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(A) Rezumat

Obiectivul acestei teze este prezentarea principalelor contributii ale autorului la dezvoltarea
geometriei Finsler complexe precum si cele referitoare la extinderi ale problemei Matsumoto
pe panta muntelui, printr-un model general de navigatie optima, bazat pe geometria Riemann-
Finsler, stabilind legéturi directe cu problema de navigatie Zermelo.

Pentru a studia probleme referitoare la spatiile Landsberg complexe, proiectivitate, cur-
burd olomorfi, deformari, etc., sunt combinate tehnici din geometria Finsler reald cu ele-
mente specifice spatiilor Finsler complexe. Problemele clasice (problema Matsumoto a pantei
muntelui MAT gi problema de navigatie Zermelo ZNP), prezentate in literatura de speciali-
tate independent, sunt intens studiate prin intermediul geometriei Riemann-Finsler deoarece
in geometria Finsler, notiunea de lungime de arc desemneazd timpul gi atunci, traiectoriile
optime ca timp sunt local, geodezicele corespunzitoare metricilor Finsler. Tendintele moderne
spre aplicatii, impun dezvoltatrea de noi modele. Caracteristicile principale ale modelelor de
navigatie descrise aici sunt tipul si gradul de compensare ale efectului gravitatiei asupra pantei
muntelui. Acestea permit descrierea mai multor probleme de navigatie i in particular, leaga
problema MAT de cea a navigatiei Zermelo sub influenta gravitatiei.

Teza are doud parti: Partea I. Cdteva aspecte din geometria Finsler complexd care cuprinde
primele cinci capitole (Capitolele 1-5) si Partea a II-a. FEztensii ale problemei Matsumoto a
pantei muntelui cu patru capitole (Capitolele 6-9). La finalul tezei, intr-un capitol separat,
sunt mentionate citeva directii de cercetare care au aparut pe parcursul descrierii rezultatelor
din tezd si care ar putea fi dezvoltate. In continuare, prezentdm pe scurt fiecare parte a tezei.

Partea I. Aceastd parte cuprinde cateva probleme pe care le-am studiat in geometria Finsler
complexa, rezultatele descrise aici fiind publicate in articolele [24] 25] 26, 27, 36, 23, 9, [14].
Capitolul 1 prezintd pe scurt principalele instrumente, specifice geometriei Finsler complexe,
care sunt utilizate de-a lungul acestei parti. In Capitolul 2 prezentim spatiile Landsberg
complexe gi Berwald generalizate, precum si citeva cazuri particulare de spatii Landsberg
complexe. Intre situatiile care apar in cazul complex, comparativ cu cele din cazul real, exista
deosebiri semnificative, numai dacé se ia in seam# faptul cd in geometria Finsler complexi
existd doud derivate covariante orizontale diferite (conjugate), in particular pentru tensorii
Cartan complecsi acestea sunt Cyjpp, si Cz‘jk:\i}v in raport cu conexiunea Chern-Finsler. Este
important de mentionat faptul ca o conditie de forma Cjzp,|, = 0 este echivalenta cu leh‘ =0
si mai mult, in acest caz, coeficientii orizontali L;k ai conexiunii Chern-Finsler depind doar
de punctele z de pe varietate. Probabil ci acesta a fost principalul motiv care l-a determinat
pe T. Aikou si denumeascd spatiile Finsler complexe care au proprietatea ca L;k = ék(z),
spatii Berwald complexe [7]. Cu toate acestea, conditia ca un spatiu si fie Berwald complex
poate fi exprimati prin independeta coeficientilor orizontali G;"k ai unei conexiuni liniare de
tip Berwald BT, de coordonatele directiilor tangente, doar in cazul in care spatiul este Kéhler,
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adicad atunci cand Lé = G;k Agadar, o extensie incontestabild a spatiilor Berwald complexe,
in legiturd directd cu BI', este datd de spatiile Berwald generalizate caracterizate prin faptul
ca functiile G; i depind doar de pozitia z. Pentru a studia spatiile Landsberg complexe, utilizam
alaturi de BT, si o altd conexiune liniard complexi de tip Rund RI', améndoud fiind asociate
conexiunii neliniare canonice. Mai exact, un spatiu Landsberg complex satisface conditia

