem 8.1.1 is
justi�ed. Furthermore, coming back to (8.7), the possible values of the resultant speed ||v||h
run through the interval [1,

√
5/2), since ||GT ||h < 1

2 .

8.2.2 The geodesics of the cross-slope metric

The proof of Theorem 8.1.2 is based on some technical computations which we split in two
lemmas. Our goal is to arrive at the spray coe�cients that correspond to the cross-slope metric
F, and then the equations of the geodesics will be immediately provided. More speci�cally,
even if we have only (8.14), which is satis�ed by the cross-slope metric F, it is enough to �nd
the time-minimal paths as the geodesics γ of F because F (γ(t), γ̇(t)) = 1 along them. The
claim of Theorem 8.1.2 is achieved by working with the cross-slope metric, which belongs to
the class of general (α, β)-metrics and by employing the technique given by Proposition 6.2.2.
We start by establishing some relations.

According to (8.13), for the cross-slope metric F the background Riemannian metric is
hij and the di�erential 1-form β includes the gravitational wind GT = −ḡω♯, where ω♯ =

hji ∂p
∂xj

∂
∂xi

is the gradient vector �eld. With the notation wi = hijw
j , where wi denote the

components of GT , it immediately results wi = −ḡ ∂p
∂xi

and ∂wi

∂xj
=

∂wj

∂xi
. Moreover, in Lemma

7.2.6 or [10, Lemma 4.3] we have proved that β is closed, i.e. sij = 0 as well as the relations
(7.39).

112



Habilitation thesis Codruµa Nicoleta Aldea

Taking into account Proposition 6.2.2 and the relations (8.18), the only thing left to do is
to compute the derivatives ϕ1 and ϕ12.

Lemma 8.2.7. The derivatives with respect to b2 =
||GT ||2h
ḡ2

and s of the function ϕ, i.e. ϕ1
and ϕ12 hold the following relations

ϕ1 = − ḡ2

2C
ϕ4, ϕ12 = − ḡ3

2C3

[
2AB + ḡsA2ϕ− (2 + ḡsϕ)ϕ2

]
ϕ3. (8.21)

Proof. Di�erentiating (8.15) with respect to ||GT ||2h, it results
∂ϕ

∂||GT ||2h
= − 1

2Cϕ
4. When sub-

stituted in ϕ1 = ḡ2 ∂ϕ
∂||GT ||2h

, this yields the �rst expression in (8.21). Moreover, the derivative

of ϕ1 with respect to s can be written in the form

ϕ12 = − ḡ2

2C2
(4Cϕ3ϕ2 − ϕ4C2).

Making use of the derivatives ϕ2 and C2 given by (8.18) and (8.19), the second formula in
(8.21) follows at once from the latter relation.

Lemma 8.2.8. For the cross-slope metric F the spray coe�cients Gi are related to the spray

coe�cients Giα = 1
4h

im
(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
yjyk of α by

Gi(x, y) = Giα(x, y) +
[
Θ(r00 + 2α2Rr) + αΩr0

] yi
α

−
[
Ψ(r00 + 2α2Rr) + αΠ r0

] wi
ḡ

− α2Rri,

(8.22)
with

r00 = −1
ḡwi|jy

iyj , r0 =
1
ḡ2
wi|jw

jyi, r = − 1
ḡ3
wi|jw

iwj , ri = 1
ḡ2
wi|jw

j ,

R = − ḡ2F 4

2α4B
, Θ = ḡα

2EF (α
6AB2 − ḡβF 5), Ψ = ḡ2α2

2E (α4A2B + F 4),

Ω = − ḡ2F 2

BE [α4B3 + ḡβBF 3 + ||GT ||2h(B −A)F 4],

Π = − ḡ3F 3

2BEα3 [2α
4B(α2AB − F 2)− ḡβF 3(α2B + F 2)],

(8.23)

where

A = 1
α2 (−F 2 + ḡβF + α2), B = 1

α2 (−F 2 + 2ḡβF + 2α2),

C = 1
αF

(
α2B + ḡβAF

)
, E = BC2α6 + (||GT ||2hα2 − ḡ2β2)(α4A2B + F 4).

(8.24)

Proof. By Lemma 8.2.7 and the relations (8.18) a technical computation yields the following
expressions

sϕ+ (b2 − s2)ϕ2 =
1
ḡC (ḡsB + ||GT ||2hAϕ),

(ϕ− sϕ2)ϕ2 − sϕϕ22 =
ḡ
C3 (AB

2 − ḡsϕ5),

ϕ− sϕ2 + (b2 − s2)ϕ22 =
1
C3

[
BC2 + (||GT ||2h − ḡ2s2)(A2B + ϕ4)

]
,

(ϕ− sϕ2)ϕ12 − sϕ1ϕ22 = − ḡ3

2C4

[
2AB2 − (2 + ḡsϕ)Bϕ2 − ḡsϕ5

]
ϕ3.

(8.25)
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Figure 8.2: Time geodesics in a cross gravitational wind (dashed red) on G compared to the Mat-

sumoto case (dashed green), the Zermelo-Randers case (dashed blue) and the Riemannian case (dashed

white). The corresponding unit time fronts are shown in solid colors and the gravitational wind GT

(black arrows) �blows� in the steepest downhill direction; ḡ = 0.63, ∆t = 1, with a step of ∆θ = π/4

(8 paths in each case) and the initial point is positioned on the parallel of the strongest gravitational

wind, i.e. (ρ(0) = 1/
√
2, φ(0) = −π/4). It can be seen how the initial Riemannian geodesics and time

front are deformed under the in�uence of GT , depending on the type of navigation problem.

Now, if we apply Proposition 6.2.2, taking into consideration the relations (7.39) along with
the latter relations, Lemmas 8.2.3 and 8.2.7, where ϕ = F (x,y)

α , it results our claim.

It should be mentioned that if ||GT ||2h is constant, then the formula (8.22) is reduced to a
expresion like in (7.43) with (8.23) because ri = r = r0 = 0 in this particular case.

To end the proof of Theorem 8.1.2, owing to the system (6.2) and Lemma 8.2.8 with
F (γ(t), γ̇(t)) = 1, one can write the ODE system (8.3) which yields the shortest time tra-
jectories γ(t) = (γi(t)), i = 1, ..., n on the slope of a mountain under the action of a cross
gravitational wind.

For the sake of clarity and comparison with the recent study on the generalization of the
Matsumoto slope-of-a-mountain problem (presented in Chapter 7, [10]), it is preferable to
present the new outcome related to the cross-slope problem with the use of the same two-
dimensional model, namely Gaussian bell-shaped surface G described by the two-dimensional
Gaussian function z = 3

2e
−(x2+y2). Following Theorem 8.1.1, the indicatrix of the cross-slope

metric F on the surface G is strongly convex if and only if ḡ <
√
2e+9
6 ≈ 0.64, being the same

condition as in the standard Matsumoto problem.
Therefore, owing to Theorem 8.1.2 and Lemma 8.2.8, the time geodesics γ(t) = (ρ(t), φ(t))

in the cross wind on the slope G are the solutions of the ODE system

0 = ρ̈+ ρ

9ρ2e−2ρ2+1

[
9(1− 2ρ2)e−2ρ2 ρ̇2 − φ̇2

]
+ 2

[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

]
ρ̇
α

− 6ρe−ρ2

9ρ2e−2ρ2+1

[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

]
− 18ρ(1−2ρ2)e−2ρ2

(9ρ2e−2ρ2+1)3
α2R̃

0 = φ̈+ 2
ρ ρ̇φ̇+ 2

[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

]
φ̇
α

,
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where Θ̃ , R̃, Ω̃ , Π̃ and Ψ̃ are given by (8.4), ||GT ||h = 3ḡρe−ρ2√
9ρ2e−2ρ2+1

, ḡ <
√
2e+9
6 ≈ 0.64,

ρ = ρ(t), φ = φ(t), with (7.51) and (7.53).
The outcome is presented in Figure 8.2, where the cross-slope time geodesics are com-

pared to the unperturbed Riemannian paths, the standard Matsumoto geodesics and the
Zermelo-Randers geodesics under the gravitational wind GT with ḡ = 0.63. Moreover, the
corresponding unit time fronts are shown in the respective solid colors. It is worthwhile to
mention that the time front related to the cross-slope metric crosses both the Matsumoto
and Zermelo isochrones. However, it contains the Riemannian one, bearing a similarity to
that of MAT - ZNP correspondence, but the center lines of the limaçons (red, green) point in
the opposite directions again. We obtained the Matsumoto and Zermelo paths, based on the
slippery slope theory (Chapter 7 or [10]), where the cross-traction coe�cient is equal to 1 or
0 therein, respectively.

8.3 Model of a slippery cross slope under gravitational wind

The previous results [11, 10] have been encouraging enough to merit further investigation.
Continuing the above line of research naturally led us to the new model of a slippery cross
slope presented below.

8.3.1 Slippery cross slope

In order to gain some intuition, we consider the 2-dimensional model of the slope including the
inclined planes in what follows, while the general purely geometric solution to the time-optimal
navigation problem described is valid for an arbitrary dimension.

Let us observe that actually each of two orthogonal components of gravitational wind,
i.e. ProjuGT , Proju⊥G

T can be reduced partially due to traction, making use of a real
parameter, and not only entirely like in [106] (the lateral one) or [11] (the longitudinal one).
As described in Chapter 7, this has already been done in the case of the transverse component
in a slippery slope model, where the cross-traction coe�cient η runs through the interval [0, 1],
linking MAT and ZNP [10]. By analogy to such compensation of GT , we aim at considering
a slippery slope model in the current study, however concerning the along-gravity scaling
and introducing another parameter called an along-traction coe�cient η̃ ∈ [0, 1]. We assume
that, while the Earth's gravity impacts a walker or a craft on the slope, the cross wind being
perpendicular to a desired direction of motion u is regarded to act always entirely, whereas
the e�ective wind, which pushes the craft downwards, can be compensated as depending on
traction. In other words, the proposed model refers to a mountain slope, �xing the maximum
cross-track additive continuously, for any direction of motion θ and gravity force ||GT ||h and
admitting the along-track changes at the same time (longitudinal sliding). Consequently, the
corresponding Finslerian indicatrix in the new setting will be based on the direction-dependent
deformation of the background Riemannian metric h again. However, unlike all the preceding
problems listed above, the equations of motion in the general form will now be

vη̃ = u+ Proju⊥G
T + (1− η̃)ProjuG

T . (8.26)

Thus, we can say that the in�uences of both components of gravitational wind are now some-
what reversed in comparison to the slippery slope investigated in [10]. To simplify the writing
and to be in agreement with our previous notation, we will write GMAT for ProjuGT , and
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G⊥
MAT for Proju⊥G

T . The new model of the mountain slope is called a slippery cross slope
and the related time-minimal navigation generalizes or complements previous investigations.

Figure 8.3: Left: A model of a planar slippery cross slope M under gravity G = GT + G⊥, being

analogous to the slippery slope as in Figure 7.1. Now the resultant velocity is represented by vη̃ (yellow,

η̃ ∈ [0, 1]) including the boundary cases for η̃ ∈ {0, 1}, i.e. the Zermelo case (vZNP , blue) and the cross

slope case (v†, red), respectively. The longitudinal component
−−−→
A′B′ of the active wind

−−→
OB′ (denoted

by Gη̃) w.r.t. u depends in particular on the along-traction coe�cient η̃. Right: A gravitational wind

and its decompositions on the slippery cross slope M , where OA ⊥ OA′. The gravitational wind GT

is a vector sum of an active wind and a dead wind (
−−→
B′C). The former is in turn decomposed into two

orthogonal components: an e�ective wind
−−−→
A′B′ and a cross wind

−−→
OA′ = G† (which coincides with

Proju⊥GT in this case). The along-gravity force in general varies from 0 to ||GMAT ||h on the slippery

cross slope, while the cross-gravity e�ect is always full, i.e. equal to ||Proju⊥GT ||h. The direction θ

of �unperturbed� motion indicated by the Riemannian velocity u (the control vector, dashed black) is

measured clockwise from OX, where ||u||h = 1.

From (8.26) it follows manifestly that the self-velocity u is perturbed now by Gη̃. Hence,
the resultant velocity is expressed as9

vη̃ = u+Gη̃, (8.27)

where the active wind reads Gη̃ = G⊥
MAT +(1− η̃)GMAT , where the former component stands

for cross wind and the latter for e�ective wind. An equivalent formulation of the last relation is
Gη̃ = η̃G†+(1− η̃)GT , since the cross wind is �blowing� with maximum force, so G† = G⊥

MAT

in this case. Moreover, it follows evidently from the above that

Gη̃ = −η̃GMAT +GT , (8.28)

where the component η̃GMAT represents the dead wind. In particular, it is reasonable to
expect that the edge cases, i.e. η̃ = 1 and η̃ = 0, will describe now, respectively, the cross-
slope navigation (the action of maximum cross wind and minimum e�ective wind 10), i.e.
Gη̃ = G⊥

MAT , and the Zermelo navigation (the action of maximum both cross and e�ective
winds), i.e. Gη̃ = GT . For the sake of clarity, see Figure 8.3.

Furthermore, it can be seen that the slippery slope problem with the cross-traction coef-
�cient η = 0 from [10] and the current investigation with the new along-traction coe�cient

9For brevity, we shall drop the subscript η̃ on vη̃ when confusion is unlikely.
10For clarity's sake, see Figure 8.3, where

−→
OA = ProjuG

T is in general the maximum e�ective wind, and
−−→
OA′ = Proju⊥GT the maximum cross wind, for any given θ and ||GT ||h. A component of the gravitational
wind GT acts in full force if it is not reduced (partially or entirely), e.g. due to traction or drag.
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η̃ = 0 should coincide. Then this means that the scenario like in Zermelo's navigation under
weak gravitational wind GT will be located somewhat right in the middle between both ap-
proaches pieced together. It also stand naturally for the boundary and meeting case of the
slippery slope and slippery-cross-slope solutions, where the gravitational wind �blows� in full11

on the mountain slope, and the time geodesics come from Finsler metric of Randers type.
Finally, the current model of a slippery slope under cross gravitational wind complements

the preceding investigations on the slope-of-a-mountain problems in a natural way. Namely,
this �lls in a missing part regarding the compensation of the along-gravity e�ect concerning the
direction of motion indicated by the velocity u. As we will see on further reading, the obtained
strong convexity conditions, being the basis for desired optimality of the trajectories on the
slope, di�er signi�cantly from all those of the preceding navigation problems discussed above.
In particular, for some η̃, it is admitted the norm of gravitational wind ||GT ||h to be greater
than ||u||h = 1. For comparison, recall that the convexity condition in the Zermelo navigation,
i.e. for a Randers metric is ||GT ||h < 1 [45] and the corresponding conditions in both the
Matsumoto and cross-slope metrics are most restrictive among all others, i.e ||GT ||h < 1/2
[10, 11]. Moreover, in contrast to the situation on the slippery slope investigated in Chapter
7 or [10], the behaviour of the Finslerian indicatrix (time front), being now subject to along-
traction expressed by η̃, is quite di�erent. For instance, the new indicatrix crosses both edge
cases (ZNP and CROSS) in two �xed points, while the parameter η̃ is running through the
interval (0, 1). This is shown in the presented example with an inclined plane in [12].

8.3.2 Statement of the main results

The problem of time-optimal navigation on a slippery slope under the cross-gravity e�ect
(S-CROSS for short) can be posed as follows

Suppose a craft or a vehicle goes on a horizontal plane at maximum constant speed,
while gravity acts perpendicularly on this plane. Imagine the craft moves now on
a slippery cross slope of a mountain, with a given along-traction coe�cient and
under gravity. What path should be followed by the craft to get from one point to
another in the minimum time?

Our �rst goal is to provide the Finsler metric which serves as the solving tool for the
S-CROSS problem. More precisely, posing the navigation problem on a slippery slope of a
mountain represented by an n-dimensional Riemannian manifold (M,h), n > 1, under the
action of the active wind Gη̃ given by (8.28) here, supplies the slippery-cross-slope metrics as
well as the necessary and su�cient conditions for their strong convexity. As in [10, 20, 11],
the gravitational wind GT = −ḡω♯ turns out to be the main tool in our study, where ḡ is the
rescaled magnitude of the acceleration of gravity g (i.e. ḡ = λg, λ > 0), and ω♯ = hji ∂p

∂xj
∂
∂xi

is the gradient vector �eld, where p :M → R is a C∞-function on M .
Let u be the self-velocity of a moving craft on the slope. We assume ||u||h = 1, as

standard in most theoretical investigations on the Zermelo navigation (see e.g. [45]). Taking
into account the e�ect of the active wind Gη̃, the resultant velocity vη̃ = u + Gη̃ allows us
to describe the slippery-cross-slope metric. A crucial role in our study is also played by the
active wind, because it can be expressed as Gη̃ = −η̃GMAT +GT , η̃ ∈ [0, 1], where GMAT is
the orthogonal projection of GT on u. It is worth mentioning that in this geometric context

11Both e�ective and cross winds are maximal in the Zermelo case, for any direction θ and wind force ||GT ||h.
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only the gravitational wind is known, the vector �eld GMAT depends on direction of the self-
velocity. In order to carry out the slippery-cross-slope metric, we conveniently divided the
study into two steps including a sequence of cases and lemmas [12, Lemmas 3.1-3.3]. The �rst
step describes deformation of the background Riemannian metric by the vector �eld −η̃GMAT ,
which is a direction-dependent deformation. The second step is mostly based on the resulting
Finsler metric F of Matsumoto type, a�orded by the �rst step. This is deformed by the
gravitational vector �eld GT , i.e. a rigid translation, under the condition F (x,−GT ) < 1
which practically ensures that a craft on the mountainside can go forward in any direction
(for more details see [127]). Since the procedure follows more or less the same technique as
in [10], which we already presented in detail in Chapter 7 (Step I and Step II), we omit to
expand it here. Certainly, we have the following results.

Theorem 8.3.1. (Slippery-cross-slope metric) Let a slippery cross slope of a mountain be
an n-dimensional Riemannian manifold (M,h), n > 1, with the along-traction coe�cient
η̃ ∈ [0, 1] and the gravitational wind GT on M . The time-minimal paths on (M,h) under the
action of an active wind Gη̃ as in (8.28) are the geodesics of the slippery-cross-slope metric
F̃η̃ which satis�es

F̃η̃

√
α2 + 2ḡβF̃η̃ + ||GT ||2hF̃ 2

η̃ = α2 + (2− η̃)ḡβF̃η̃ + (1− η̃)||GT ||2hF̃ 2
η̃ , (8.29)

with α = α(x, y), β = β(x, y) given by (8.13), where either η̃ ∈ [0, 13 ] and ||GT ||h < 1
1−η̃ , or

η̃ ∈ (13 , 1] and ||GT ||h < 1
2η̃ . In particular, if η̃ = 1, then the slippery-cross-slope metric yields

the cross-slope metric, and if η̃ = 0, then it is the Randers metric which solves the Zermelo
navigation problem on a Riemannian manifold under a gravitational wind GT .

The proof of Theorem 8.3.1 is based on all results obtaind in the aforementioned steps. For
more detais we refer the reader to [12]. In addition, S-CROSS, which provides the slippery-
cross-slope metric F̃η̃ by (8.29), leads to a new application and a natural model of Finsler
spaces with general (α, β) metrics [155].

The second goal is to �nd the time geodesics of the slippery-cross-slope metric. To do this,
we exploit the geometrical and analytical properties, the main key being (8.29), and answering
the above stated question this way. Thus, our second main result obtained in [12] is

Theorem 8.3.2. (Time geodesics) Let a slippery cross slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with the along-traction coe�cient η̃ ∈ [0, 1] and the grav-
itational wind GT on M . The time-minimal paths on (M,h) under the action of an active
wind Gη̃ as in (8.28) are the time-parametrized solutions γ(t) = (γi(t)), i = 1, ..., n of the
ODE system

γ̈i(t) + 2G̃iη̃(γ(t), γ̇(t)) = 0, (8.30)

where

G̃iη̃(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)
α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃r0

] wi
ḡ

− R̃wi|j
α2wj

ḡ2
,
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with

Giα(γ(t), γ̇(t)) = 1
4h

im
(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
γ̇j(t)γ̇k(t), Ψ̃ = ḡ2α2

2Ẽ
(α4Ã2B̃ + η̃2),

r00 = −1
ḡwj|kγ̇

j(t)γ̇k(t), r0 =
1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

R̃ = ḡ2

2α4B̃
[(1− η̃)α2B̃ − η̃], Θ̃ = ḡα

2Ẽ
(α6ÃB̃2 − η̃2ḡβ),

Ω̃ = ḡ2

α2B̃Ẽ
{[(1− η̃)α2B̃ − η̃](α6B̃3 + η̃2||GT ||2h)− η̃2α2(ḡβB̃ + ||GT ||2hÃ)},

Π̃ = ḡ3

2α3B̃Ẽ
{[(1− η̃)α2B̃ − η̃](2α6ÃB̃2 − η̃2ḡβ) + η̃2α2B̃(2α2 + ḡβ)},

Ã = − 1
α2 {
[
1− (2− η̃) (1− η̃) ||GT ||2h

]
− (2− η̃)2ḡβ − (2− η̃)α2},

B̃ = − 1
α2 {[1− 2(1− η̃)||GT ||2h]− 2(2− η̃)ḡβ − 2α2},

C̃ = 1
α

(
α2B̃ + ḡβÃ

)
, Ẽ = α6B̃C̃2 + (||GT ||2hα2 − ḡ2β2)(α4Ã2B̃ + η̃2)

(8.31)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)), and wi denoting the components of GT .

The proof of Theorem 8.3.2 comprises some technical computations which aim to reach
the spray coe�cients related to the slippery-cross-slope metric F̃η̃. Once this is done, we can
immediately supply the equations the time geodesics. Since the proof is similar in the spirit
to that of Theorem 7.1.2, we omit it; for more details see [12, Section 4].

Finally, we deal with an example in dimension 2. For comparison and clarity, we con-
tinue the line of investigation presented presiously in Sections 7.2.3 and 8.2.2, considering
the Gaussian bell-shaped hillside G given by the Gaussian function z = 3

2e
−(x2+y2) (see also

[10, 11, 12]). First we mention the result.

Lemma 8.3.3. [12] The indicatrix of the slippery-cross-slope metric F̃η̃ is strongly convex on
the entire surface G if and only if ḡ < δ̃2(η̃), where

δ̃2(η̃) =


√
2e+9

3(1−η̃) , if η̃ ∈ [0, 13 ]

√
2e+9
6η̃ , if η̃ ∈ (13 , 1]

.

Second, we show the F̃η̃-geodesic equations, which are related to G. Owing to Theorem
8.3.2, the time geodesics γ(t) = (ρ(t), φ(t)) on the slippery cross slope of the surface G are
are provided by the solutions of the ODE system

0 = ρ̈+ ρ

9ρ2e−2ρ2+1

[
9(1− 2ρ2)e−2ρ2 ρ̇2 − φ̇2

]
+ 2

{
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

}
ρ̇
α

− 6ρe−ρ2

9ρ2e−2ρ2+1

{
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

}
− 18ρ(1−2ρ2)e−2ρ2

(9ρ2e−2ρ2+1)3
α2R̃

0 = φ̈+ 2
ρ ρ̇φ̇+ 2

{
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

}
φ̇
α

,
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Figure 8.4: Left: the unit time fronts (solid colours) and the related time-minimizing geodesics (dashed

colours; drawn with a step of ∆θ = π/4) on the slippery cross slope modelled by the rotational

Gaussian bell-shaped surface G, under the action of gravitational wind, for various along-traction

coe�cients, i.e. η̃ ∈ { 1/3 (yellow), 2/3 (orange), 0 (blue, the Zermelo case), 1 (red, the cross slope

case)}; ḡ = 0.63. The gravitational wind GT (marked by black arrows) �blows� in the steepest

downhill direction. The initial point is located on the parallel of the strongest gravitational wind,

i.e. (ρ(0) = 1/
√
2, φ(0) = −π/4). Right: the unit time fronts (solid colours) and the related time-

minimizing geodesics (dashed colours) on the slippery cross slope as on the left, compared in addition

to the Matsumoto (green) and Riemannian (white) cases; ḡ = 0.63. In particular, it can be observed

how the initial (unperturbed) Riemannian geodesics and time front are deformed under the action of

gravitational wind (marked by black arrows), depending on the along-traction coe�cient η̃.

where Θ̃ , R̃, Ω̃ , Π̃ and Ψ̃ are given by (8.31), with GT (ρ, φ) = 3ḡρe−ρ2

9ρ2e−2ρ2+1

∂
∂ρ , ḡ < δ̃2(η̃),

together with (7.51) and (7.53), ρ = ρ(t), φ = φ(t).
Figure 8.4 (the left-hand side image) shows the slippery-cross-slope geodesics generated

for various along-traction coe�cients, i.e. η̃ ∈ {0, 1/3, 2/3, 1}. Also, the corresponding unit
time fronts are presented in solid colours. Moreover, the new solutions are compared to the
Riemannian (white) and classical Matsumoto (green) geodesics as well as their fronts, under
the action of the gravitational wind GT , where ḡ = 0.63 (see Figure 8.4, the right-hand side
image).
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Chapter 9

A general model for time-minimizing
navigation on a mountain slope under
gravity

In this chapter, based on the paper [13], we unify and extend all navigation problems, presented
in Chapters 7 and 8, by a most general model of a slippery mountain slope, where both the
transverse and longitudinal gravity-additives with respect to direction of motion are admitted
to vary simultaneously in full ranges. The presented study focuses on �nding optimal paths
in the sense of time (time geodesics) in this general model of a slippery mountain slope under
action of gravity.

9.1 Broader meaning of a slippery slope

We start by recalling the slope-of-a-mountain problem of Matsumoto (MAT) where the author
[106] assumed that the slope is not slippery at all in the usual sense. The main objective
was to �nd the time-minimizing paths on the mountain side under the in�uence of gravity.
Such setting implied that the self-velocity u of a walker or a moving craft on the slope and
the corresponding resultant velocity v always point in the same directions. In addition, the
related speeds di�er from each other by the entire along-gravity additive, being the norm of the
orthogonal projection of the component of gravity, tangent to a slope on u, for any direction
of motion. As is natural, there is higher resultant speed obtained in a downhill motion than
in an uphill climbing, while the self-speed of a walker or a craft on the slope is kept maximum
and constant. Thus, there is no drift (sliding) to any side taken into account. In other words,
the cross component of a gravitational force pushing the walker o� the u-track on the slope is
always fully compensated (cancelled) in Matsumoto's model [106].

A more general approach in the context of time-minimizing solutions has been presented
in Chapter 7 (based on [10]) describing a slippery slope model that admits the side drifts.
This time the velocities u and v are not collinear in general whilst on the move, pointing in
di�erent directions. In that study (SLIPPERY for short) a cross-traction coe�cient η ∈ [0, 1]
was introduced in particular by which the transverse e�ect (i.e. to the left or right side of
the velocity u) of a gravitational force acting on a mountain slope was determined. Thus, in
the boundary cases, the original Matsumoto problem on the non-slippery slope (in the usual
sense) and the Zermelo navigation problem [157, 45] under a gravitational wind GT are linked
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and generalized. Both become the particluar cases in the new setting, i.e. with η = 1 (no
lateral drift, MAT) and η = 0 (maximum1 lateral drift, ZNP), respectively.

Furthermore, to complement the exposition including the sliding e�ect, analogous model to
the aforementioned has been presented in Section 8.3 (for details [10]), where the longitudinal
drift with respect to a direction of motion indicated by the velocity u was taken into account
in the equations of motion (S-CROSS for short). In this case, in turn, an along-traction
coe�cient η̃ ∈ [0, 1] describes the range of another type of sliding, while the cross-gravity
increment is always taken in full, i.e. η = 0, for any direction and gravity force. In this way
it was possible to create a direct connection between the cross slope problem (CROSS for
short, η̃ = 1), presented in Chapter 8, and the classic Zermelo's navigation (η̃ = 0) again.
It is worth noting that ZNP is positioned somewhat right in the middle between both above
approaches to modeling the slippery slopes pieced together, namely, SLIPPERY with scaling
the lateral drift [10] and S-CROSS with the longitudinal compensation of the gravity impact
on time-optimal motion on the mountain slope [12].

Both introduced parameters settle the type and range of compensation of the gravitational
wind, however, varying individually, i.e. η cross the u-direction as considered in [10] and η̃
along the u-direction as studied in [12]. Those compensations determine next the transverse
and longitudinal gravity-additives (slides) to own motion.

In the current investigation, we aim at analyzing the general case, admitting arbitrary
type of a slide during the least time navigation on the slippery slope. This means that both
traction coe�cients η, η̃ will be included together in the general equations of motion. As
a consequence, this study will generalize and collect the preceding results on time-optimal
navigation under the action of gravity, which were obtained with a purely geometric approach
by means of Finsler geometry, in particular in [10, 11, 12]. Moreover, the slippery slope will
gain now a much broader meaning in the context of modeling time-minimizing motion on the
hill side, as explained in the next subsection. The essential part of the study will refer to the
strong convexity conditions, which correspond to the geometrically expressed conditions for
optimality in the sense of time.

9.1.1 Navigation problems on a mountain slope with traction coe�cients

Let us observe that by a pair of the traction coe�cients it is possible to de�ne in fact each
navigation problem P in the slope model under action of gravity above mentioned, namely,
Pη,η̃ = (η, η̃), where both parameters are �xed2. Thus, we have PMAT = (1, 0), PZNP = (0, 0),
PCROSS = (0, 1) and also PRIEM = (1, 1) which yields the Riemannian case, where the impact
of gravity on motion is completely cancelled, i.e. v = u.

Furthermore, our objective is to present the general solution including all scenarios with
the full ranges of both traction coe�cients taken into account together, i.e. η, η̃ ∈ [0, 1], and
not just the boundary values (η, η̃ ∈ {0, 1}) as has been studied so far [106, 157, 45, 11].
This will lead to the new concrete problems on the slope like, for instance, P = (1/2, 1/3) or
P ′ = (π/5,

√
0.7), which in general have not been considered before. Consequently, any such

setting will yield di�erent type of motion on the slope, determined by given tractions. Then
for any Pη,η̃ the speci�c study leading to the time-optimal paths can be developed e�ectively,

1For any given direction of motion indicated by u and gravitational wind force ||GT ||h.
2In general, the notation with both lower indices, i.e. Pηη̃ = (η, η̃) will be used especially for the slope

problems that have not been speci�cally named like, e.g. MAT or ZNP.
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Figure 9.1: Left: The comparative presentation of the speci�c slope problems de�ned with the use

of the traction coe�cients η, η̃ on the problem diagram which have been studied in Riemann-Finsler

geometry thus far. Right: The complete problem square diagram S̃ = [0, 1]×[0, 1] including all slippery

slope problems under gravity with �xed (i.e. speci�c P) and varying (i.e. transitions T P′

P ) cross- and

along-traction coe�cients, where P = (η, η̃), P ′ = (η′, η̃′) ∈ S̃.

creating the corresponding model for a potential application based on the arbitrary (η, η̃)-
navigation under the in�uence of gravity.

Moreover, in case at least one of the traction coe�cients is varying (this means that the
cross- or along-gravity additive is variable) as in SLIPPERY or S-CROSS so far we denote
by T P ′

P (interchangeably T η′,η̃′

η,η̃ ) a transition T between two speci�c slippery slope problems

P = (η, η̃) and P ′ = (η′, η̃′). Hence, T 0,0
1,0 now describes SLIPPERY linking MAT and ZNP,

with η ∈ [0, 1] and η̃ = 0, as well as T 0,0
0,1 represents S-CROSS linking CROSS and ZNP, with

η = 0 and η̃ ∈ [0, 1] [10, 12]. In such a way we can collect, compare and present all the above
mentioned scenarios graphically in a clear and uni�ed manner with the bird's eye view on the
problem diagram in Figure 9.1. Actually, the �gure also shows the state of the art in modeling
time-optimal navigation on a slope of mountain under the action of gravity studied thus far
(the left-hand side). More general, we aim at covering the cases in our solution, where the
traction coe�cients are running through the arbitrary intervals Iη, Iη̃ ⊆ [0, 1] as well as the
transitions T P ′

P that also connect the new type of problems Pη,η̃ as above mentioned3, e.g.

T π/5,
√
0.7

1/2,1/3 .
It is worth pointing out the meaning of �slippery� and �non-slippery� slope in the current

context. As already emphasized, the initial Matsumoto's setting [106] was treated naturally
as the non-slippery model in a usual sense. Roughly speaking, it is often adopted in the
interpretations of various real world applications that the cross gravity e�ect is treated as
somewhat �unwanted� or disturbing own (forward) motion indicated by the velocity u, while
the along one is fully accepted. However, there are the situations in nature so that the
approach can be exact opposite. It seems appropriate to mention the animals that move
sideways, e.g. a sidewinder rattlesnake on a desert slope as well as the linear transverse ship's
sliding motion side-to-side called sway on a dynamic surface of the sea in marine engineering

3Each �xed pair (η, η̃) yields a speci�c type of motion related to Pη,η̃. In turn, the equation of motion
are changing during transition. There is a certain analogy to a �ight of a variable-sweep wing aircraft (a
swing-wing design), modifying its geometry while �ying.
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or the description of the algebraic pedal curves and surfaces in geometry; see e.g. [11, 12, 64]
in this regard. In our study, both types of gravity e�ects will be treated like having the same
essence, without distingusihing which non-compensated gravity-additive (called a slide in our
model) is �better� or �worse�. This means that we can be dragged o� forward-backward and
sideways equally well on the slippery slope in the general model proposed.

Summarizing, the hitherto notion of a slippery slope (problem) is taking much broader
meaning in comparison to the preceding studies [10, 12]. From now on, each P = (η, η̃),
η, η̃ ∈ [0, 1], de�nes in fact a di�erent and speci�c navigation problem, where at least one
type of gravity-increment (sliding) occurs. From such point of view only the Riemannian case,
where the impact of gravitational wind is cancelled completely, i.e. η = η̃ = 1 represents
the non-slippery slope in the presence of gravity. Moreover, the current approach yields that
even the slope in the classic Matsumoto model is considered as being slippery because of
the longitudinal �slide� (i.e. the along-gravity gain) admitted, although it is construed as
non-slippery at all in the usual sense.

Remark that in order to avoid any confusion with the �rst slippery slope model linking
MAT and ZNP (i.e. η ∈ [0, 1] and η̃ = 0) which was introduced as a �slippery slope� in
[10] and in Chapter 7 (called SLIPPERY herein) and its natural generalization in the current
study, we slightly rename this particular case now as a standard slippery slope, referring to its
meaning in the usual sense and to be in agreement with our previous terminology.

9.1.2 Problem formulation and main theorems

We can now formulate the main task to which the rest of this chapter is dedicated. Namely,
the problem of time-minimizing navigation on a slippery mountain slope under the action of
gravity is posed in the following way:

Suppose a walker, craft or a vehicle has a certain constant maximum speed as mea-
sured on a horizontal plane, while gravity acts perpendicular to this plane. Imagine
now that the craft endeavours to move on a slippery slope of a mountain under
gravity, admitting a traction-dependent sliding in arbitrary (downward) direction.
What path should be followed by the craft to get from one point to another in the
least time?

In the general context of an n-dimensional Riemannian manifold with GT = −ḡω♯, where
ω♯ is the gradient vector �eld and ḡ is the rescaled gravitational acceleration g (see Section 9.2
and [10, 20, 11, 12]), we consider the active wind Gηη̃, which represents the impact of gravity
which is not compensated due to traction on the slippery slope, and de�ned by (9.11), with
(η, η̃) ∈ S̃, where S̃ = [0, 1] × [0, 1]. Mention that it vanishes only when η = η̃ = 1, i.e. the
Riemannian case (RIEM for short). Let us also �x S = S̃ ∖ {(1, 1)}.