C
L;k = ;k care se referd la coeficientii orizontali ai conexiunilor RI' gi BI'. Pani acum se
cunoagte faptul ci metricile Kéhler i Kidhler-Berwald sunt metrici Landsberg complexe, dar
existenta unor exemple de metrici Landsberg complexe care nu sunt nici Kahler-Berwald si
nici Kéhler este o problema deschisd. Teoria generald a spatiilor Berwald generalizate este
completati cu citeva rezultate speciale referitoare la meticile Randers complexe in Sectiunea
2.3. Rezultatele din acest capitol sunt publicate in articolele [26] 27].

Problema metricilor Finsler complexe proiectiv echivalente este prezentatd incepand cu
Capitolul 3. Sectiunea 3.2 este preponderent canalizatd pe versiunile complexe ale teoremei
Rapcsak si pe o solutie Finsler complexd a problemei a patra a lui Hilbert. Sectiunea 3.3
exploreaza proiectivititile metricilor Randers complexe F' = a + ||, un rezultat fiind dat de
conditiile necesare gi suficiente ca metricile F si a sd fie proiecctiv echivalente [25].

O analizi mai amanuntita a relatiei de echivalenti proiectivd a metricilor Finsler complexe
permite stabilirea existentei unor invarianti proiectivi de curburéa de tip Douglas si de tip Weyl,
in Capitolul 4. Existd unele similitudini formale cu studiile din geometria Finsler reals, dar
deosebirile dintre cazul real si cel complex sunt mult mai profunde. Mai exact, in Sectiunea
4.2 explorarea relatiei de echivalenta proiectiva conduce la trei invariati proiectivi de curbura
de tip Douglas, iar anularea acestora caracterizeaza spatiile Douglas complexe. De asemenea,
aceasta permite gi obtinerea unor proprietiti suplimentare pentru spatiile Kahler-Berwald.
Prin intermediul unui invariant proiectiv de curburi de tip Weyl se obtine o clasificare a spatiile
Kahler-Berwald de curbura olomorfa constanta si anume, acestea sunt pur hermitiene, daca au
curbura olomorfa o constantd nenuld sau non-pur hermitiene, dacid au curbura olomorfa nula.
Sectiunea 4.3 este dedicatd metricilor Finsler complexe local proiectiv plate. In Sectiunea
4.4 un detaliu esential este posibilitatea scrierii ecuatiilor curbelor geodezice sub o anumita
forma care reduce studiul spatiilor Douglas complexe, la investigarea unor functii care provin
din aceste ecuatii. In Sectiunea 4.5 teoria generali a spatiilor Douglas complexe este aplicati
spatiilor Randers complexe [24] 23].

In Capitolul 5 considerim o problemi de navigatie Zermelo pe o varietate hermitiana
(M, h) si aratdm ci solutiile sunt functii real omogene, adicd R-metrici Finsler complexe de
tip Randers (Sectiunea 5.3). Dincolo de semnificatia faptului c& navigatia Zermelo furnizeaza
o aplicatie concretd a R-metricilor Randers, mult mai important este faptul cd prin inter-
mediul acesteia pot fi construite explicit metrici non-hermitiene (numite W-deforméari Zer-
melo), obtinute prin deformarea metricii hermitiene h, printr-un cAmp vectorial W. In Secti-
unea 5.4 este prezentat acest aspect, alaturi de studiul invariantei unor proprietati ale metri-
cilor hermitiene, ca urmare a W-deformaérilor, considerand campuri vectoriale W particulare
[9L 14].

Partea a II-a. Aceasta parte, bazatd pe rezultatele obtinute in lucrarile [10} 20) 11} 121 [13],
prezintd o colectie de probleme de navigatie pe panta alunecoasd (versantul alunecos) a unui
munte, reprezentat de o varietate riemanniana (M, h) de dimensiune cel putin doi, sub actiunea
unor "vanturi active”, exprimate prin intermediul vantului gravitational (un camp vectorial
gradient), impreund cu doi coeficienti de tractiune. Capitolul 6 puncteazd cateva notiuni
si rezultate de bazd din geometria Riemann-Finsler, acestea fiind necesare in prezentarea

vi



Habilitation thesis Codruta Nicoleta Aldea

celorlalte capitole.

Inainte de a prezenta Capitolele 7-9, se impune o scurtd descriere a tipurilor de prob-
leme de navigatie optimé in raport cu timpul, studiate in literaturd prin intermediul ge-
ometriei Riemann-Finsler, considerand un caz particular, mai exact, in prezenta unui vant
gravitagional. Notiunea de vant gravitational introdusad recent in lucrarea [10], in contextul
datelor de navigatie Zermelo [127, 45|, [71], 124] [6T] permite o descriere unitard a tuturor prob-
lemelor de navigatie optima prezentate in Capitolele 7-9, incluzdndu-le totodata si pe cele
clasice (MAT gi ZNP). Aspectul cheie in descrierea modelelor de navigatie este dat de tipul
si gradul de compensare ale efectului gravitatiei asupra pantei muntelui care apoi, caracter-
izeaza ecuatiile de miscare gi in consecintd, metrica Finsler corespunzétoare fiecirui caz. In
continuare ne referim la cele doud probleme clasice, investigate initial de E. Zermelo respectiv,
M. Matsumoto [156} 157, [106].

ZNP se referd la determinarea celor mai rapide traiectorii ale unei ambarcatiuni care se
deplaseaza cu o vitezd maxima in raport cu un mediu inconjuritor, intre doud locatii pe
mare sau in aer, in prezenta unui curent (vant) variabil, exprimat printr-un camp vectorial
W. Problema a fost reformulata si generalizatd la varietati riemanniene (M, h) de dimensiune
arbitrard, cu solutii in geometria Finsler si spatiu-timp [127, [71], 45, 87, 61, 124]. Un camp
vectorial gradient poate fi tratat ca un vant special in datele de navigatie (h, W) [20]. Aceasta
se plieazi cu notiunea de vant gravitational care este componenta G’ a campului gravitational.
Atunci, ecuatia generala de miscare este vzyp = u + GT, unde u reprezinti vectorul viteza
proprie, cu viteza maxima ||u||, = 1. Solutia este datd prin intermediul unei metrici Randers
a carei indicatoare este h-cercul translatat cu G7.

MAT este tot o problemé de minimizare in raport cu timpul, fiind urmirite cele mai rapide
drumuri care pot fi parcurse pe un versant al unui munte, sub efectul gravitatiei, tinand cont
de faptul cd a urca este mai obositor decat a cobori [106]. In acest model, componenta
transversald a vantului gravitational (cross-gravity additive), i.e. Proj,. GT (directia u' fi-
ind ortogonald lui u) este intotdeauna anulatd si, prin urmare, nu are niciun impact asupra
traseului rezultant. In acelasi timp, componenta longitudinald a vantului gravitational (along-
gravity effect), i.e. Proj,GT (fiind evident ci GT = Proj,GT+ Proj,. GT) este considerats
maxima, in orice directie u de miscare, oricare ar fi forta vantului ||GT||,. Acest fapt conduce
la ecuatia de miscare vayrar = u+Proj,G” si de asemenea, implica faptul ci vitezele u si
vpm AT sunt intotdeauna coliniare, ceea ce contrasteaza cu toate celelalte probleme de navi-
gatie descrise in aceastd parte. Solutia este datd prin intermediul metricii Matsumoto a carei
indicatoare este curba limacgon, in cazul unui model 2-dimensional.

O legiitura directd intre MAT gi ZNP sub influenta vantului gravitational este prezentatd in
Capitolul 7. Amandoua problemele sunt generalizate i studiate printr-un model al versantului
alunecos care include un coeficient de tractiune transversal (cross-traction) exprimat prin
intermediul unui parametru real € [0,1]. In aceast model (slippery slope), componenta
longitudinala a vantului gravitational actioneaza continuu, cu toata puterea in orice directie
de miscare, oricare ar fi forta vantului ||GT||,, pe cand, componenta laterald este supusi
compensarii, din cauza tractiunii descrisa prin 7. In acest caz, ecuatia generald de miscare
este v, = u+ (1 —n)Proj,. G +Proj, G, iar solutia problemei este dati de o metrica numita
slippery slope, aceasta fiind o («, 5)-metrica generala [10].