The set S̃ represents a complete problem square diagram for our exposition (see Figure
9.1, right-hand side). The solution to the posed problem is given by the new slippery slope
metric in the general case, which is called (η, η̃)-slope metric, as well as the corresponding
time geodesics. Our main results are represented by the following two theorems.

Theorem 9.1.1. ((η, η̃)-slope metric) Let a slippery slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with a cross-traction coe�cient η ∈ [0, 1], an along-
traction coe�cient η̃ ∈ [0, 1] and a gravitational wind GT on M . The time-minimal paths on
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(M,h) under the action of an active wind Gηη̃ as in (9.11) are the geodesics of an (η, η̃)-slope
metric F̃ηη̃, which satis�es

F̃ηη̃

√
α2 + 2(1− η)ḡβF̃ηη̃ + (1− η)2||GT ||2hF̃ 2

ηη̃ = α2 + (2− η − η̃)ḡβF̃ηη̃ + (1− η)(1− η̃)||GT ||2hF̃ 2
ηη̃,

(9.1)

with α = α(x, y), β = β(x, y) given by (9.17), where either ||GT ||h < 1
1−η̃ and (η, η̃) ∈ D1∪D2,

or ||GT ||h < 1
2|η−η̃| and (η, η̃) ∈ D3 ∪D4, where

D1 = {(η, η̃) ∈ S | η ≥ η̃ > 2η − 1} , D2 =
{
(η, η̃) ∈ S | 3η̃−1

2 < η < η̃
}
,

D3 =
{
(η, η̃) ∈ S | η ≥ 1

2 , η̃ ≤ 2η − 1
}
, D4 =

{
(η, η̃) ∈ S | η̃ ≥ 1

3 , η ≤ 3η̃−1
2

}
,

S =
4⋃
i=1

Di and Di ∩Dj = ∅, for any i ̸= j, i, j = 1, ..., 4. No restriction should be imposed on

||GT ||h if η = η̃ = 1. In particular, a slope metric of type (0, 0), (1, 0), (0, 1), (1, 1) is reduced
to a Randers metric, a Matsumoto metric, a cross slope metric and a Riemannian metric h,
respectively.

Moreover, an (η, 0)-slope metric is a (standard) slippery slope metric F̃η and a (0, η̃)-
slope metric is a slippery-cross-slope metric F̃η̃, both presented in the Chapters 7 and 8 ([10,
Theorem 1.1] and [12, Theorem 1.1], respectively).

For clarity's sake, the partition of S̃ into the mutually disjoint subsets Di, i = 1, ..., 4 is
illustrated in Figure 9.3. It is also worth mentioning that the above theorem now implies as
the particular cases the solutions to: the original Matsumoto's slope-of-a-mountain problem
(MAT), Zermelo's navigation problem (ZNP) on a Riemannian manifold under a gravitational
wind GT as well as CROSS. Furthermore, F̃ηη̃ provides a new Finsler metric of general (α, β)
type.

The second theorem enables us to �nd time geodesics that correspond to an (η, η̃)-slope
metric, giving an answer to the research question posed above. Namely, we have obtained

Theorem 9.1.2. (Time geodesics) Let a slippery slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with a cross-traction coe�cient η ∈ [0, 1], an along-
traction coe�cient η̃ ∈ [0, 1] and a gravitational wind GT on M . The time-minimal paths on
(M,h) under the action of an active wind Gηη̃ as in (9.11) are the time-parametrized solutions
γ(t) = (γi(t)), i = 1, ..., n of the ODE system

γ̈i(t) + 2G̃iηη̃(γ(t), γ̇(t)) = 0, (9.2)

where

G̃iηη̃(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)
α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃r0

] wi
ḡ

− R̃wi|j
α2wj

ḡ2
,
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with

Gi
α(γ(t), γ̇(t)) =

1
4h

im
(
2
∂hjm

∂xk − ∂hjk

∂xm

)
γ̇j(t)γ̇k(t), Ψ̃ = ḡ2α2

2Ẽ
[α4Ã2B̃ + (η̃ − η)2],

r00 = − 1
ḡwj|kγ̇

j(t)γ̇k(t), r0 = 1
ḡ2wj|kγ̇

j(t)wk, r = − 1
ḡ3wj|kw

jwk,

R̃ = (1−η)ḡ2

2α4B̃
[(1− η̃)α2B̃ − (η̃ − η)], Θ̃ = ḡα

2Ẽ
[α6ÃB̃2 − (η̃ − η)2ḡβ],

Ω̃ = (1−η)ḡ2

α2B̃Ẽ
{[(1− η̃)α2B̃ − (η̃ − η)][α6B̃3 + (η̃ − η)2||GT ||2h]− (η̃ − η)2α2(ḡβB̃ + ||GT ||2hÃ)},

Π̃ = (1−η)ḡ3

2α3B̃Ẽ
{[(1− η̃)α2B̃ − (η̃ − η)][2α6ÃB̃2 − (η̃ − η)2ḡβ] + (η̃ − η)2α2B̃[2α2 + (1− η)ḡβ]},

Ã = − 1
α2 {(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
− (2− η − η̃)2ḡβ − (2− η − η̃)α2},

B̃ = − 1
α2 {[1− 2(1− η)(1− η̃)||GT ||2h]− 2(2− η − η̃)ḡβ − 2α2},

C̃ = 1
α

(
α2B̃ + ḡβÃ

)
, Ẽ = α6B̃C̃2 + (||GT ||2hα2 − ḡ2β2)[α4Ã2B̃ + (η̃ − η)2]

(9.3)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)), and wi denoting the components of GT .

The chapter is structured in the following way. Our concern in Section 9.2 is focused
on the general model of a slippery mountain slope under gravity, starting with some special
navigation problems (so called the reduced ZNP, the reduced MAT and the reduced CROSS)
which are achieved by the transition from the initial Riemannian background to the Zermelo's
navigation problem (ZNP) under a weak gravitational wind GT , the Matsumoto's slope-of-
a-mountain problem (MAT) and the cross slope problem (CROSS), respectively. Then, in
Section 9.3.1 we perform the proof of Theorem 9.1.1, dividing it into two steps including a
sequence of cases and lemmas. In Section 9.3.2 we prove Theorem 9.1.2 which is based on
some technical results.

9.2 New models of a slippery mountain slope

Let (M,h) be an n-dimensional Riemannian manifold, n > 1, which represents a model for
a slippery slope of a mountain. Let ω♯ = hji ∂p

∂xj
∂
∂xi

be the gradient vector �eld of p, where
p :M → R is a C∞-function on M. Making use of ω♯, we have de�ned the gravitational wind
GT = −ḡω♯, where ḡ is the rescaled magnitude of the acceleration of gravity g (i.e. ḡ = λg,
λ > 0) [10, 20, 11, 12].

Based on scaling, we assume throughout this section that we work with the self-velocity u
of a moving craft on the slope and ||u||h =

√
h(u, u) = 1. Along this section we also refer to

a 2-dimensional model for the slope, more precisely, to the inclined plane for a better view of
the study, although the time-optimal navigation problems described in this work are valid for
an arbitrary dimension.

Looking at the known cases visualized graphically in Figure 9.1, left-hand side, we �rst
propose some new scenarios. Namely, we are going to consider three special transitions with
varying traction, linking the Riemannian set-up with the Matsumoto, Zermelo and cross slope
cases. As we can observe right below, it is possible to obtain the explicit form of the Finsler
metrics in the �rst two problems, which are respectively of the Randers and Matsumoto type,
including the parameter η or η̃ in their formulas in addition.
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9.2.1 Some special cases

We begin by referring to the Zermelo navigation problem, where the purely geometric solution
is given by a Finsler metric of Randers type, under the action of space-dependent weak vector
�eld W on a Riemannian manifold (M,h) [127, 71, 45, 157].

Reduced ZNP

Let us take into account the setting η = η̃ ∈ [0, 1]. In the sequel, this scenario is called the
reduced Zermelo navigation problem (R-ZNP for short) and it is marked illustratively by the
dashed blue diagonal in Figure 9.1, the right-hand side. Since the traction parameters run
through the full range, we can connect the Riemannian and Zermelo cases directly by the
transition T 0,0

1,1 along the diagonal η = η̃. More precisely, the resultant velocity in this case is
de�ned as follows

vR−ZNP = u+ (1− η)GT , (9.4)

for any η ∈ [0, 1]. In other words, both cross and e�ective winds are compensated respectively
by the cross- and along-traction coe�cients at the same time and equally, i.e. P ∈ OC in
Figure 9.2, the right-hand side.

Now we are in position to apply the Zermelo's navigation technique as in [71, 45], with
the navigation data (h,W ), i.e. deforming the Riemannian metric h by a weak vector �eld
W = (1− η)GT , i.e. ||W ||h = (1− η)||GT ||h < 1. Thus, using the condition on the self-speed
||u||h = 1 and (9.4), we get ||vR−ZNP ||2h−2(1−η)h(vR−ZNP ,G

T )−1+(1−η)2||GT ||2h = 0. This
leads to the Finsler metric of Randers type F̃R−ZNP including either of the traction coe�cients
as a parameter. The result is

F̃R−ZNP (x, y) =

√
[(1− η)h(y,GT )]2 + λη||y||2h

λη
− (1− η)h(y,GT )

λη
, (9.5)

with λη = 1 − (1 − η)2||GT ||2h, for any (x, y) ∈ TM . In particular, if η = 0, i.e. P = C in
Figure 9.2, then the last equation yields the standard Randers metric, which represents the
solution to ZNP under the action of a full gravitational wind GT . On the other hand, for
η = 1 we get the non-slippery Riemannian case, i.e. P = O in Figure 9.2.

We notice that for every η ∈ [0, 1] (along the diagonal η = η̃), the indicatrices of the
Randers type metrics F̃R−ZNP are the �cloned� ellipsoids because by Zermelo's navigation, the
Riemannian h-circle (ellipsoid) is only rigidly translated by (1 − η)GT , under the restriction
(1 − η)||GT ||h < 1; see e.g. [71]. In particular, there is not any anisotropic deformation of
the indicatrices and only rigid translation is applied, while transiting between two arbitrary
problems in R-ZNP.

Reduced MAT

Now we set η = 1 and η̃ ∈ [0, 1], calling this scenario the reduced Matsumoto slope-of-a-
mountain problem (R-MAT for short). The along-traction coe�cient η̃ runs through the
entire range, so RIEM and MAT can be linked directly by the transition T 1,0

1,1 which is also
included in the slippery slope model. This situation is indicated by the dashed green segment
in Figure 9.1, the right-hand side. Thus, the equation of motion for this case reads

vR−MAT = u+ (1− η̃)GMAT , (9.6)

127



Habilitation thesis Codruµa Nicoleta Aldea

for any η̃ ∈ [0, 1], where GMAT is the orthogonal projection of GT on u. Moreover, it follows
immediately that P ∈ OA in Figure 9.2, the right-hand side, so the cross wind is vanished,
whilst the e�ective wind is scaled by the along-traction coe�cient η̃. Since the velocities
vR−MAT and u are always collinear in this case, R-MAT is based on a direction-dependent
deformation of the background Riemannian metric h by the vector �eld (1 − η̃)GMAT . By
applying the navigation technique as in [71, 45], where ||vR−MAT ||h = 1 ± ||(1 − η̃)GMAT ||h
(�+� for downhill and �-� for uphill motion), as well as [12, Step I], the resultant Finsler metric
is obtained explicitly. More precisely, it is the (α, β)-metric of Matsumoto type including the
along-traction coe�cient η̃ ∈ [0, 1] as a parameter, and denoted by F̃R−MAT . We thus get

F̃R−MAT (x, y) =
||y||2h

||y||h + (1− η̃)h(y,GT )
, (9.7)

for any (x, y) ∈ TM0, under the strong convexity restriction (1− η̃)||GT ||h < 1
2 . In particular,

if η̃ = 0, then the last equation leads to the standard Matsumoto metric [106, 131], which
stands for the solution to MAT, i.e. P = A in Figure 9.2, the right-hand side. On the other
edge, for η̃ = 1 we get the Riemannian case, i.e. P = O in Figure 9.2, the right-hand side,
because the impact of the gravitational wind is then compensated completely during such
kind of motion on the slope. In contrast to R-ZNP, there is not any rigid translation of the
indicatrix of F̃R−MAT and only anisotropic deformation is applied, while transiting between
two arbitrary problems included in R-MAT.

Reduced CROSS

As the last special problem mentioned in this subsection we consider the setting η̃ = 1 and
η ∈ [0, 1]. By analogy to the cases described above, this scenario is named the reduced cross
slope problem (R-CROSS for short) and indicated by the dashed red segment in Figure 9.1,
the right-hand side. As the cross-traction coe�cient η runs through the full range, RIEM and
CROSS can be linked now by the transition T 0,1

1,1 , becoming the particular and edge cases in
the current set-up. It follows from the above that the related equation of motion is4

vR−CROSS = u+ (1− η)G⊥
MAT , (9.8)

for any η ∈ [0, 1]. Hence, this yields P ∈ OA′ in Figure 9.2, the right-hand side and the
e�ective wind is zeroed while the cross wind is varying, depending on cross-traction on the
slippery mountain slope. In particular, if η = 0, i.e. P = A′ in Figure 9.2, the right-hand
side, then the solution is given by a cross slope metric (Chapter 7 or [11]). On the other end,
if η = 1, i.e. P = O, then we are led to the Riemannian metric h.

Having solved two previous problems explicitly, one may expect that the similar ease of
investigation will be in the third analogous scenario. Unfortunately, the solution is much
more complicated now. In contrast to R-MAT and R-ZNP, this time we do not get a �simple�
explicit form of the Finsler metric. As shown on further reading, it is sign�cantly nontrivial
and could be studied individually5, however the corresponding solution can be extracted as the

4G⊥
MAT is Proju⊥GT , G⊥

MAT = −GMAT +GT (i.e.
−−→
OA′ in 9.2) and recall that GMAT stands for ProjuG

T

(i.e.
−→
OA in 9.2).

5We remark that the main proof concerning R-CROSS studied individually would follow the analogous way
as in [11], however with the scaling factor (1 − η) for the vector �eld G⊥

MAT , included from the beginning
in the related equations of motion. Similarly, the corresponding scaling factor in R-MAT is (1 − η̃), however
referring to the vector �eld GMAT , as well as (1− η) with reference to the gravitational wind GT in R-ZNP.
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particular case from the general result in Section 9.3.1, having the strong convexity condition
||GT ||h < 1

2(1−η) , η ∈ [0, 1), in this case. Actually, the computational di�culty could have
been expected in advance, since the detailed solution to CROSS has already been analyzed in
[11] (here in Chapter 8) and it stands for the edge case in the current setting. We decided,
however, to mention this new type of slope problem here so that the problem diagram form a
square clearly after including the last missing side as shown in Figure 9.1, the right-hand side.

Unlike R-ZNP and R-MAT, the evolution of the indicatrix is based on both anisotropic
deformation and rigid translation combined together, while transiting between two arbitrary
problems included in R-CROSS.

To complete, all three cases described above start (or end) at the Riemannian vertex
(1, 1), including the transition along the diagonal of the problem square diagram. One can
also consider another transition along the second diagonal of S̃, i.e. T 0,1

1,0 linking MAT and
CROSS. In this case, we have the relation η̃ = 1− η, η ∈ [0, 1], and so P ∈ AA′ (Figure 9.2),
where one traction coe�cient is a non-identity6 (linear) function of another. As in R-CROSS,
the corresponding resultant metric cannot be explicitly obtained in a simple form.

9.2.2 General case

Following the above presented reasoning in a more general context one can ask whether the
Riemannan case can also be linked with a problem P de�ned by a pair (η, η̃), indicating
the interior of the square diagram S̃, and not just its boundary ∂S̃ (R-CROSS, SLIPPERY,
R-MAT, R-CROSS) or one diagonal, i.e. η̃ = η (R-ZNP) as untill now. Moreover, we can
actually look at the model even more generally, connecting two arbitrary problems P = (η, η̃)
and P ′ = (η′, η̃′) of the whole diagram, where η, η′, η̃, η̃′ ∈ [0, 1]. Thus, we are going to enter the
interior of S̃ created by four cornered cases, i.e. RIEM, MAT, ZNP and CROSS (respectively,
O, A, C and A′ in Figure 9.2), the right-hand side, and ultimately to cover its whole area.
From such point of view each P with the traction coe�cients being �xed uniquely de�nes
di�erent and speci�c navigation problem on the slope, in which the corresponding equations
of motion depend on both traction coe�cients. Therefore, a pair (η, η̃) determines the range
of compensation of the gravity e�ects (transverse and longitudinal) during motion on the
slippery slope, in particular, the behaviour of the time-optimal trajectories. In consequence,
we can state that there exist in fact in�nitely many slippery slope problems, where the classic
Matsumoto's slope-of-a-mountain and Zermelo's navigation under gravitational wind stand
for natural but also very particular cases now, among many others.

Furthermore, it will be possible to create the direct links between two arbitrary problems
via the general solution, i.e. the transitions T P ′

P , where the traction coe�cients are not �xed
but varying as in SLIPPERY and S-CROSS thus far. In other words, one can set up the
ranges of the parameters, i.e. η ∈ [η1, η

′
1] ⊆ [0, 1], η̃ ∈ [η̃1, η̃

′
1] ⊆ [0, 1] and �x the relation

η̃ = f(η), e.g. η̃ = (η− η1)(η̃′1− η̃1)/(η′1− η1)+ η̃1. This is visualized graphically by a straight
line segment (black) along which P is moving smoothly, connecting two speci�c problems
P1 = (η1, η̃1), P ′

1 = (η′1, η̃
′
1) ∈ S̃ in Figure 9.1.

Taking into account (9.4), (9.6) and (9.8), the general equation of motion is formulated as
follows

vηη̃ = u+Gηη̃, (9.9)

6Unlike R-ZNP, where η̃ = η.
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Figure 9.2: Left: A model of a slippery (η, η̃)-slope as an inclined plane M of the slope angle ε in R3,

under the gravity �eld G = GT +G⊥, acting perpendicularly to the horizontal plane (the base of the

slope). The gravitational wind GT �blows� tangentially toM in the steepest downhill direction X, and

G⊥ is the component of gravity normal to the slope M ; OX ⊥ OY , O ∈ M . The resultant velocity

is represented by vηη̃ (black) and its particular (cornered) cases are: vZNP (blue), vMAT (green), v†
(CROSS, red) and vRIEM = u (dashed black). For comparison, vη (purple) and vη̃ (yellow) refer to

the exemplary SLIPPERY and S-CROSS, respectively. Right: The decompositions of a gravitational

wind GT =
−−→
OC (blue) on the slippery slope M , where OA ⊥ OA′. GT is a vector sum of an active

wind Gηη̃ =
−−→
OP (black) and a dead wind

−−→
PC (dashed grey). The lateral (G† =

−−→
AB, a cross wind, red)

and longitudinal (
−−−→
A′B′, an e�ective wind, yellow) components of the active wind Gηη̃ =

−−→
OP w.r.t. u

depend in particular on the cross-traction (η) and along-traction (η̃) coe�cients, respectively, where
−−→
AB ⊥

−−−→
A′B′. The direction θ of motion not in�uenced by gravity and indicated by the Riemannian

self-velocity u (the control vector, dashed black) is measured clockwise from OX, where ||u||h = 1.

where active wind Gηη̃ on the (η, η̃)-slope is de�ned by the following linear combination

Gηη̃ = (1− η)G⊥
MAT + (1− η̃)GMAT , (η, η̃) ∈ S̃ (9.10)

which is equivalent to
Gηη̃ = (η − η̃)GMAT + (1− η)GT . (9.11)

The formula (9.9) implies in particular the equations of motion from the preceding studies of
time-optimal navigation on the mountain slopes under gravity, namely:

� vη = u+Gη = u+ ηGMAT + (1− η)GT as in [10] (SLIPPERY), Chapter 7;

� v† = v01 = u+G† = u−GMAT +GT as in [11] (CROSS), Chapter 8;

� vη̃ = u+Gη̃ = u− η̃GMAT +GT as in [12] (S-CROSS), Section 8.3;

� vMAT = v10 = u+GMAT as in [106] (MAT),

� vZNP = v00 = u+GT as in [71, 45] (ZNP) and obviously,

� v11 = u (RIEM).

Moreover, for instance, the relation vηη̃ = u+Gηη̃, where

Gηη̃ = (1− η)G⊥
MAT + ηGMAT = (2η − 1)GMAT + (1− η)GT
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linking MAT and CROSS has not been covered so far. However, now the corresponding time-
minimizing solution will come as the particular case of the general result presented in the
sequel.

9.3 Proofs of the main results

The goal of this section is to prove Theorems 9.1.1 and 9.1.2. Some preparations are necessary.
Let us consider the n-dimensional Riemannian manifold (M,h), n > 1, which represents here a
model for a slippery slope of a mountain. Let GT = −ḡω♯ = −ḡhji ∂p

∂xj
∂
∂xi

be the gravitational
wind and let u be the self-velocity of a moving craft on the slope, assuming throughout this
section that ||u||h = 1. For now, let us consider the active wind Gηη̃ expressed by (9.10), with
(η, η̃) ∈ S̃, where S̃ = [0, 1]× [0, 1], which vanishes only when η = η̃ = 1.

9.3.1 (η, η̃)-slope metric

We pose the navigation problem Pη,η̃ on (M,h) under the action of the active wind Gηη̃,
where the resultant velocity is vηη̃ = u + Gηη̃, for any (η, η̃) ∈ S̃. Apparently, it looks like
a standard Zermelo navigation problem, where the solution is given by a Finsler metric of
Randers type if the wind is weak [45, 71, 154, 61]. In reality, our navigation problem is quite
complicated due to the active wind Gηη̃. The key observation is that our ingredient Gηη̃,
written as Gηη̃ = (η− η̃)GMAT +(1− η)GT , for any (η, η̃) ∈ S̃, is not a priori known because
only the gravitational windGT is given, and the vectorGMAT being the orthogonal projection
of GT onto the self-velocity u, depends on the direction of u. Moreover, using (9.10), it follows
immediately that ||Gηη̃||h ≤ ||GT ||h, for any (η, η̃) ∈ S, where S = S̃ ∖ {(1, 1)}.

As in Chapters 7 and 8 or [10, 12], it is appropriate for us to split the proof of Theorem
9.1.1 into two steps including a sequence of cases and lemmas, which enable us to describe the
(η, η̃)-slope metrics besides the necessary and su�cient conditions for their strong convexity,
expressed exclusively with respect to the force of the gravitational windGT , for any (η, η̃) ∈ S.

The �rst step describes a direction-dependent deformation, more precisely, the deformation
of the background Riemannian metric h by the vector �eld (η − η̃)GMAT . The second step
develops the classic Zermelo navigation, where the indicatrix of the resulting Finsler metric F
of Matsumoto type, provided by the �rst step, is rigidly translated by the gravitational vector
�eld (1 − η)GT , under the condition F (x,−(1 − η)GT ) < 1 which practically secures that a
craft on the slippery mountainside can go forward in any direction (see [127, 61]).

Step I. We state that under the assumption that |η − η̃| ||GMAT ||h < 1, the direction-
dependent deformation of the Riemannian metric h by (η− η̃)GMAT leads to a Finsler metric

if and only if ||GT ||h < 1
2|η−η̃| , for any (η, η̃) ∈ S̃ ∖ L, where L =

{
(η, η̃) ∈ S̃ | η = η̃

}
.

Moreover, when |η − η̃| ||GMAT ||h ≥ 1 at some directions, this deformation cannot a�ord a
Finsler metric.

To this end, we describe the deformation of h by the vector �eld (η− η̃)GMAT in terms of
the resultant velocity v = u+ (η − η̃)GMAT , for any (η, η̃) ∈ S̃ ∖ L. Evidently, if η = η̃, then
v = u. Furthermore, we need to study the cases:

1. |η − η̃| ||GMAT ||h < 1, 2. |η − η̃| ||GMAT ||h = 1 and 3. |η − η̃| ||GMAT ||h > 1,

separately.
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Let us �x a few notations. The desired direction of own motion, denoted by θ, is the angle
between GT and u. Since GMAT =ProjuGT , the vectors v, u and GMAT are collinear and
once we have denoted by θ̄ the angle between u and GMAT , it results that it can only be 0
or π. We notice that when θ is π

2 or 3π
2 , the angle θ̄ is not determined, i.e. u and GT are

orthogonal, and GMAT vanishes.

Case 1. |η − η̃| ||GMAT ||h < 1. Since we have assumed that |η − η̃| ||GMAT ||h < 1, it is
certainly true that the angle between GT and v is also θ (the vectors u and v point in the
same direction). It is worthwhile to emphasize that due to the assertion |η − η̃| ||GMAT ||h < 1
there is not any direction where the resultant vector v vanishes. Now we focus on θ̄, namely:

i) When θ̄ = 0 (going downhill), we have θ ∈ [0, π2 ) ∪ (3π2 , 2π) and the angle between GT and
GMAT is either θ or 2π − θ. Then, we clearly obtain that ||GMAT ||h = ||GT ||h cos θ and

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Also, for any (η, η̃) ∈ S̃ ∖ L it follows that |η − η̃| ||GT ||h cos θ < 1 and h(v,GT )
||v||h < 1

|η−η̃| .

ii) When θ̄ = π (going uphill), it turns out that θ ∈ (π2 ,
3π
2 ) and the angle between GT and

GMAT is |π − θ|. Thus, one easily obtains that ||GMAT ||h = −||GT ||h cos θ and

h(v,GMAT ) = −||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Moreover, for any (η, η̃) ∈ S̃ ∖ L we have −|η − η̃| ||GT ||h cos θ < 1 and −h(v,GT )
||v||h < 1

|η−η̃| .

To sum up, by both of the above sub-cases and noting that v = u when θ ∈ {π2 ,
3π
2 }, we

get
h(v,GMAT ) = h(v,GT ) = ||v||h||GT ||h cos θ, for any θ ∈ [0, 2π). (9.12)

In addition, we can write the inequality |η − η̃| ||GMAT ||h < 1 as follows

|η − η̃| ||GT ||h| cos θ| < 1 or
|h(v,GT )|

||v||h
<

1

|η − η̃|
, (9.13)

for any θ ∈ [0, 2π) and (η, η̃) ∈ S̃ ∖ L. Now, using (9.12), we proceed by straightforward
computation starting with 1 = ||u||h = ||v − (η − η̃)GMAT ||h. This leads to the equation

||v||2h − 2(η − η̃)||v||h||GT ||h cos θ − [1− (η − η̃)2||GT ||2h cos2 θ] = 0,

which, due to the �rst inequality in (9.13), admits the unique positive root

||v||h = 1 + (η − η̃)||GT ||h cos θ, (9.14)

for any θ ∈ [0, 2π) and (η, η̃) ∈ S̃ ∖ L.

If we introduce the notation g1(x, v) = ||v||2h − ||v||h − (η − η̃)h(v,GT ) and we use (9.12),
the equation (9.14) can be written into its equivalent form g1(x, v) = 0. Thus, based on
Okubo's method [106], we can get the function

F (x, v) =
||v||2h

||v||h + (η − η̃)h(v,GT )
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as the solution of the equation g1(x, vF ) = 0. Moreover, we can extend F (x, v) to an arbitrary
nonzero vector y ∈ TxM, for any x ∈ M because any nonzero y can be expressed as y = cv,
c > 0, and F (x, v) = 1. Namely, it turns out the following positive homogeneous C∞-function
on TM0

F (x, y) =
||y||2h

||y||h + (η − η̃)h(y,GT )
, for any (η, η̃) ∈ S̃ ∖ L. (9.15)

There is still a certain amount of properties which is arising regarding function F (x, y)
obtained in (9.15). Before all else, we claim that our assertion |η − η̃| ||GMAT ||h < 1 is a
necessary and su�cient condition for F (x, y) to be positive on all TM0. In order to prove this
let us observe that the positivity of (9.15) on TM0 means that

||y||h + (η − η̃)h(y,GT ) > 0, (9.16)

for all nonzero y and any (η, η̃) ∈ S̃ ∖ L. If the positivity is achieved on TM0, we can replace
y with ±GT ̸= 0 in (9.16) and thus, it follows that |η − η̃| ||GT ||h < 1. Having the inequality
||GMAT ||h ≤ ||GT ||h in any direction (note that ||GMAT ||h = ||GT ||h| cos θ|, for any θ ∈
[0, 2π)), it yields that |η − η̃| ||GMAT ||h < 1 on all TM0. Conversely, if |η − η̃| ||GMAT ||h < 1

on all TM0 (the posibility that GMAT = 0 is also included), we have |h(y,GT )|
||y||h < 1

|η−η̃| for any
nonzero y, which gives (9.16). Thus, the claim that F (x, y) is positive on TM0 is proved.

From now on, we use the notations as in Chapters 7 and 8 or [10, 11, 12], that is

α2 = ||y||2h = hijy
iyj and β = −1

ḡ
h(y,GT ) = h(y, ω♯) = biy

i, (9.17)

α = α(x, y), β = β(x, y) and ||β||h = ||ω♯||h.We notice that the di�erential 1-form β is closed,
i.e. sij = 0, because it includes the gravitational wind GT which is a scaled gradient vector
�eld, i.e. GT = −ḡω♯ = −ḡhji ∂p

∂xj
∂
∂xi

; for more details, see [10, Lemma 4.3].
With the notations (9.17), we can express the function (9.15) as

F (x, y) =
α2

α− (η − η̃)ḡβ
, for any (η, η̃) ∈ S̃ ∖ L, (9.18)

which shows that it is of Matsumoto type having the explicit indicatrix

IF =
{
(x, y) ∈ TM0 | α2[α− (η − η̃)ḡβ]−1 = 1

}
⊂ TM.

Since y = 0 does not lie in the closure of the indicatrix IF , we can extend F (x, y) continuously
to all TM, i.e. F (x, 0) = 0 for any x ∈M (see [61]).

The function (9.18) seems to be a promising Finsler metric. In order to make sure of this,
we are going to establish the necessary and su�cient conditions for the strong convexity of the
indicatrix IF , for any (η, η̃) ∈ S̃ ∖ L. We can write F (x, y) = αϕ(s), where ϕ(s) = 1

1−(η−η̃)ḡs
with s = β

α , and the second inequality in (9.13) is actually |s| < 1
|η−η̃|ḡ , for arbitrary nonzero

y ∈ TxM and x ∈M . Thus, for every (η, η̃) ∈ S̃∖L it follows that ϕ is a positive C∞-function
on the open interval I =

(
−(|η − η̃|ḡ)−1, (|η − η̃|ḡ)−1

)
.

In the sequel, we collect the desired properties for ϕ(s), with |s| < 1
|η−η̃|ḡ , and we control

force of the gravitational wind GT via the variable s.
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Lemma 9.3.1. Let ϕ be the function given by ϕ(s) = 1
1−(η−η̃)ḡs with s ∈ I. For any (η, η̃) ∈

S̃ ∖ L, the following statements are equivalent:
i) ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, where b = ||ω♯||h;
ii) |s| ≤ b < b0, where b0 = 1

2|η−η̃|ḡ ;

iii) ||GT ||h < 1
2|η−η̃| .

Proof. By using the Cauchy-Schwarz inequality |h(y, ω♯)| ≤ ||y||h||ω♯||h it follows that
|s| ≤ ||ω♯||h = b, for any nonzero y ∈ TxM and x ∈ M. Let us now focus on (b2 − s2)ϕ′′(s).

Due to |s| < 1
|η−η̃|ḡ , one has (b2 − s2)ϕ′′(s) = (b2 − s2) 2(η−η̃)2ḡ2

[1−(η−η̃)ḡs]3 ≥ 0. Thus, the minimum

value of (b2 − s2)ϕ′′(s) is 0 and it is achieved when |s| = b, for any (η, η̃) ∈ S̃ ∖ L. Moreover,
a simple computation leads to

ϕ(s)−sϕ′(s)+(b2−s2)ϕ′′(s) = [1− (η − η̃)ḡs][1− 2(η − η̃)ḡs] + 2(b2 − s2)(η − η̃)2ḡ2

[1− (η − η̃)ḡs]3
. (9.19)

To prove i) ⇒ ii), we assume that ϕ(s) − sϕ′(s) + (b2 − s2)ϕ′′(s) > 0. Let us take s = ±b in
(9.19). It follows that 1 ∓ 2(η − η̃)ḡb > 0, and then b < 1

2|η−η̃|ḡ . Therefore, |s| ≤ b < 1
2|η−η̃|ḡ

which is precisely the required ii). Conversely, let us assume that |s| ≤ b < 1
2|η−η̃|ḡ . Due to

(9.19), we get

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) ≥ [1− (η − η̃)ḡs][1− 2(η − η̃)ḡs]

[1− (η − η̃)ḡs]3
=

1− 2(η − η̃)ḡs

[1− (η − η̃)ḡs]2
> 0,

for any (η, η̃) ∈ S̃ ∖ L.
Now, we prove the implication iii) ⇒ ii). Since ||GT ||h < 1

2|η−η̃| and |s| ≤ ||ω♯||h = b =
1
ḡ ||G

T ||h, it turns out |s| ≤ b < 1
2|η−η̃|ḡ . The implication ii) ⇒ iii) is trivial.

It is worth mentioning that the statement |s| ≤ b < 1
2|η−η̃|ḡ also implies that for any

(η, η̃) ∈ S̃ ∖ L, ϕ(s)− sϕ′(s) > 0. By the above �ndings and applying [71, Lemma 1.1.2] and
Proposition 6.2.1, we have stated the following result.

Lemma 9.3.2. For any (η, η̃) ∈ S̃ ∖L, F (x, y) = α2

α−(η−η̃)ḡβ is a Finsler metric if and only if

||GT ||h < 1
2|η−η̃| .

Therefore, once we have Lemma 9.3.2, we conclude that the indicatrix IF is strongly convex
if and only if ||GT ||h < 1

2|η−η̃| , for any (η, η̃) ∈ S̃ ∖ L.

Case 2. |η − η̃| ||GMAT ||h = 1. We start by assuming that |η − η̃| ||GMAT ||h = 1, for any
(η, η̃) ∈ S̃ ∖ L. Observe that a traverse of the mountain, i.e. when θ ∈ {π2 ,

3π
2 }, cannot be

followed here. Indeed, when θ ∈ {π2 ,
3π
2 }, GMAT vanishes which contradicts our assumption.

Moreover, since ||GMAT ||h ≤ ||GT ||h, it follows that ||GT ||h ≥ 1
|η−η̃| , for any (η, η̃) ∈ S̃ ∖ L.

In the sequel, we have to analyze the aforementioned possibilities for θ̄:

i) when θ̄ = 0, we clearly have θ ∈ [0, π2 )∪ (3π2 , 2π) and ||GMAT ||h = ||GT ||h cos θ. In addition,
our assumption implies that u = |η − η̃|GMAT , and thus

v = (η − η̃ + |η − η̃|)GMAT =

{
2(η − η̃)GMAT , if η > η̃

0, if η < η̃
.
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Based on this, we next get
(a) if η > η̃, then ||v||h = 2(η − η̃)||GMAT ||h = 2 and

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT );

(b) if η < η̃, the resultant velocity v vanishes, while attempting to go down the slope.

ii) when θ̄ = π, then θ ∈ (π2 ,
3π
2 ) and thus u = −|η− η̃|GMAT and ||GMAT ||h = −||GT ||h cos θ.

It turns out that

v = (η − η̃ − |η − η̃|)GMAT =

{
0, if η > η̃

2(η − η̃)GMAT , if η < η̃
.

Also, this must be splitted into
(a) if η > η̃, the resultant velocity v vanishes, while attempting to go up the slope;
(b) if η < η̃, then ||v||h = −2(η − η̃)||GMAT ||h = 2 and

h(v,GMAT ) = −||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT ).