In Capitolul 8 sunt prezentate si alte modele de navigatie optima, pe panta unui munte.
Mai intai este considerat un model in care, spre deosebire de MAT, componenta transversala
a vantului gravitational este luata in considerare in intregime in ecuatia de misgcare, in timp ce
componenta longitudinald este ignorati. In acest model, actionat doar de Proj, . GT (cross-
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gravity), numit CROSS, viteza rezultanta este vy = u+Proj,. GT, iar solutia problemei este
datd tot de o metricd («, B)-generald, (metrica cross-slope) [I1]. Apoi este valorificat faptul
ci fiecare dintre cele doui componente ale lui GT pot fi reduse partial prin introducerea unui
coeficient de tractiune, nu doar luate in intregime ca in MAT (doar componenta laterald)
sau in CROSS (doar componenta longitudinald). Asadar, prin analogie cu modelul slippery
slope din Chapter 7, un alt model denumit slippery cross slope este explorat in Sectiunea 8.3,
introducdnd un alt coeficient de tractiune 7 € [0, 1], numit along-traction. Ecuatia de migcare
este acum v = u+Proj, . GT + (1 — 7)Proj,G7, iar influenta celor dous componente ale
vantului gravitational este aici orecum inversata, comparativ cu modelul slippery slope. Mai
mult, problema slippery cross slope (solutia acesteia fiind datd de metrica numita slippery
slope cross) leagad direct CROSS si ZNP sub influenta vantului gravitational [12].

Capitolul 9 ofera un model mult mai general de navigatie pe panta alunecoasi a muntelui,
care unegte gi extinde toate problemele de navigatie dezvoltate in Capitolele 7 gi 8. Acum
este admisd situatia ca ambele componente ale vantului gravitational, in raport cu directia de
migcare, si varieze simultan pe intervale complete (ambii coeficienti de tractiune n, 77 € [0, 1]
sunt acum inclusi in ecuatia generald de migcare). Acest scenariu reflectd impactul ambelor
tractiuni pe versantul alunecos, ceea ce conferd un sens mult mai larg problemei de navigatie
optimi, in raport cu timpul pe panta muntelui [I3].

Caracteristica comuna tuturor problemelor de navigatie (studiate in Capitolele 7-9) este
cd solutiile optime ale acestora sunt furnizate de metrici Finsler complexe din clasa (a, 3)-
metricilor generale (aga-numitele (n,7)-slope metrics). Acestea sunt obtinute printr-o defor-
mare a metricii riemanniene h, dependenta de directia de migcare u, urmata apoi de o translatie
rigida, data de o directie coliniard vAntului gravitational.

viii



(A-i) Summary

The objective of this thesis is to present the author’s main contributions to the development
of complex Finsler geometry and to the extensions of Matsumoto’s slope-of-a-mountain prob-
lem through a general model of time-optimal navigation based on Riemann-Finsler geometry,
thereby establishing direct links with Zermelo’s navigation problem.

In order to address some aspects related to complex Landsberg spaces, projectivity, holo-
morphic curvature, deformation, etc., different techniques from real Finsler approaches are
applied, combined with the specific tools of complex Finsler geometry. The classic problems,
Matsumoto’s slope-of-a-mountain problem (MAT) and Zermelo’s navigation problem (ZNP),
presented independently in the literature, have been intensively explored within the framework
of Riemann-Finsler geometry. The key argument is that in Finsler geometry, the notion of
arc length can be interpreted as time, thus making the time-optimal paths locally the Finsler
geodesics. The modern trend toward applications requires the development of new models.
The main features of the navigation models described here are the type and range of compen-
sation of the gravity effects on a mountain slope, which facilitate the description of various
navigation problems and, in particular, link MAT and ZNP under the influence of gravity.