Summing up the above �ndings, when v does not vanish, we have ||v||h = 2 and among
the directions corresponding to θ, only such directions for which cos θ = 1

(η−η̃) ||GT ||h
(i.e.

h(v,GT )
||v||h = 1

η−η̃ ), for any (η, η̃) ∈ S̃∖L, can be followed in this case. Let us consider g2(x, v) = 0,

where g2(x, v) = ||v||h − 2. By Okubo's method [106], we get the function

F (x, v) =
1

2
||v||h, (9.20)

as the solution of the equation g2(x, vF ) = 0.
The extension of F (x, v) to an arbitrary nonzero vector y ∈ Ax = A ∩ TxM, for any

x ∈M, is F (x, y) = 1
2 ||y||h, where A = {(x, y) ∈ TM0 | ||y||h − (η − η̃)h(y,GT ) = 0}. Since

||GT ||h ≥ 1
|η−η̃| it follows that G

T ∈ Ax if and only if GT = GMAT and η > η̃ (here the angle

θ can only be 0) and −GT ∈ Ax if and only if GT = GMAT and η < η̃ (here the angle θ can
only be π). Anyway, this case does not povide a proper Finsler metric.

Case 3. |η − η̃| ||GMAT ||h > 1. The remaining case is |η − η̃| ||GMAT ||h > 1 . On one
hand, it implies that ||GT ||h > 1

|η−η̃| , as well as the fact that θ cannot be π
2 or 3π

2 . Indeed,

if θ ∈ {π2 ,
3π
2 }, then v = u and thus, GMAT vanishes, which contradicts our assumption.

On the other hand, it follows that for any (η, η̃) ∈ S̃ ∖ L, the resultant velocity v and
(η − η̃)GMAT point in the same direction (downhill when η > η̃ and uphill when η < η̃) and
h(v,GMAT ) =

|η−η̃|
η−η̃ ||v||h||GMAT ||h. Moreover, |η − η̃| ||GMAT ||h > 1 states that there is not

any direction where the resultant vector v vanishes. Again, we have to take into consideration
both possibilities for θ̄. Namely,

i) when θ̄ = 0, then θ ∈ [0, π2 ) ∪ (3π2 , 2π). In particular, we have ||GMAT ||h = ||GT ||h cos θ
and due to the required assumption, it follows that |η− η̃| ||GT ||h cos θ > 1. Two possibilities
must still be analyzed:

(a) if η > η̃, then ∡(GT , v) ∈ {θ, 2π − θ}. Thus, we get

h(v,GMAT ) = ||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT )
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and h(v,GT )
||v||h > 1

η−η̃ ;

(b) if η < η̃, then ∡(GT , v) ∈ {π + θ, θ − π} as well as

h(v,GMAT ) = −||v||h||GMAT ||h = −||v||h||GT ||h cos θ = h(v,GT )

and −h(v,GT )
||v||h > 1

η̃−η .

ii) when θ̄ = π, one gets θ ∈ (π2 ,
3π
2 ). In particular, we have ||GMAT ||h = −||GT ||h cos θ and

|η − η̃| ||GT ||h cos θ < −1 since |η − η̃| ||GMAT ||h > 1. Moreover,
(a) if η > η̃, then ∡(GT , v) = |θ − π|. Thus,

h(v,GMAT ) = ||v||h||GMAT ||h = −||v||h||GT ||h cos θ = h(v,GT )

and h(v,GT )
||v||h > 1

η−η̃ ;

(b) if η < η̃, then the angle between GT and v is also θ. In consequence, it turns out that

h(v,GMAT ) = −||v||h||GMAT ||h = ||v||h||GT ||h cos θ = h(v,GT )

and −h(v,GT )
||v||h > 1

η̃−η .
By combining the above possibilities and since GMAT cannot be vanished, we get

h(v,GMAT ) = h(v,GT ) =
|η − η̃|
η − η̃

||v||h||GT ||h| cos θ|, for any θ ∈ [0, 2π)∖ {π/2, 3π/2},

(9.21)
and the condition |η − η̃| ||GMAT ||h > 1 is equivalent to

| cos θ| > 1

|η − η̃| ||GT ||h
or


h(v,GT )
||v||h > 1

η−η̃ , if η > η̃

−h(v,GT )
||v||h > 1

η̃−η , if η < η̃
, or (η− η̃)h(v,G

T )

||v||h
> 1,

(9.22)
for any (η, η̃) ∈ S̃ ∖ L.

Therefore, among the directions corresponding to θ ∈ [0, 2π) ∖ {π/2, 3π/2} only such
directions for which | cos θ| > 1

|η−η̃| ||GT ||h
can be followed in this case. By using (9.21), a

simple computation, starting with 1 = ||u||h = ||v − (η − η̃)GMAT ||h, leads to the equation

||v||2h − 2|η − η̃| ||v||h||GT ||h cos θ − [1− (η − η̃)2||GT ||2h cos2 θ] = 0.

Since | cos θ| > 1
|η−η̃| ||GT ||h

, for any (η, η̃) ∈ S̃ ∖ L and θ ∈ [0, 2π) ∖ {π/2, 3π/2}, it follows
that the last equation admits two positive roots

||v||h = ±1 + |η − η̃| ||GT ||h| cos θ|. (9.23)

Based on the property (9.21), we can write (9.23) as g3(x, v) = 0, where

g3(x, v) = ||v||2h ∓ ||v||h − (η − η̃)h(v,GT ).

If we apply Okubo's method again [106], we get the following positive functions

F1,2(x, v) =
||v||2h

±||v||h+(η−η̃)h(v,GT )
as the solutions of the equation g3(x, vF ) = 0. Next, we extend

F1,2(x, v) to an arbitrary nonzero vector y ∈ A∗
x = A∗ ∩ TxM, for any x ∈M, where

A∗ = {(x, y) ∈ TM | ||y||h − (η − η̃)h(y,GT ) < 0} (9.24)
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is an open conic subset of TM0, for any (η, η̃) ∈ S̃ ∖L. Thus, we obtain the positive homoge-
neous C∞-functions

F1,2(x, y) =
||y||2h

±||y||h + (η − η̃)h(y,GT )
(9.25)

on A∗, with F1,2(x, v) = 1. We notice that GT ∈ A∗
x i� η > η̃ and −GT ∈ A∗

x i� η < η̃.
Moreover, due to (9.22), our initial assumption |η − η̃| ||GMAT ||h > 1 is a necessary and
su�cient condition for F1,2(x, y) to be positive on A∗.

By the notations (9.17), the functions F1,2(x, y) are of Matsumoto type, namely

F1,2(x, y) =
α2

±α− (η − η̃)ḡβ
(9.26)

on conic domain A∗, rewritten as A∗ = {(x, y) ∈ TM | α+(η− η̃)ḡβ < 0}. However, F1,2 can
be at most conic Finsler metrics. By applying [87, Corollary 4.15], it turns out that both F1,2

are strongly convex onA∗ and thus, they are conic Finsler metrics onA∗, for any (η, η̃) ∈ S̃∖L.
Indeed, for F1,2 the strongly convex conditions [α∓2(η− η̃)ḡβ][α∓ (η− η̃)ḡβ] > 0 are satis�ed
for any (x, y) ∈ A∗ and (η, η̃) ∈ S̃ ∖ L.

Summarizing the results from this step, beyond their intrinsic interest, it turns out that
the direction-dependent deformation of the background Riemannian metric h by the vector
�eld (η − η̃)GMAT , with |η − η̃| ||GMAT ||h < 1 performed for every direction (note that the
converse inequality |η − η̃| ||GMAT ||h ≥ 1 one may carry out only at some directions), for any
(η, η̃) ∈ S̃ ∖L provides the Finsler metric F (x, y) = α2

α−(η−η̃)ḡβ if and only if ||GT ||h < 1
2|η−η̃| .

Step II. In attempting to use Proposition 6.1.1, we consider the following navigation data
(F, (1− η)GT ) on the Finsler manifold (M,F ), where F is either the Finsler metric (9.18) if
(η, η̃) ∈ S̃ ∖ L or the background Riemannian metric h if (η, η̃) ∈ L, assuming that

F (x,−(1− η)GT ) < 1. (9.27)

Exploring the Zermelo navigation on (M,F ) with the aforementioned navigation data
(F, (1−η)GT ), we supply new Finsler metrics, which we call the (η, η̃)-slope metrics, together
with the necessary and su�cient conditions for the strong convexity of their indicatrices. More
precisely, applying Proposition 6.1.1, for each (η, η̃) ∈ S̃, the (η, η̃)-slope metric has to arise
as the unique positive solution F̃ of the equation

F (x, y − (1− η)F̃ (x, y)GT ) = F̃ (x, y), (9.28)

for any (x, y) ∈ TM0.

Before doing this, a few details must be outlined. On one hand, the meaning of our second
step is that the addition of the scaled gravitational wind (1−η)GT generates a rigid translation
to the strongly convex indicatrix provided by v = u− (η − η̃)GMAT in the �rst step, for any
(η, η̃) ∈ S̃ ∖L (see [61]). We have already got rid of the possibility that |η− η̃|||GMAT ||h ≥ 1
since it only supplied conic Finsler metrics and thus, going forward in any direction is not
enabled. On the other hand, the condition (9.27) plays an essential role for the resulting
indicatrix, obtained by translation, to be strongly convex and to determine a new Finsler
metric as the unique solution of (9.28) (see [61, p. 10 and Proposition 2.14]). In other words,
the condition (9.27) secures that for any x ∈M , y = 0 belongs to the region bounded by the
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new translated indicatrix IF̃ . Moreover, some additional computations can show that if we
replace the conic Finsler metrics from Cases 2 or 3 in the inequality (9.27), it may exist only
for some (η, η̃) ∈ S̃ ∖ L, which is contrary to what we aimed for from the beginning in order
to cover the whole square S̃.

In the sequel, we expand the left-hand side of (9.28). Let us observe that the Finsler
metric F can be written as F (x, y) = α2

α−(η−η̃)ḡβ , for any (η, η̃) ∈ S̃. In particular, if η = 1, it

is obvious that F̃ (x, y) = α2

α−(1−η̃)ḡβ , for any η̃ ∈ [0, 1], (i.e. the so-called reduced Matsumoto

metric). For arbitrary η ∈ [0, 1], by taking y − (1− η)F̃ (x, y)GT instead of y in (9.17), some
standard computations give that

α2
(
x, y − (1− η)F̃ (x, y)GT

)
= α2(x, y) + 2(1− η)ḡβ(x, y)F̃ (x, y) + (1− η)2||GT ||2hF̃ 2(x, y)

and
β
(
x, y − (1− η)F̃ (x, y)GT

)
= β(x, y) +

1− η

ḡ
||GT ||2hF̃ (x, y),

where we used the relation β(x,GT ) = −1
ḡ ||G

T ||2h. Therefore, it turns out that the left-hand
side of (9.28) is

α2 + 2(1− η)ḡβF̃ + (1− η)2||GT ||2hF̃ 2√
α2 + 2(1− η)ḡβF̃ + (1− η)2||GT ||2hF̃ 2 − (η − η̃)ḡβ − (η − η̃)(1− η)||GT ||2hF̃

,

where α, β and F̃ are evaluated at (x, y). Now, if we substitute this into (9.28), we get the
irrational equation

F̃

√
α2 + 2(1− η)ḡβF̃ + (1− η)2||GT ||2hF̃ 2 = α2 + (2− η− η̃)ḡβF̃ + (1− η)(1− η̃)||GT ||2hF̃ 2,

(9.29)
which is equivalent to the following polynomial equation

(1− η)2||GT ||2h[1− (1− η̃)2 ||GT ||2h]F̃ 4 + 2(1− η)
[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡβF̃ 3

+{
[
1− 2(1− η) (1− η̃) ||GT ||2h

]
α2 − (2− η − η̃)2 ḡ2β2}F̃ 2 − 2 (2− η − η̃) ḡα2βF̃ − α4 = 0,

(9.30)
for any (η, η̃) ∈ S̃.

In the special case where η = η̃ = 1, we obviously have F̃ = h. Moreover, we note that
if (1 − η)2[1 − (1− η̃)2 ||GT ||2h] ̸= 0, the last equation admits four roots, and thanks to the
condition (9.27), we know precisely that among all roots there is only one positive. For any
(η, η̃) ∈ S̃, it should be the (η, η̃)-slope metric.

From now on, we denote by F̃ηη̃ the (η, η̃)-slope metric, outlining that F̃ηη̃ satis�es (9.29)
and moreover, along any regular piecewise C∞-curve γ, parametrized by time that represents
a trajectory in Zermelo's problem, we have F̃ηη̃(γ(t), γ̇(t)) = 1. This is the time in which a
craft or a vehicle goes along γ.

Now, it remains to provide explicitly the necessary and su�cient conditions for the indica-
trix of F̃ηη̃ to be strongly convex, and thus we will outline the argument that the F̃ηη̃-geodesics
locally minimize time. In order to handle this issue, we need to characterize the inequality
(9.27) which is equivalent to

1− (1− η̃)||GT ||h
1− (η − η̃)||GT ||h

> 0. (9.31)
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Indeed, since F (x, y) = α2

α−(η−η̃)ḡβ =
||y||2h

||y||h+(η−η̃)h(y,GT )
, it turns out that, for any (η, η̃) ∈ S̃,

the left-hand side of (9.27) is

F (x,−(1− η)GT ) =
|| − (1− η)GT ||2h

|| − (1− η)GT ||h + (η − η̃)h(−(1− η)GT ,GT )
=

(1− η)||GT ||h
1− (η − η̃)||GT ||h

which together with (9.27) conclude the claim (9.31). Namely, we prove the result

Lemma 9.3.3. The following statements are equivalent:
i) for any (η, η̃) ∈ S̃, the indicatrix IF̃ηη̃

of the (η, η̃)-slope metric F̃ηη̃ is strongly convex;

ii) the gravitational wind GT is restricted to either ||GT ||h < 1
1−η̃ and (η, η̃) ∈ D1 ∪ D2, or

||GT ||h < 1
2|η−η̃| and (η, η̃) ∈ D3 ∪ D4, where

D1 = {(η, η̃) ∈ S | η ≥ η̃ > 2η − 1} , D2 =
{
(η, η̃) ∈ S | 3η̃−1

2 < η < η̃
}
,

D3 =
{
(η, η̃) ∈ S | η ≥ 1

2 , η̃ ≤ 2η − 1
}
, D4 =

{
(η, η̃) ∈ S | η̃ ≥ 1

3 , η ≤ 3η̃−1
2

}
,

(9.32)

S =
4⋃
i=1

Di and Di ∩Dj = ∅, for any i ̸= j, i, j = 1, ..., 4. No restriction should be imposed on

||GT ||h if η = η̃ = 1.

iii) the active wind Gηη̃ given by (9.11) is restricted to either ||Gηη̃||h < 1
1−η̃ and (η, η̃) ∈

D1 ∪ D2, or ||Gηη̃||h < 1
2|η−η̃| and (η, η̃) ∈ D3 ∪ D4.

Proof. To prove the equivalence i) ⇔ ii) one has to take into account (9.31), for any (η, η̃) ∈ S̃,
(see Figure 9.3). Because of this, the following cases must be analyzed separately:
a) if η > η̃ and η ̸= 1, then the inequality (9.31) yields either ||GT ||h < 1

1−η̃ or ||GT ||h > 1
η−η̃ .

If we combine these with the strong convexity condition for the indicatrix IF , more precisely
||GT ||h < 1

2(η−η̃) for 1 > η > η̃ ≥ 0, we obtain:

� ||GT ||h < 1
1−η̃ if either (η, η̃) ∈ R1 or (η, η̃) ∈ R3, where

R1 =

{
(η, η̃) ∈ S | 0 ≤ η̃ < η <

1

2

}
, R3 =

{
(η, η̃) ∈ S | η ∈

[
1

2
, 1

)
, η̃ ∈ (2η − 1, η)

}
.

It is obvious that R1 and R3 are subsets of D1 and D1 = R1 ∪ R3 ∪ L0, where L0

denotes L∖ {(1, 1)}. Thus, ||GT ||h < 1
1−η̃ if (η, η̃) ∈ R1 ∪R3 = D1 ∖ L0.

� ||GT ||h < 1
2(η−η̃) if 1 > η ≥ 1

2 and 2η − 1 ≥ η̃ ≥ 0. Hence, we have ||GT ||h < 1
2(η−η̃) if

(η, η̃) ∈ D3 ∖ L1, where L1 = {(η, η̃) ∈ S | η = 1} .

b) if η = η̃ and η ̸= 1, then F = h and the resultant metric is a Randers one in this case.
Moreover, for every (η, η̃) ∈ L0, the inequality (9.31) is equivalent to ||GT ||h < 1

1−η .

c) if η < η̃ and η̃ ̸= 1, then (9.31) implies that ||GT ||h < 1
1−η̃ . Combining this with the strong

convexity condition for the indicatrix IF , i.e. ||GT ||h < 1
2(η̃−η) for 0 ≤ η < η̃ < 1, we get:
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� ||GT ||h < 1
1−η̃ if either (η, η̃) ∈ R2 or (η, η̃) ∈ R4, where

R2 =

{
(η, η̃) ∈ S | 0 ≤ η < η̃ <

1

3

}
, R4 =

{
(η, η̃) ∈ S | η̃ ∈

[
1

3
, 1

)
, η ∈

(
3η̃ − 1

2
, η̃

)}
.

It is clear that R2 and R4 are subsets of D2 and D2 = R2 ∪ R4. Thus, ||GT ||h < 1
1−η̃

if (η, η̃) ∈ D2.

� ||GT ||h < 1
2(η̃−η) if 1

3 ≤ η̃ < 1 and 0 ≤ η ≤ 3η̃−1
2 . It follows that ||GT ||h < 1

2(η−η̃) if
(η, η̃) ∈ D4 ∖ L2, where L2 = {(η, η̃) ∈ S | η̃ = 1} .

d) if η ̸= η̃ and η = 1, then 1 > η̃ and (9.31) is ful�lled. Thus, in this case we have (1, η̃)-slope
metric which is the Matsumoto type metric F ((9.18) with η = 1), and the strong convexity
of its indicatrix yields ||GT ||h < 1

2(1−η̃) . Consequently, ||G
T ||h < 1

2(1−η̃) if (η, η̃) ∈ L1.

e) if η ̸= η̃ and η̃ = 1, then η < 1 and the inequality (9.31) holds. It turns out that the strong
convexity corresponding to the metric F ((9.18)), certi�ed by Lemma 9.3.2, ensures the strong
convexity which corresponds to the (η, 1)-slope metric, namely ||GT ||h < 1

2(1−η) . So, we have

||GT ||h < 1
2(1−η) if (η, η̃) ∈ L2.

f) if η = η̃ = 1, then there is not any deformation for h since Gηη̃ = 0 and thus, there is no
restriction on ||GT ||h.