The thesis is divided into two parts: Part 1. Different aspects of complex Finsler geometry
which includes the first five chapters (Chapters 1-5) and Part II. Extensions of Matsumoto’s
slope-of-a-mountain problem encompassing four chapters (Chapters 6-9). At the end, a distinct
chapter outlines some future research directions based on the topics discussed in the preceding
chapters. Below, a brief description of each part of the thesis is presented.

Part I. This part comprises a few problems that we have studied in complex Finsler geometry,
drawing heavily on our published papers [24] 25| 26, 27, 36, 23, @, 14]. Chapter 1 briefly
presents the main tools specific to complex Finsler geometry that are utilized throughout
this section. In Chapter 2, we discuss complex Landsberg and generalized Berwald spaces,
including particular instances of complex Landsberg spaces. Notable differences arise when
compared to real reasoning, primarily due to the presence of two distinct horizontal covariant
derivatives in complex Finsler geometry, specifically for Cartan tensors, one has Cjj, and
Cijn with respect to Chern-Finsler connection. It is worthwhile to mention that the condition
Cirn = 01 equivalent to leh\lé = 0 and moreover, the horizontal coefficients Lz ;. of the Chern-
Finsler connection depend solely on the position coordinate z, in this case. This observation
likely led T. Aikou to designate the complex Finsler spaces with L;k = L;k(z) as complex
Berwald spaces [7]. However, the defining characteristic of a complex Berwald space is that the
horizontal coefficients G; ;. of a complex linear connection of Berwald type BI' are independent
on the fiber coordinates, only within the K&hler context when L;k = G;k Consequently, an
unquestionable extension of complex Berwald spaces, directly linked to BT, is represented by
a generalized Berwald space, characterized by ;k being dependent only on the position z.

X
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To manage complex Landsberg spaces, another complex linear connection of Rund type RI is
utilized alongside BT, both tied to the canonical complex nonlinear connection. More precisely,
C

a complex Landsberg space maintains the relationship L;k = G;k, which pertains to the
horizontal coefficients of connections RI' and BI'. To date, Kéhler and K&hler-Berwald metrics
are necessarily complex Landsberg metrics, yet the existence of a complex Landsberg metric
(non-pure Hermitian), which is neither K&hler-Berwald nor K&hler, remains an unresolved
issue. The general theory concerning generalized Berwald spaces is complemented by some
special outcomes for the complex Randers metrics in Section 2.3. The results in this chapter
are contained in the papers [26] 27].

The discussion on projectively related complex Finsler metrics begins in Chapter 3. Section
3.2 primarily delves into the complex variants of Rapcsék’s theorem and develops a complex
Finsler solution for Hilbert’s fourth problem. Section 3.3 examines the projectivities of com-
plex Randers metrics, F' = o + |8, presenting the necessary and sufficient conditions for the
metrics F and a to be projectively related [25].

A more detailed analysis of the projective change relationship of complex Finsler metrics
in Chapter 4 allows for the establishment of the existence of projective curvature invariants of
Douglas and Weyl types. There are some formal similarities with studies from real Finsler ge-
ometry, but the differences between the real and complex cases are much more profound. More
precisely, in Section 4.2, exploring the projective change relationship leads to three projective
curvature invariants of Douglas type, and the vanishing of these characterizes complex Douglas
spaces. This also allows for the derivation of additional properties for K&hler-Berwald spaces.
Through a projective curvature invariant of Weyl type, a classification of K&hler-Berwald
spaces of constant holomorphic curvature is achieved, whereby these spaces are either pure
Hermitian if they have a non-null constant holomorphic curvature or non-pure Hermitian if
they have null holomorphic curvature. Section 4.3 is dedicated to locally projectively flat
complex Finsler metrics. In Section 4.4, an essential detail is the possibility of rewriting the
equations of geodesic curves in a form that simplifies the study of complex Douglas spaces
to the investigation of certain functions that arise from these equations. In Section 4.5, the
general theory of complex Douglas spaces is applied to complex Randers spaces [24] 23].

In Chapter 5, we consider a problem of Zermelo navigation on a Hermitian manifold (M, h),
and we show that the solutions are real homogeneous functions, namely R-complex Finsler
metrics of Randers type (Section 5.3). Beyond the significance of the fact that Zermelo
navigation provides a concrete application for the R-complex Randers metrics, much more
important is the fact that through it, non-pure Hermitian metrics (named W-Zermelo defor-
mations) can be explicitly constructed. These are obtained by deforming the pure Hermitian
metric h through a vector field W. Section 5.4 presents this aspect, alongside the study of the
invariance of certain properties of the pure Hermitian metrics as a result of W-deformations,
considering particular vector fields W [9] [14].

Part II. This part, based on the results obtained in our works [10} 20} 1T, 2], 3], presents a
collection of navigation problems on a slippery mountain slope represented by a Riemannian
manifold (M, h) of arbitrary dimension (at least 2), under the influence of "active winds",
expressed through the gravitational wind (a gradient vector field) along with two traction co-
efficients. Chapter 6 outlines several basic notions and results from Riemann-Finsler geometry,
which are necessary for the presentation of the subsequent chapters.

Before presenting Chapters 7-9, a brief description of the types of time-optimal navigation
problems studied in the literature through Riemann-Finsler geometry is necessary, consider-
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ing a particular case, specifically, in the presence of a gravitational wind. The concept of
gravitational wind, recently introduced in the work [10], in the context of Zermelo navigation
data [127, 45, [61], allows a unified description of all the time-optimal navigation problems
presented in Chapters 7-9, including the classical ones (MAT and ZNP). The key aspect in
describing the navigation models is the type and degree of compensation of the gravity effect
on the mountain slope, which then characterizes the motion equations and, consequently, the
corresponding Finsler metric for each case. We refer next to the two classical problems initially
investigated by E. Zermelo and M. Matsumoto [156, 157, 106].

ZNP refers to the determination of the time-minimizing paths of a craft moving at a
maximum speed relative to a surrounding and flowing medium, between two positions at
sea, on the river or in the air, in the presence of a variable current (wind), modelled as a
perturbing vector field W. The problem has been reformulated and generalized to Riemannian
manifolds (M, h) of arbitrary dimension, with solutions in Finsler geometry and spacetime
[127, [71), 45, 87, [61), 124]. A gradient vector field can be treated as a special type of wind in
the navigation data (h,W) [20]. This aligns with the concept of gravitational wind, which is
the component GT of the gravitational field. Thus, the general equation of motion is given
by vzyp = u + GT, where u denotes a self-velocity and ||ul|;, = 1 represents the maximum
self-speed of a sailing or flying craft. The solution is provided by a Randers metric, whose
indicatrix is the h-circle rigidly translated by GT.

MAT is also a time-minimization problem, where the objective is to determine the fastest
paths on a slope of a mountain under the effect of gravity, taking into account that ascending
is more exhausting than descending [106]. In this model, the transverse (lateral) component
of the gravitational wind GT (the cross-gravity additive) i.e. Proj,.G” is always cancelled
and, therefore, has not impact on the resultant path, where u™ is the direction orthogonal to
the walker’s self-velocity u. At the same time, the longitudinal component of GT (the along-
gravity effect) i.e. Proj, G’ (making evident that GT= Proj, G+ Proj,. GT) is considered
to act at full strength in any direction u of motion, regardless of the wind force ||GT]|.
This leads to the equation of motion vasar = u—l—ProjuGT, impling that the velocities v and
vapaT are always collinear, which contrasts with all other navigation problems described in
this part. The solution is provided by the Matsumoto metric whose indicatrix is a limacon in
a two-dimensional model of the slope.

A direct connection between MAT and ZNP under the influence of a gravitational wind is
presented in Chapter 7. Both problems are generalized and studied through a slippery slope
model that incorporates a cross-traction coefficient, expressed by a real parameter n € [0, 1].
In this model (slippery slope), the longitudinal component of the gravitational wind acts
continuously, at full strength, in any direction of motion, regardless of the wind force |G|,
whereas the lateral component is subject to compensation due to traction, described by n. In
this case, the equation of motion is given by v, = u + (1 — n)Proj,+ GT+Pr0j,G”, and the
solution to the problem is provided by a Finsler metric called the slippery slope metric, which
belongs to the class of general (o, 8)-metrics [10].