Summing up the above �ndings, we obtain that the inequality (9.27) is equivalent to either
||GT ||h < 1

1−η̃ and (η, η̃) ∈ D1 ∪ D2, or ||GT ||h < 1
2|η−η̃| and (η, η̃) ∈ D3 ∪ D4.

The argument which proves the equivalence ii) ⇔ iii) is that ||Gηη̃||h ≤ ||GT ||h, for any
(η, η̃) ∈ S and, furthermore, the maximum of ||Gηη̃||h coincides with ||GT ||h for η = 0 (which
is possible both in D1∪D2 and in D3∪D4), since GMAT must vanish for some directions.

Based on the results stated in Steps I and II, we have performed the proof of Theorem 9.1.1.

We remark that, according to Lemma 9.3.3, the force of the active wind Gηη̃ can be
accounted for in terms of the force of the gravitational wind GT , i.e. ||GT ||h < b̃0, in the
problem Pη,η̃, for any (η, η̃) ∈ S (see Figure 9.3) where

b̃0 =

{
1

1−η̃ , if (η, η̃) ∈ D1 ∪ D2
1

2|η−η̃| , if (η, η̃) ∈ D3 ∪ D4
. (9.33)

It is worthwhile to mention a few observations regarding the range of b̃0. For example,
when (η, η̃) ∈ R1, it follows that b̃0 ∈ [1, 2) or when (η, η̃) ∈ R2, we obtain b̃0 ∈ (1, 32).
Moreover, for (η, η̃) ∈ R3 ∪R4, b̃0 −→ ∞ as η̃ ↗ 1. Similarly, for (η, η̃) ∈ D3 ∪ D4, b̃0 −→ ∞
as |η − η̃| −→ 0. In fact, once we are closer and closer to the point (0, 0) ∈ S̃, the admitted
force of the gravitational wind is weaker because b̃0 −→ 1 as η̃ ↘ 0. On the other hand, the
closer we approach to the point (1, 1) ∈ S̃, the stronger the allowed force of GT becomes.
However, there is (η, η̃) ∈ S such that ||GT ||h > 1 and the indicatrix IF̃ηη̃

of the (η, η̃)-slope

metric F̃ηη̃ is still strongly convex, unlike the classic navigation problems, i.e. ZNP where
||GT ||h < 1 or MAT where ||GT ||h < 1

2 .
The allowable gravitational wind force ||GT ||h < b̃0 for the general slippery slope model

determined by the strong convexity conditions, including the in�uence of both traction coef-
�cients, is illustrated in Figure 9.3, right-hand side.
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Figure 9.3: Left: The partition of the problem square diagram S̃ = S ∪ {(1, 1)} as in (9.32), where

D1 = R1 ∪ R3 ∪ L0, D2 = R2 ∪ R4, where L0 = L ∖ {(1, 1)}, and L =
{
(η, η̃) ∈ S̃ | η = η̃

}
. Right:

The allowable gravitational wind force ||GT ||h in the general slippery slope model determined by the

strong convexity conditions given by (9.33), including the in�uence of both traction coe�cients (η,

η̃), i.e. ||GT ||h < b̃0. For clarity of presentation, we limited the range ||GT ||h < 5 (the upper gray

plane), remarking that ||GT ||h −→ ∞ in the neighbourhood of the Riemannian corner, i.e. when

(η, η̃) −→ (1, 1). The lower plane (gray) represents ||GT ||h = 0.5 which refers to MAT, i.e. (1, 0) as

well as CROSS, i.e. (0, 1). The colors of the related parts in both sub�gures correspond to each other.

Finally, we brie�y discuss a kind of classi�cation of the navigation problems Pη,η̃, for any
(η, η̃) ∈ S, (Figure 9.3). Taking into account the decompositions of the active wind Gηη̃, we
can give the following classi�cation.

Corollary 9.3.4. Let Pη,η̃ be a navigation problem under the action of an active wind Gηη̃

given in (9.11), on a slippery slope of a mountain (M,h), with a cross-traction coe�cient
η ∈ [0, 1], an along-traction coe�cient η̃ ∈ [0, 1] and a gravitational wind GT on M . The
following statements hold:
i) For any (η, η̃) ∈ S with η > η̃, Pη,η̃ comes from SLIPPERY with a certain form for the
cross-traction coe�cient, namely c1 =

η−η̃
1−η̃ ∈ (0, 1];

ii) For any (η, η̃) ∈ S with η < η̃, Pη,η̃ comes from S-CROSS with a certain form for the
along-traction coe�cient, namely c2 =

η̃−η
1−η ∈ (0, 1].

Proof. i) Making use of GT = GMAT +G⊥
MAT , it yieds Gηη̃ = (η̃ − η)G⊥

MAT + (1 − η̃)GT .
Since (η, η̃) ∈ S and η > η̃, then η̃ ̸= 1. So, we can �nd out that

Gηη̃ = (1− η̃)[−η − η̃

1− η̃
G⊥
MAT +GT ] = (1− η̃)Gc1 ,

where Gc1 = c1GMAT + (1 − c1)G
T is the active wind from SLIPPERY with a particular

cross-traction coe�cient c1 = η−η̃
1−η̃ ∈ (0, 1], for any (η, η̃) ∈ S, where η > η̃. According to

Theorem 7.1.1 or [10, Theorem 1.1], the slippery slope metric F̃c1 corresponding to the active
wind Gc1 satis�es the equation

F̃c1

√
α2 + 2(1− c1)ḡβF̃c1 + (1− c1)2||GT ||2hF̃ 2

c1 = α2 + (2− c1)ḡβF̃c1 + (1− c1)||GT ||2hF̃ 2
c1 .

(9.34)
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Now, if we substitute (1− η̃)GT for GT everywhere in (9.34) including also F̃c1 , and c1 =
η−η̃
1−η̃ ,

it turns out that the new F̃c1 veri�es identically (9.29). Thus, we have proved the claim i).

ii) Since (η, η̃) ∈ S and η < η̃, then η ̸= 1. To prove ii) we consider S-CROSS with the active
windGc2 = −c2GMAT+GT , where c2 =

η̃−η
1−η ∈ (0, 1] is a certain along-traction coe�cient. By

using Theorem 8.3.1 or [12, Theorem 1.1], the slippery-cross-slope metric F̃c2 corresponding
to Gc2 veri�es the equation

F̃c2

√
α2 + 2ḡβF̃c2 + ||GT ||2hF̃ 2

c2 = α2 + (2− c2)ḡβF̃c2 + (1− c2)||GT ||2hF̃ 2
c2 . (9.35)

It is immediate to verify that Gηη̃ = (1− η)Gc2 , since Gηη̃ = (η − η̃)GMAT + (1− η)GT . By
substituting (1− η)GT for GT everywhere in (9.35) including F̃c2 , and c2 =

η̃−η
1−η , we get that

the new F̃c2 satis�es (9.29). Hence, it follows the required claim.

We notice that, for any (η, η̃) ∈ S, where η = η̃, Pη,η̃ comes from the Zermelo navigation
with Gηη̃ = (1− η)GT , i.e. R-ZNP.

9.3.2 The geodesics of the (η, η̃)-slope metric

Following the strategy presented in recent research [10, 11, 12] (here, Chapters 7 and 8) and
basing on some technical computations as well as applying Proposition 6.2.2, we achieve the
spray coe�cients related to the (η, η̃)-slope metric F̃ηη̃. By (6.2), it is immediate to supply
the equations of time geodesics of F̃ηη̃. Moreover, the argument that any such time geodesic
is unitary with respect to F̃ηη̃ because before all else, it is a trajectory in Zermelo's navigation
developed in Step II, will help us perform the proof of Theorem 9.1.2.

We start by outlining an essential property regarding the (η, η̃)-slope metric F̃ηη̃. Namely,
since F̃ηη̃ is the root of (9.30), for any (η, η̃) ∈ S̃, it seems to be a promising general (α, β)-
metric. To prove the claim that F̃ηη̃ is indeed a general (α, β)-metric, let us make the notations:

ϕ̃ = F̃
α and s = β

α . Now, if we divide (9.30) by α4, we get the equation,

(1− η)2||GT ||2h[1− (1− η̃)2 ||GT ||2h]ϕ̃4 + 2(1− η)
[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡsϕ̃3

+[1− 2(1− η) (1− η̃) ||GT ||2h − (2− η − η̃)2 ḡ2s2]ϕ̃2 − 2 (2− η − η̃) ḡsϕ̃− 1 = 0.
(9.36)

This is obviously equivalent to (9.30). Furthermore, since F̃ηη̃ is the sole positive root of (9.30),
it follows that (9.36) also admits a unique positive root, denoted by ϕ̃ηη̃, for any (η, η̃) ∈ S̃.
Pointing out that η and η̃ are only parameters, it turns out that ϕ̃ηη̃ depends on the variables
||GT ||2h = ḡ2b2 and s = β

α , where α and β are given by (9.17), i.e. ϕ̃ηη̃ = ϕ̃ηη̃(||GT ||2h, s) and
also, ϕ̃ηη̃ is a positive C∞-function because F̃ηη̃(x, y) = αϕ̃ηη̃(||GT ||2h, s). Thus, the requested
claim is proved.

There are still some emerging properties regarding the function ϕ̃ηη̃ as well as its deriva-
tives. An essential role in our study is played by the following identity

(1− η)2||GT ||2h[1− (1− η̃)2 ||GT ||2h]ϕ̃4ηη̃ + 2(1− η)
[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡsϕ̃3ηη̃

+{
[
1− 2(1− η) (1− η̃) ||GT ||2h

]
α2 − (2− η − η̃)2 ḡ2s2}ϕ̃2ηη̃ − 2 (2− η − η̃) ḡsϕ̃ηη̃ − 1 = 0,

(9.37)
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which follows from the fact that ϕ̃ηη̃ checks identically (9.36), for any (η, η̃) ∈ S̃. Having the
inequality ||GT ||h < b̃0, with b̃0 de�ned in (9.33), which secures the strong convexity of the
indicatrix IF̃ηη̃

according to Theorem 9.1.1, we can apply the direct implication of Proposition

6.2.1. Hence, for any (η, η̃) ∈ S̃ and s satisfying |s| ≤ ||GT ||h
ḡ < b̃0

ḡ , we have guaranteed the
validity of the following inequalities

ϕ̃ηη̃ − sϕ̃ηη̃2 > 0, ḡ2(ϕ̃ηη̃ − sϕ̃ηη̃2) + (||GT ||2h − ḡ2s2)ϕ̃ηη̃22 > 0,

when n ≥ 3, or only the right-hand side inequality, when n = 2.

Lemma 9.3.5. Let M be an n-dimensional manifold, n > 1, with the (η, η̃)-slope metric
F̃ηη̃ = αϕ̃ηη̃(||GT ||2h, s). For any (η, η̃) ∈ S̃, the function ϕ̃ηη̃ and its derivative with respect to
s, i.e. ϕ̃ηη̃2 hold the following relations:

Cϕ̃ηη̃2 = ḡAϕ̃ηη̃, C(ϕ̃ηη̃ − sϕ̃ηη̃2) = B, Cϕ̃ηη̃ = B + ḡsAϕ̃ηη̃, (2− η − η̃)B − 2A = (η̃ − η)ϕ̃2ηη̃,
(9.38)

where

A = − (1− η)
[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ϕ̃2ηη̃ + (2− η − η̃)

2
ḡsϕ̃ηη̃ + 2− η − η̃,

B = −
[
1− 2 (1− η) (1− η̃)||GT ||2h

]
ϕ̃2ηη̃ + 2 (2− η − η̃) ḡsϕ̃ηη̃ + 2,

C = 2 (1− η)
2 ||GT ||2h

[
1− (1− η̃)

2 ||GT ||2h
]
ϕ̃3ηη̃ + 3(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡsϕ̃2ηη̃

+ {
[
1− 2(1− η) (1− η̃) ||GT ||2h

]
− (2− η − η̃)

2
ḡ2s2}ϕ̃ηη̃ − (2− η − η̃) ḡs

(9.39)

and A, B, C are evaluated at (||GT ||2h, s).

Proof. By di�erentiating the identity (9.37) with respect to s, it follows the �rst relation in
(9.38). The proof of the second identity in (9.38) is based on the �rst one and on some simple
computations. Finally, by using the notations (9.39) and (9.37), it turns out the last two
relations in (9.38).

Lemma 9.3.6. Let M be an n-dimensional manifold, n > 1, with the (η, η̃)-slope metric

F̃ηη̃ = αϕ̃ηη̃(||GT ||2h, s). For any (η, η̃) ∈ S̃ and s such that |s| ≤ ||GT ||h
ḡ < b̃0

ḡ , the following
statements hold:
i) C(||GT ||2h, s) ̸= 0, ϕ̃ηη̃2 =

ḡA
C ϕ̃ηη̃, and ϕ̃ηη̃ − sϕ̃ηη̃2 =

B
C .

ii) B(||GT ||2h, s) ̸= 0.

Proof. i) Clearly, if η = η̃ = 1, then C = ϕ̃ηη̃ > 0. Now we prove that C(||GT ||2h, s) ̸= 0, for

any (η, η̃) ∈ S. We assume by contradiction that there exists s0 ∈ [−b, b], b = ||GT ||h
ḡ < b̃0

ḡ ,

with b̃0 de�ned by (9.33), such that C(||GT ||2h, s0) = 0. With this assumption, due to (9.38),
we get

A(||GT ||2h, s0) = B(||GT ||2h, s0) = (η − η̃)ϕ̃2ηη̃(||GT ||2h, s0) = 0. (9.40)

Since ϕ̃ηη̃(||GT ||2h, s0) > 0 for any (η, η̃) ∈ S̃, the last equality in (9.40) turns out that the
only possibility is that η = η̃ ̸= 1, i.e. (η, η̃) ∈ L0. By using this fact and (9.40), the identity
(5.4) is reduced to

(1− η)2||GT ||2h[1− (1− η)2||GT ||2h]ϕ̃4ηη̃ + [2(1− η)ḡs0ϕ̃ηη̃ + 1]2 = 0, (9.41)
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where ϕ̃ηη̃ is evaluated at (||GT ||2h, s0) and it is with η = η̃ ̸= 1. As ||GT ||h < 1
1−η for (η, η̃) ∈

L0, (9.41) contradicts the fact that (1 − η)2||GT ||2h[1 − (1 − η)2||GT ||2h]ϕ̃4ηη̃(||GT ||2h, s0) > 0.
Thus, we have shown that C ̸= 0 everywhere. Moreover, making use of (9.38), the claims i)
are ful�lled.

ii) If η = η̃ = 1, then B = ϕ̃2ηη̃ = 1. However, it remains to prove that B(||GT ||2h, s) ̸= 0, for

any (η, η̃) ∈ S. We assume, towards a contradiction, that there is s̃ ∈ [−b, b], b = ||GT ||h
ḡ < b̃0

ḡ ,

with b̃0 de�ned by (9.33), such that B(||GT ||2h, s̃) = 0. So, we are searching now for such an
s̃.

On one hand, since ϕ̃ηη̃(||GT ||2h, s̃) > 0, C(||GT ||2h, s̃) ̸= 0 and B(||GT ||2h, s̃) = 0, the third
formula in (9.38) with s = s̃, implies that s̃ ̸= 0. On the other hand, due to our assumption, by
the second formula in (9.39), it follows that ϕ̃ηη̃(||GT ||2h, s̃) satis�es the polynomial equation

[1− 2(1− η)(1− η̃)||GT ||2h]ϕ̃2ηη̃ − 2(2− η − η̃)ḡs̃ϕ̃ηη̃ − 2 = 0. (9.42)

Moreover, for s = s̃ and for any (η, η̃) ∈ S, (9.37) is reduced to

2(1− η)2ζ||GT ||2hϕ̃2ηη̃ +
[
2− 3η + η̃ − 2 (2− η − η̃) (1− η) (1− η̃) ||GT ||2h

]
ḡs̃ϕ̃ηη̃

+1− 2(1− η) (1− η̃) ||GT ||2h = 0,

(9.43)

where ζ denotes the term 1− (1− η̃)2 ||GT ||2h.
Since ||GT ||h < b̃0, with b̃0 de�ned by (9.33), it turns out that ζ = 1− (1− η̃)2 ||GT ||2h ̸= 0

for any (η, η̃) ∈ S̃. Nevertheless, there may exist some (η, η̃) ∈ S ∖ (L1 ∪ L2) such that
1− 2(1− η)(1− η̃)||GT ||2h = 0. Thus, we have to analyze two cases.
Case a. If 1− 2(1− η)(1− η̃)||GT ||2h ̸= 0, for any (η, η̃) ∈ S, then due to (9.42) and (9.43),
we get

[1 + 4(1− η) (η̃ − η) ||GT ||2h]ϕ̃ηη̃ + 4 (η̃ − η) ḡs̃ = 0. (9.44)

The last equation provides a contradiction when (η, η̃) ∈ L0. Thus, η ̸= η̃ and moreover, since
s̃ ̸= 0 and ϕ̃ηη̃(||GT ||2h, s̃) > 0 it turns out that 1 + 4(1− η) (η̃ − η) ||GT ||2h ̸= 0 and

ϕ̃ηη̃(||GT ||2h, s̃) = − 4 (η̃ − η) ḡs̃

1 + 4(1− η) (η̃ − η) ||GT ||2h
. (9.45)

Once we have (9.45) for any (η, η̃) ∈ S ∖ L0, we can go with it in (9.42) and the result is

4 (η̃ − η) ḡ2s̃2[2− 3η + η̃ + 4(η̃ − η)(1− η)2||GT ||2h] = [1 + 4(1− η) (η̃ − η) ||GT ||2h]2.