In Chapter &8, additional models for time-optimal navigation on a mountain slope are
presented. First, a model is considered in which, unlike MAT, the transverse component of
the gravitational wind is fully taken into account in the equation of motion, while the along-
gravity effect is reduced completely. In this model, influenced solely by cross-gravity impact,
referred to as cross slope (CROSS), the resultant velocity is given by vy = u+Proj,. GT, and
the solution to the problem is again provided by a general («, 5)-metric, called the cross-slope
metric [IT]. Next, the fact that each of the two components of G can be partially reduced

xi
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by introducing a traction coefficient is leveraged, rather than considering them entirely as
in MAT (where only the lateral component is taken into account) or in CROSS (where only
the longitudinal component is considered). Thus, by analogy with the slippery slope model
from Chapter 7, another model, referred to as slippery cross slope, is explored in Section 8.3,
concerning the along-gravity scaling by introducing an along-traction coefficient 77 € [0, 1]. The
equation of motion now becomes vj = u-+Proj, . G’ +(1—17)Proj,GT and the influence of the
two components of the gravitational wind is somewhat reversed compared to the slippery slope
model. Moreover, the slippery cross slope problem (whose solution is given by the slippery
slope cross metric) directly connects CROSS and ZNP under the influence of the gravitational
wind [12].

Chapter 9 provides a much more general model of navigation on the slippery slope of the
mountain, which unifies and extends all the navigation problems developed in Chapters 7 and
8. In this case, it is now allowed for both components of the gravitational wind, relative to
any direction u of motion, to vary simultaneously in full ranges (both traction coefficients
n, 1 € [0,1] are now included in the general equation of motion). This scenario reflects the
impact of both types of traction on the slippery slope, giving a much broader meaning to the
problem of time-optimal navigation on the mountain slope [13].

A common characteristic of all the navigation problems studied in Chapters 7-9 is that their
optimal solutions are provided by complex Finsler metrics belonging to the class of general
(a, B)-metrics (the so-called (7, 7)-slope metrics). These are obtained through a direction-
dependent deformation of the background Riemannian metric h, followed by a rigid translation
along a direction collinear with the gravitational wind.

xil
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(B-i) Scientific and professional
achievements

Introduction

The scientific results included here represent a collection of outcomes of the author in the
complex and real Finsler geometries. Th presentation is structured into two parts: Part L.
Different aspects of complex Finsler geometry which comprises the first five chapters (Chapters
1-5) and Part II. Extensions of Matsumoto’s slope-of-a-mountain problem with four chapters
(Chapters 6-9), which aim to show separately the contributions of the author in both branches
of Finsler geometry (complex and real). Although somewhat unusual, we start (in Part I) by
presenting some results obtained in complex Finsler geometry - the principal background of
the author. Motivated by the modern trend toward applications, in recent years the author
has expanded her research area to also include the older and more widely known branch of
Finsler geometry, namely the real Finsler geometry, proposing an original idea that generalizes
the famous Matsumoto’s slope-of-a-mountain problem (in Part II).

Part 1. Different aspects of complex Finsler geometry

Professor Shiing-Shen Chern wrote [70]:

"Complexr Finsler geometry is extremely beautiful. Again the bundle of line ele-
ments PT M plays the important role. The scalar product on the pulled-back T M
gives rise to a Hermitian structure on the complexification of the latter. Here the
geometrical properties mix well with the complex structure; connection forms are
of type (1,0) and curvature forms are of type (1,1). A real valued holomorphic
curvature, as a function on PTM, can be introduced”. E]

Bearing in mind the perspective of S. S. Chern, we tried to introduce general themes from
real Finsler geometry into complex Finsler geometry. Nevertheless, there are noteworthy
differences and specific tools when compared to the real reasoning, all these being emphasized
in each chapter of Part I. Certainly, as expected, our study is far from being complete. Here
we point out just some of the main problems that we have approached in complex Finsler
geometry, mostly based on our papers |24}, 25, 26] 27, [36), 23, 40, 14]. More precisely, in this
part, we present the complex Landsberg and generalized Berwald spaces as well as a few
particular cases of complex Landsberg spaces for which the unicorn problem has no solution
(Chapter 2). The problem of the projectively related complex Finsler metrics is addressed