Since the right-hand side of this is positive, it follows that

(η̃ − η) [2− 3η + η̃ + 4(η̃ − η)(1− η)2||GT ||2h] > 0

and thus, we obtain s̃2 = [1+4(1−η)(η̃−η)||GT ||2h]
2

4(η̃−η)ḡ2[2−3η+η̃+4(η̃−η)(1−η)2||GT ||2h]
, which contradicts s̃2 ∈ (0, b2], for

any (η, η̃) ∈ S ∖ L0, due to the condition ||GT ||h < b̃0, where b̃0 is de�ned by (9.33). Indeed,
since we must have s̃2 ≤ b2, this implies ||GT ||h ≥ 1

2|η−η̃| for any (η, η̃) ∈ S∖L0, noticing that
1

2|η−η̃| >
1

1−η̃ for any (η, η̃) ∈ D1 ∪ D2 ∖ L0.
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Case b. If 1− 2(1− η)(1− η̃)||GT ||2h = 0, for some (η, η̃) ∈ S ∖ (L1 ∪ L2), then, by (9.42),
it follows that

ϕ̃ηη̃(||GT ||2h, s̃) = − 1

(2− η − η̃)ḡs̃
. (9.46)

The last equation together with (9.43) lead to s̃ which satis�es the relation

s̃2 (η̃ − η) =
1− 2η + η̃

4(1− η̃)(2− η − η̃)ḡ2
. (9.47)

Obviously, when η = η̃, (9.47) provides a contradiction. Therefore, it remains to study (9.47)

when (η, η̃) ∈ S ∖ (
2⋃
i=0

Li). Since s̃ ̸= 0 and η ̸= η̃, it follows that 1− 2η+ η̃ ̸= 0. Now, making

use of s̃2 ≤ b2 =
||GT ||2h
ḡ2

, it turns out that there exist (η, η̃) ∈ D̃ ⊂ S ∖ (
2⋃
i=0

Li) such that

1− 2(1− η)(1− η̃)||GT ||2h = 0, where D̃ = D̃3 ∪ D̃4 and

D̃3 =
{
(η, η̃) ∈ S | 1

2 < η < 1, η̃ < 2η − 1
}
⊂ D3,

D̃4 =
{
(η, η̃) ∈ S | η ≤ 2η̃ − 1, 1

2 ≤ η̃ < 1
}
⊂ D4.

However, the fact that ||GT ||h < 1
2|η−η̃| on D̃ is contradicted.

Summing up the above �ndings, we have proved that B(||GT ||2h, s) ̸= 0, for any s ∈ [−b, b],
b = ||GT ||h

ḡ < b̃0
ḡ , with b̃0 de�ned by (9.33).

We remark that basing on Proposition 6.2.1 it is known that ϕ̃ηη̃− sϕ̃ηη̃2 > 0, when n ≥ 3,

for any (η, η̃) ∈ S̃ and s such that |s| ≤ ||GT ||h
ḡ < b̃0

ḡ . Now, according to Lemma 9.3.5, since

ϕ̃ηη̃ − sϕ̃ηη̃2 =
B
C we have proved that ϕ̃ηη̃ − sϕ̃ηη̃2 ̸= 0 also when n = 2, for any (η, η̃) ∈ S̃ and

|s| ≤ ||GT ||h
ḡ < b̃0

ḡ .

Lemma 9.3.7. Let M be an n-dimensional manifold, n > 1, with the (η, η̃)-slope metric
F̃ηη̃ = αϕ̃ηη̃(||GT ||2h, s). For any (η, η̃) ∈ S̃, the �rst order derivative of the function ϕ̃ηη̃ with

respect to b2 =
||GT ||2h
ḡ2

, i.e. ϕ̃ηη̃1 and the second order derivatives ϕ̃ηη̃12 and ϕ̃ηη̃22 hold the
following relations:

ϕ̃ηη̃1 =
(1−η)ḡ2

2C [(1− η̃)B − (η̃ − η)ϕ̃2ηη̃]ϕ̃
2
ηη̃,

ϕ̃ηη̃12 =
(1−η)ḡ3
2C3

{
A(B + Cϕ̃ηη̃)[(1− η̃)B − (η̃ − η)ϕ̃2ηη̃] + (η̃ − η)2[2 + (1− η)ḡsϕ̃ηη̃]ϕ̃

4
ηη̃

}
ϕ̃ηη̃,

ϕ̃ηη̃22 =
ḡ2

C3 [A
2B + (η̃ − η)2ϕ̃4ηη̃].

(9.48)

Proof. By di�erentiating the identity (9.37) with respect to ||GT ||2h, we get

∂ϕ̃ηη̃
∂||GT ||2h

=
1− η

2C
[(1− η̃)B − (η̃ − η)ϕ̃2ηη̃]ϕ̃

2
ηη̃.
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Now, if we substitute this into ϕ̃ηη̃1 = ḡ2
∂ϕ̃ηη̃

∂||GT ||2h
, the �rst relation in (9.48) follows. Dif-

ferentiating the functions (9.39) with respect to s, together with (9.38) yield the following
identities

A2 =
ḡ

C
[2A2 + (2− η − η̃)(η̃ − η)ϕ̃2ηη̃], B2 =

2ḡ

C
[AB + (η̃ − η)ϕ̃2ηη̃],

C2 = − ḡ

Cϕ̃ηη̃
{AB − (η̃ − η)[2 + (2− η − η̃)ḡsϕ̃ηη̃]ϕ̃

2
ηη̃}+ 3ḡA,

where A2 =
∂A
∂s , B2 =

∂B
∂s and C2 =

∂B
∂s . All these, along with

ϕ̃ηη̃12 = (1−η)ḡ2

2C2 {(1− η̃)B2C + 2ḡA[(1− η̃)B − 2(η̃ − η)ϕ̃2ηη̃]− [(1− η̃)B − (η̃ − η)ϕ̃2ηη̃]C2}ϕ̃2ηη̃,

ϕ̃ηη̃22 = ḡ
C2 (A2C + ḡA2 −AC2)ϕ̃ηη̃,

give the last two formulas in (9.48).

Now we are in position to provide the spray coe�cients corresponding to the general
(α, β)-metric F̃ηη̃.

Lemma 9.3.8. Let M be an n-dimensional manifold, n > 1, with the (η, η̃)-slope metric
F̃ηη̃, having a cross-traction coe�cient η ∈ [0, 1] and an along-traction coe�cient η̃ ∈ [0, 1].
Then, the relationship between the spray coe�cients G̃iηη̃ of F̃ηη̃ and the spray coe�cients

Giα = 1
4h

im
(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
yjyk of α, is given by

G̃iηη̃(x, y) = Giα(x, y) +
[
Θ(r00 + 2α2Rr) + αΩr0

] yi
α

−
[
Ψ(r00 + 2α2Rr) + αΠ r0

] wi
ḡ

−α2Rri,

(9.49)
i = 1, ..., n, where

r00 = −1
ḡwi|jy

iyj , r0 =
1
ḡ2
wi|jw

jyi, r = − 1
ḡ3
wi|jw

iwj , ri = 1
ḡ2
wi|jw

j ,

R = (1−η)ḡ2
2α4B

[(1− η̃)α2B − (η̃ − η) F̃ 2
η̃ ]F̃

2
ηη̃,

Θ = ḡα

2EF̃ηη̃
[α6AB2 − (η̃ − η)2 ḡβF̃ 5

ηη̃], Ψ = ḡ2α2

2E [α4A2B + (η̃ − η)2 F̃ 4
ηη̃],

Ω = (1−η)ḡ2
α2BE

{
[(1− η̃)α2B − (η̃ − η) F̃ 2

ηη̃][α
6B3 + (η̃ − η)2 ||GT ||2hF̃ 6

ηη̃]

− (η̃ − η)2 α2F̃ 5
ηη̃(ḡβB + ||GT ||2hAF̃ηη̃)

}
,

Π = (1−η)ḡ3
2α3BE

{
[(1− η̃)α2B − (η̃ − η) F̃ 2

ηη̃][2α
6AB2 − (η̃ − η)2 ḡβF̃ 5

ηη̃]

+ (η̃ − η)2 α2BF̃ 4
ηη̃[2α

2 + (1− η) ḡβF̃ηη̃]
}
F̃ηη̃,

(9.50)
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with

A = − 1
α2 {(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
F̃ 2
ηη̃ − (2− η − η̃)2ḡβF̃ηη̃ − (2− η − η̃)α2},

B = − 1
α2 {[1− 2(1− η)(1− η̃)||GT ||2h]F̃ 2

ηη̃ − 2(2− η − η̃)ḡβF̃ηη̃ − 2α2},

C = 1
αF̃ηη̃

(
α2B + ḡβAF̃ηη̃

)
,

E = α6BC2 + (||GT ||2hα2 − ḡ2β2)[α4A2B + (η − η̃)2F̃ 4
ηη̃].

(9.51)

Proof. Having the derivatives ϕ̃ηη̃1, ϕ̃ηη̃2, ϕ̃ηη̃12 and ϕ̃ηη̃22 given by Lemma 9.3.6 i) and (9.48),
a simple computation shows that

sϕ̃ηη̃ + (b2 − s2)ϕ̃ηη̃2 =
1
ḡC (ḡsB + ||GT ||2hAϕ̃ηη̃),

(ϕ̃ηη̃ − sϕ̃ηη̃2)ϕ̃ηη̃2 − sϕ̃ηη̃ϕ̃ηη̃22 =
ḡ
C3 [AB

2 − (η̃ − η)2ḡsϕ̃5ηη̃],

ϕ̃ηη̃ − sϕ̃ηη̃2 + (b2 − s2)ϕ̃ηη̃22 =
1
C3 {BC2 + (||GT ||2h − ḡ2s2)[A2B + (η̃ − η)2ϕ̃4ηη̃]},

(ϕ̃ηη̃ − sϕ̃ηη̃2)ϕ̃ηη̃12 − sϕ̃ηη̃1ϕ̃ηη̃22 =
(1−η)ḡ3
2C4 {[(1− η̃)B − (η̃ − η)ϕ̃2ηη̃][2AB

2 − (η̃ − η)2ḡsϕ̃5ηη̃]

+ (η̃ − η)2[2 + (1− η)ḡsϕ̃ηη̃]Bϕ̃
4
ηη̃}ϕ̃ηη̃.

(9.52)
Denoting by wi the components of GT = −ḡhji ∂p

∂xj
∂
∂xi

and using the notation wi = hijw
j , it

follows that wi = −ḡ ∂p
∂xi

and ∂wi

∂xj
=

∂wj

∂xi
. Moreover, according to [10, Lemma 4.3], we have

sij = si = si = si0 = s0 = 0 as well as the the relations 7.39. Collecting the �ndings (9.52)
and (7.39), one can apply Proposition 6.2.2, and thus, our claim yields at once.

We notice that a simpli�ed form of the spray coe�cients G̃iηη̃(x, y) occurs when ||GT ||h
is constant. Indeed, making use of [10, Lemma 4.3] again, since ∂||GT ||h

∂xi
= 2

ḡ2
wi|jw

j = 2ri,

we clearly have that ri = 0 if and only if ||GT ||h is constant and furthermore, the statement
ri = 0 implies ri = r = r0 = 0. All these particularities reduce the formula (9.49) to (7.43)
with (9.49).

It remains only to catch the ODE system which provides the shortest time trajectories
γ(t) = (γi(t)), i = 1, ..., n on the slippery slope, under the in�uence of the active wind Gηη̃.
Namely, if we substitute the spray coe�cients G̃iηη̃(γ(t), γ̇(t)) from (9.49) into (6.2), with

F̃ηη̃(γ(t), γ̇(t)) = 1, it turns out the system (9.2). This ends the proof of Theorem 9.1.2.

Finally, we provide two examples which support the applicability of the above obtained
results by highlighting the two-dimensional case.

Example 1. We start with an inclined plane (a ramp) because this example allows us
to show clearly the behaviour of the indicatrix of the (η, η̃)-slope metrics F̃ηη̃, for any pair
(η, η̃) ∈ S̃. We consider the planar slope given by z = x/2 (i.e. f(x1, x2) = x/2, where x = x1,
y = x2) having the slope angle 26.6◦ and taking the regular point O = (0, 0) as the center
of the indicatrix. In this setting, it turns out that h =

√
hijyiyj has h11 = 5/4, h22 = 1,
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h12 = h21 = 0 as well as q = 1/4, GT = −2ḡ
5

∂
∂x1

and ||GT ||h = ḡ√
5
. Moreover, it follows that

y1 = −2X/
√
5 and y2 = −Y and the equation of motions are given by [13]

−
√
5
2 y

1 = [1 + (η − η̃) ḡ√
5
cos θ] cos θ + (1− η) ḡ√

5

−y2 = [1 + (η − η̃) ḡ√
5
cos θ] sin θ

, (9.53)

for any direction θ ∈ [0, 2π) of the velocity u. By applying the general theory presented in
the previous sections, the strong convexity condition ||GT ||h < b̃0, with b̃0 de�ned in (9.33),
which corresponds to the inclined plane, is equivalent to ḡ < δ1(η, η̃), where

δ1(η, η̃) =


√
5

1−η̃ , if (η, η̃) ∈ D1 ∪ D2

√
5

2|η−η̃| , if (η, η̃) ∈ D3 ∪ D4

. (9.54)

Figure 9.4: Left: The comparison of all speci�c types of the Finslerian indicatrices (the colour-coded

limaçons) centered at the origin of the coordinate system y1Oy2 on the planar (η, η̃)-slope given by

z = x/2, under the action of GT (indicated by black arrows) of constant force ||GT ||h = 0.49; t = 1.

The steepest downhill direction is indicated by the negative axis y1. Right: All (η, η̃)-indicatrices

(black) are located between the boundaries consisting of MAT (the lower part, green) and CROSS

(the upper part, red), i.e. the maximum range, as well as ZNP (the upper part, blue) and RIEM

(the lower part, white), i.e. the minimum range. The MAT and CROSS indicatrices intersect each

other in the points Q1 and Q′
1, which correspond to the directions of the self-velocity u: θMAT ∈

{77.2◦, 282.8◦} and θCROSS ∈ {102.8◦, 257.2◦} or, equivalently, the directions of the resultant velocity

vηη̃: θ̃ ∈ {77.2◦, 282.8◦}, respectively, and ||vηη̃||h ≈ 1.108, where ||u||h = 1. The ZNP and RIEM

indicatrices intersect each other in the points Q2 and Q′
2, which correspond to the directions of the

self-velocity u: θRIEM ∈ {75.8◦, 284.2◦} and θZNP ∈ {104.2◦, 255.8◦} or, equivalently, the directions

of the resultant velocity vηη̃: θ̃ ∈ {75.8◦, 284.2◦}, respectively, and ||vηη̃||h = 1.
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We compare all speci�c types of the Finslerian indicatrices considered in our study in Figure
9.4 (left), i.e. ZNP, MAT, CROSS, RIEM, SLIPPERY, S-CROSS and three new cases coming
from the interior of the problem square diagram S̃, i.e. (0.25, 0.75), (0.2, 0.5) and (0.5, 0.2).
The force of the gravitational wind blowing on the planar slope under consideration equals
0.49, which is due to the conditions for strong convexity in the most stringent cases, i.e. MAT
and CROSS, where ||GT ||h < 0.5. Therefore, ḡ <

√
5/2 ≈ 1.118, since ||GT ||h = ḡ/

√
5 for

the ramp z = x/2. Interestingly, the maximum range of an arbitrary (η, η̃)-indicatrix in any
direction is created by MAT and CROSS as well as the minimum range by ZNP and RIEM.
Namely, all (η, η̃)-indicatrices are located in between those boundaries; for the sake of clarity,
see Figure 9.4 (right) in this regard.

Example 2. We consider a triple Gaussian bell-shaped hill G3 given by the function

z = f(x1, x2) =
1

4

3∑
k=1

(k + 1)e−ρk =
1

2
e−ρ1 +

3

4
e−ρ2 + e−ρ3 ,

where for simplicity, we used x1 and x2 instead of x1 and x2, respectively, and ρk = ρk(x1, x2),
k = 1, 2, 3, with

ρ1 = (x1 − 1)2 + (x2 + 1)2, ρ2 = (x1 + 1)2 + (x2 + 1)2, ρ3 = x21 + (x2 − 1)2.

According to [13], the gravitational wind acting on G3 is now

GT = − ḡ

q + 1

(
fx1

∂

∂x1
+ fx2

∂

∂x2

)
, ||GT ||h = ḡ

√
q

q + 1
, with (9.55)

q =
1

4

3∑
k=1

(k+1)2ρke
−2ρk+

3

2
(ρ1+ρ2−4)e−(ρ1+ρ2)+3(ρ2+ρ3−5)e−(ρ2+ρ3)+2(ρ1+ρ3−5)e−(ρ1+ρ3).

Let us denote the maximum value of the function A(x1, x2) =
√

q
q+1 by m, considering, for

example, x1, x2 ∈ [−3, 3] (m = max
x1,x2∈[−3,3]

A(x1, x2)). Making use of a mathematical soft,

an approximate value for m is 0.653 which is achieved at (x1, x2) ≈ (0.652, 1.272). Thus,
for x1, x2 ∈ [−3, 3], ||GT ||h ≤ max

x1,x2∈[−3,3]
||GT ||h ≈ 0.653ḡ. The rescaled magnitude of the

acceleration of gravity ḡ needs handling with greater care to ensure that the geodesics will be
indeed optimal in the sense of time. According to Theorem 9.1.1, the indicatrix of the (η, η̃)-
slope metric F̃ηη̃ on the entire triple Gaussian bell-shaped hillside G3, with x1, x2 ∈ [−3, 3], is
strongly convex for any (η, η̃) ∈ S if and only if ḡ < 1

2·≈0.653 ≈ 0.766. Nevertheless, by using
the general condition ||GT ||h < b̃0, where b̃0 is de�ned in (9.33), it is immediate to verify the
following results.

Lemma 9.3.9. The indicatrix of the (η, η̃)-slope metric F̃ηη̃ is strongly convex on the entire
surface G3, with x1, x2 ∈ [−3, 3] and m = max

x1,x2∈[−3,3]
A(x1, x2), if and only if ḡ < δ2(η, η̃),

where δ2(η, η̃) =


1

m(1−η̃) , if (η, η̃) ∈ D1 ∪ D2

1
2m|η−η̃| , if (η, η̃) ∈ D3 ∪ D4

.
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Figure 9.5: Left: On G3 the time fronts centered at (0, 0) for the cases: MAT (green), ZNP (blue),

RIEM (white), SLIPPERY (with η = 0.7, magenta), S-CROSS (with η̃ = 0.8, yellow), CROSS (red)

and (0.7, 0.8)-slope (black), as well as the related time geodesics (dashed colours, respectively), where

t = 1 (top left) and t = 2 (bottom left; in addition, (0.7, 0.8)-case for t = 1); ḡ = 0.76. The time

geodesics are drawn with a step of ∆θ = π/8 (16 time geodesics) for t = 1 and ∆θ = π/4 (8 time

geodesics) for t = 2. The action of the gravitational wind is indicated by black arrows. Right: The

evolution of the unit time front on the slippery slope of the surface G3 with respect to variable force

of gravitational wind (due to changing the rescaled acceleration of gravity ḡ), where ḡ ∈ {0.76 (black),

3 (magenta), 5 (orange), 7.65 (yellow)}. The initial point is (1, 0) and the traction coe�cients are

�xed, i.e. η = 0.7 and η̃ = 0.8. The corresponding time geodesics in the initial setting (ḡ = 0.76) are

presented in dashed black and drawn with a step of ∆θ = π/8 (16 paths).

Now, we can write the F̃ηη̃-geodesic equations which correspond to G3. According to
Theorem 9.1.2 and Lemma 9.3.8, the time geodesics γ(t) = (x1(t), x2(t)) on the (η, η̃)-slippery
slope of the surface G3 are provided by the solutions of the ODE system

ẍi+ fxir00+
2ẋi
α

[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

]
+

2fxi
q + 1

[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

]
− 2α2R̃ri = 0,

(9.56)
i = 1, 2, where Θ̃ , R̃, Ω̃ , Π̃ and Ψ̃ are given by (9.3), q by (9.55), ri, r, r0 and r00 by (7.39)
with x1 and x2 instead of x1 and x2, respectively, and everywhere in (9.56), x1 = x1(t),
x2 = x2(t).

In order to compare all types of the slippery slopes on G3 with x1, x2 ∈ [−3, 3], the
strong convexity conditions for the most restrictive cases, i.e. CROSS and MAT require that
ḡ < 0.766. For example, we consider time geodesics and time fronts for t ∈ {1, 2} for the case
η = 0.7 and η̃ = 0.8 on the surfaceG3, where ḡ = 0.76 which corresponds to ||GT ||h < 0.5. The
graphical outcome is presented in Figure 9.5, left-hand side. Nevertheless, the strong convexity
condition implies ||GT ||h < 5 for the (0.7, 0.8)-slope. Thus, the maximum value of the rescaled
gravitational acceleration can be relaxed, that is, ḡ < 5

≈0.653 ≈ 7.658. Furthermore, the e�ect
of a variable gravitational wind force by changing the rescaled acceleration of gravity ḡ on
behaviour of the unit time front, is pointed out on the slippery slope of G in Figure 9.5, right-
hand side, where the initial point is located now on the hillside, i.e. (1, 0) and both traction
coe�cients are �xed, i.e. η = 0.7 and η̃ = 0.8. The related unit time fronts are presented for
ḡ ∈ {0.76 (black), 3 (magenta), 5 (orange), 7.65 (yellow)}.
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(B-ii) The evolution and development
plans for career development

Based on the results presented in (B-i) and also the ones obtained so far by the author, in
this chapter we attempt to outline a few future research directions and career perspectives
which we aim to develop.

(B-ii).1 Future research directions in complex Finsler geometry

We compile a list of the main problems we plan to focus on in the near future in the complex
Finsler topic.

The study of the complex Landsberg spaces is yet to be exhausted. Lots of characteriza-
tions for both generalized Berwald and complex Landsberg spaces were presented in Chapter
2. However, some of the theoretical results are not su�ciently supported by examples. So far,
it is known that every Kähler or Kähler-Berwald metric is necessarily a complex Landsberg
metric, but whether there exists a complex Landsberg metric (non-pure Hermitian), which is
neither generalized Berwald nor Kähler, is an open problem which can be called by analogy
with the real case a unicorn problem. To the best of our knowledge, although a few geometers
[81, 82, 101, 134, 145, 146] mentioned our results from [26], a solution for this complex version
of the unicorn problem has not yet been found.

In the context of Chapter 2, as we already pointed out at the end of Section 2.2, it makes
sense to also de�ne and investigate a new class of complex spaces, for example weak Landsberg
spaces, which hold the following relation between the horizontal coe�cients of Rund and
Berwald connections

c

Lijkη
j = Gijkη

j .

This new class of complex Finsler spaces generalizes the complex Landsberg spaces and more-
over, it can be exempli�ed by the Wrona metric, given explicitly in (2.3), which is neither
complex Berwald nor G-Landsberg.

The study of the projectively related complex Finsler metrics presented in Chapters 3
and 4 can be further extended in at least two directions: complex Finsler metrizability and
projective metrizability, drawing on ideas from the real topics [59, 60, 57].

Let us consider a complex spray S (i.e. S = ηk ∂
∂zk

− 2Gk(z, η) ∂
∂ηk

, with the coe�cients

Gk(z, η)) which does not depend on the fundamental function of a complex Finsler space
(M,F ). A regular curve c : [0, 1] →M , c(t) = (zi(t)), i = 1, n, is called geodesic for S, if it is
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a solution of the system of second order ordinary di�erential equations (SODE),

d2zi

dt2
+ 2Gi(z,

dz

dt
) = 0, i = 1, n,

with dzi

dt = ηi (see [116]). Notions of Finsler metrizabitity can also be introduced in the
complex Finsler topic. Namely,

De�nition The complex spray S is complex Finsler metrizable if there exists a complex
Finsler function F which satis�es S (η̄k) = 0, where η̄k = ∂L

∂ηk
. Moreover, S is weakly Kähler

Finsler metrizable if it is Finsler metrizable and S (ηk) =
∂L
∂zk

.

We note that the condition S (ηk) =
∂L
∂zk

is equivalent to the weakly Kähler condition for F (i.e.

θ∗i = 2gj̄i
c
δj̄L = 0, F 2 = L ). Also, it is worth mentioning that if the spray S is weakly Kähler

Finsler metrizable its geodesics are solutions of the Euler-Lagrange equations with respect to
L (see [125, 116]) and thus, it is the corresponding spray of the weakly Kähler Finsler metric
F . Moreover, the weakly Kähler Finsler metrizability problem can also be viewed as an inverse
problem of the calculus of variation on complex manifolds restricted to weakly Kähler Finsler
metrics L. More precisely, this is to �nd the necessary and su�cient conditions (of Helmholtz
type) for the existence of two multiplier matrices (gij̄(z,

dz
dt )) and (gij(z,

dz
dt )) such that

gij̄(z,
dz

dt
)

(
d2z̄j

dt2
+ 2Gj̄(z,

dz

dt
)

)
+ gij(z,

dz

dt
)

(
d2zj

dt2
+ 2Gj(z,

dz

dt
)

)
=

d

dt

(
∂L

∂ηi

)
− ∂L

∂zi
,

i = 1, n, for some complex Finsler functions F .

The notion of projective metrizability appears naturally in the context of Chapters 3-4
and the above discussion. Under assumption that the coe�cients Gk of the complex spray
S are (2, 0)-homogeneous and by an orientation preserving reparametrization of (SODE) (i.e.
t = t(s) with dt

ds > 0) such that c(s) = c(t(s)) is a geodesic for another (2, 0)-homogeneous
complex spray S̃ with the coe�cients G̃k, we say that the homogeneous complex sprays S and
S̃ are projectively related. This is equivalent to the existence of a (1, 0)-homogeneous function
P(z, η) on T ′M such that

G̃k = Gk + P(z, η)ηk.

Therefore, a more general geometry of the projectively related complex Finsler sprays can
be developed. In particular, we say that a complex homogeneus spray is projective Finsler
metrizable if it is projectively related to a weakly Kähler Finsler metrizable spray.

Inspired by a question of Z. Shen in [128, p. 184], another problem related to Chapter 4
that still can be extended is whether it is possible for two projectively related complex Finsler
metrics to have the same hh̄-curvature tensor. As we proved in Theorem 4.2.20, for Kähler-
Berwald spaces (non-pure Hermitian) with vanishing holomorphic curvature, the answer is
positive. Thus, it is natural to �nd an answer for non Kähler-Berwald spaces.

The Zermelo navigation problem, presented in Chapter 5, on the imaginary "sea" given
by a pure Hermitian manifold (M,h) under action of a vector �eld (weak wind) W (i.e.
W = W j ∂

∂zj
and ||W ||h < 1) is not even close to being �nished. It could be interesting to

consider W -Zermelo deformation when W is a gradient vector �eld (i.e. W = hm̄i ∂ω∂z̄m
∂
∂zj

,
where ω : M → R is a smooth real valued function on M) and to study the behaviour of
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some properties of a Hermitian metric h, e.g. Kähler property and the holomorphic sectional
curvature, by the proposed Zermelo deformation. Also, bearing in mind Matsumoto's slope-
of-a-mountain problem, a Hermitian approach could be tried here. For example, we set a
pure Hermitian manifold (M,h) as an imaginary slope of a mountain with a gradient vector
�eld W = hm̄i ∂ω∂z̄m

∂
∂zj

. Let the vector �eld u ∈ T ′
zM be the self-velocity, under assumption

that ||u||h = 1 as it is usually set up in the standard formulation of the Zermelo navigation
[45]. Under the e�ect of the active wind ProjuW , the resultant velocity is v = u+ProjuW
and the background pure Hermitian metric h is deformed into an R-complex Finsler metric of
Matsumoto type because of its real homogeneity. This is F (z, η) = α2

α−β , where α
2 = hij̄η

iη̄j

and β = −Re h(η, W̄ ).

(B-ii).2 Future research directions related to navigation prob-
lems

The general model presented in Chapter 9, which led to the navigation problems Pη,η̃, covering
the whole square S̃ (Figure 9.1) and making close links between Matsumoto's slope-of-a-
mountain problem and Zermelo's navigation problem under a gravitational wind, is currently
handled. This is only the foundation for the powerful tool represented by (η, η̃)-slope metrics
that provide a big family of general (α, β)-metrics for which the study of their geometric
properties is of particular interest (the �ag curvature, Ricci curvature, the projective �atness,
Einstein conditions, Douglas conditions, etc.). It seems reasonable to pursue several lines of
investigation:

� Since the gravitational wind GT is a gradient vector �eld, the di�erential 1-form β,
de�ned in (7.14), is closed and thus each (η, η̃)-slope metric becomes a candidate to be
a Douglas metric on an n-dimensional manifold with n ≥ 3 (see [140, Lemma 4.1]).

� Taking into consideration the paper [124, Theorem 2], an interesting study of the
geodesics of the Finsler spaces with (η, η̃)-slope metrics can be developed when the
gravitational wind GT is an in�nitesimal homothety, this is LGT h = σh, where σ is a
constant. Also, in this case it could be interesting to see if it is possible to obtain a
classi�cation of (η, η̃)-slope metrics of constant �ag curvature.

� In the more general case when LGT h = σ(x)h (i.e. GT is conformal to h or β is conformal
with respect to α), an interesting problem is to study if (η, η̃)-slope metrics exist that
are projectively �at or projectively related to α [155].

� We remark that the study of the navigation problems Pη,η̃, described separately and
particularly in Chapters 7 and 8, and then uni�ed in Chapter 9, can still be expanded by
assuming that the slippery slope is non-uniform. This means that either only one or both
traction coe�cients (cross-traction coe�cient η ∈ [0, 1] and along-traction coe�cient
η̃ ∈ [0, 1]) could depend on the position x ∈ M , namely η = η(x), η̃ = η̃(x) ∈ [0, 1]. By
varying one or both traction coe�cients, the resultant metrics will be more extensive
than the general (α, β)-metrics, namely F̃ηη̃(x, y) = αϕ̃ηη̃(||GT ||2h, s, η(x)) or F̃ηη̃(x, y) =
αϕ̃ηη̃(||GT ||2h, s, η̃(x)) or F̃ηη̃(x, y) = αϕ̃ηη̃(||GT ||2h, s, η(x), η̃(x)), because of the fact that
ϕ̃ηη̃ depends in addition on a third variable or on two more variables.
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� Another potential extension of the navigation problems Pη,η̃ may occur if we consider a
varying self-speed ||u||h of a craft on a slippery slope (M,h), this is ||u||h = f(x), where
f is a smooth function on M and f(x) ∈ (0, 1], for any x ∈M (see [93]).

An interesting generalization of Matsumoto's slope-of-a-mountain problem, which we plan
to develop in the future, is Matsumoto's slope-of-a-mountain problem with wind, mentioning
that the Matsumoto metric has also been applied to a geometric description of the wild�re
spread structure [105, 88]. In [88], a model for wild�re propagation with wind and slope is
approached. However, we subsequently try to point out our idea for a perspective study of
Matsumoto's slope-of-a-mountain problem with wind and also to answer the question formu-
lated in [44, p. 202] regarding the Matsumoto metric F = α2

α−β in dimension two. Namely,

Our discussion also raises a tantalising question: if the wind were blowing on the
slope of a mountain, would the indicatrix of the resulting F be a rigid translate of
the limaçon?

We consider the navigation data (F,W ) on the Finsler manifold (M,F ), where F = α2

α−ḡβ
is restricted to ||GT ||h < 1

2 (see our notations (7.14)) and the vector �eld W, which represents
the wind in the sense of Zermelo's navigation. If we apply Proposition 6.1.1, we can provide a
new Finsler metric, as well as the necessary and su�cient conditions for the strong convexity
of its indicatrix, as the unique positive solution F̃ of the equation

F (x, y − F̃ (x, y)W ) = F̃ (x, y), (B.1)

for any (x, y) ∈ TM0, because of F (x,−W ) < 1.
According to [61, p. 10 and Proposition 2.14], we note that the addition of the wind W,

blowing in arbitrary directions, generates a rigid translation to the strongly convex indicatrix
IF provided by v = u + GMAT (see the �rst step in Section 7.2.1 with η = 1). Thus, also
in dimension two, the convex limaçon (i.e. it holds ||GT ||h < 1

2) is only rigidly translated.
Moreover, the condition F (x,−W ) < 1 assures that for any x ∈M , y = 0 belongs to the region
bounded by the obtained indicatrix IF̃ and is essential for the uniqueness of the solution of
the equation (B.1) (see [61, p. 10 and Proposition 2.14]). Further on, the investigation of the
restriction F (x,−W ) < 1, for F = α2

α−ḡβ with ||GT ||h < 1
2 , leads to the following necessary

and su�cient conditions:

h(W,GT ) < ||W ||h(1− ||W ||h) and ||GT ||h <
1

2
(B.2)

for the strong convexity of the indicatrix IF̃ . Following (B.1), the deformation of the Mat-
sumoto metric F = α2

α−ḡβ by the wind W restricted to (B.2) is the Finsler metric F̃ which
satis�es

F̃

(√
||y||2h − 2h(y,W )F̃ + ||W ||2hF̃ 2 + h(y,GT )− h(W,GT )F̃

)
= ||y||2h − 2h(y,W )F̃ + ||W ||2hF̃ 2,

where F̃ is evaluated at (x, y). The last relation is the main ingredient to arrive at the spray
coe�cients corresponding to the Finsler metric F̃ and then to write the ODE system (6.2)
which provides F̃ -geodesics. Since along any regular piecewise C∞-curve γ, parametrized by
time (i.e. the time in which a craft or a vehicle goes along γ) that represents a trajectory in
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Zermelo's problem, it is satis�ed the equality F̃ (γ(t), γ̇(t)) = 1, by F̃ -geodesics one can get
the time-minimizing paths when the wind is blowing on the slope of a mountain. Beyond the
above meaning of the Finsler metric F̃ provided by the last equation, an important direction
is also the study of di�erent geometric properties of F̃ (the �ag curvature, Ricci curvature,
the projective �atness, Einstein conditions, Douglas conditions, etc.).

Bearing in mind the aforementioned perspective that Matsumoto's slope-of-a-mountain
problem with wind is solvable, a natural question that arises is how to navigate on a slippery
slope of a mountain in the presence of a wind in order to come from one point to another point
in the shortest time? The answer of this problem represents a signi�cant future direction of
study that has to include the solution of the Matsumoto's slope-of-a-mountain problem with
wind. More precisely, let us consider for example the slippery slope of a mountain represented
by the n-dimensional Riemannian manifold (M,h), n > 1, with the gravitational wind GT

and the cross-traction coe�cient η ∈ [0, 1]. The time-minimal paths on (M,h) in the presence
of an active wind Gη de�ned by (7.3) and under the in�uence of a arbitrary windW (i.e. with
the equation of motion v = u + Gη +W ) are the geodesics of the Finsler metric Fη which
satis�es

Fη
{
(||W ||2h +Ω1)F2

η − 2[h(y,W ) + (1− η)h(y,GT )]Fη + ||y||2h
}1/2

= (||W ||2h +Ω2)F2
η − [2h(y,W ) + (2− η)h(y,GT )]Fη + ||y||2h, (B.3)

where Fη is evaluated at (x, y), under the restrictions

||W ||2h +Ω1 <
√

||W ||2h +Ω2 and ||GT ||h < b̃0, (B.4)

with Ω1 = (1 − η)[2h(W,GT ) + (1 − η)||GT ||2h], Ω2 = (2 − η)h(W,GT ) + (1 − η)||GT ||2h
and either b̃0 = 1 if η ∈

[
0, 12
]
or b̃0 = 1

2η if η ∈
(
1
2 , 1
]
. In particular, if η = 1 in (B.3) and

(B.4), one can extract the Finsler metric F̃ which solves the Matsumoto's slope-of-a-mountain
problem with wind.

(B-ii).3 Further perspectives
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� 10 in the Q2 journals (such as: 3 in Journal of Geometry and Physics [23, 26, 31], 3
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