!Shiing-Shen Chern, Finsler Geometry Is Just Riemannian Geometry without the Quadratic Restriction,
Notices of the AMS, September 1996.
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in Chapter 3, mainly focused on the complex versions of Rapcsak’s theorem and a complex
Finsler solution of Hilbert’s fourth problem. Making full use of the projective changes of
the complex Finsler metrics, in Chapter 4 we present a few projective curvature invariants
of Douglas and Weyl type which then allow us to point out some complex Finsler spaces of
constant holomorphic curvature along with the complex Douglas spaces. At the end of this
part, in Chapter 5 we consider Zermelo’s navigation problem on a Hermitian manifold, trying
to indicate how some properties of a Hermitian metric are affected by the Zermelo deformation
under action of some special winds.

There is not enough space here to prove with other results that our contribution in complex
Finsler field is relevant (see for example: [31L [32 B4] for complex Cartan spaces, [38, B7,
28] for n-Einstein spaces and holomorphic sectional and bisectional curvatures, [115], 29] 30]
for a complex Finsler approach of gravity, [14], 15] for complex Finsler solutions of Zermelo
navigation problem on Hermitian manifolds). However, from our point of view the presentation
of this part seems natural.

Part II. Extensions of Matsumoto’s slope-of-a-mountain problem
Professor Paul Finsler answered in 1969 [106], [L07, §16]:

"In the astronomy we measure the distance in a time, in particular, in the light-
year. When we take a second as the unit, the unit surface is a sphere with the radius
of 800,000 km. To each point of our space is associated such a sphere; this defines
the distance (measured in a time) and the geometry of our space is the simplest
one, namely, the euclidean geometry. Next, when a ray of light is considered as
the shortest line in the gravitational field, the geometry of our space is Riemannian
geometry. Furthermore, in an anisotropic medium the speed of the light depends
on its direction, and the unit surface is not any longer a sphere. Now, on a slope
of the earth surface we sometimes measure the distance in a time, namely, the
time required such as seen on a guidepost. Then the unit curve, taken a minute as
the unit, will be a general closed curve without centre, because we can walk only a
shorter distance in an uphill road than in a downhill road. This defines a general
geometry, although it is not exact. The shortest line along which we can reach the
goal, fo%]mstance, the top of a mountain as soon as possible will be a complicated
curve.”

The idea for the results presented in this part comes from two iconic problems: Zermelo’s
navigation problem (ZNP) and Matsumoto’s slope-of-a-mountain problem (MAT) which are
continuously topical issues and examples in the research area of Riemann-Finsler geometry
because of their intuitively clear formulation, modelling and significant applications in physics.
The former, which was stated originally much earlier and solved by Ernst Zermelo, was in-
tended initially to determine the shortest time paths of an object that moves at a constant
self-speed on the Euclidean plane in the presence of an external force like wind or water
current [I57]. In recent years, the problem was generalized substantially and considered on
Riemannian manifolds of arbitrary dimension in purely geometric formulation in the presence
of weak vector fields [127, [45], [Tl [124]. Furthermore, the study was extended for stronger
winds including some investigations on global solutions [154, [61]. The latter was investigated

2The answer of P. Finsler to the question of M. Matsumoto regarding "models of the Finsler spaces”.

4
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for the first time by Makoto Matsumoto (inspired by the answer of P. Finsler [106], [I07, §16])
and also refers to the fastest trajectories (time geodesics) of a person who walks or runs on
a mountain slope under the influence of gravity, taking into consideration that walking uphill
is more tiring than walking downhill (see also [62], 63, [158]). The corresponding research on
the issues in weak vector fields has led to the solutions provided by special Finsler metrics,
namely, of Randers and Matsumoto type, respectively. It is worth pointing out that both
issues are presented in literature as two different problems (see for example [44] Sec. 1.1.1]),
which thus far have been described and studied separately, although their solutions belong to
the class of (a, f)-metrics. In particular, the geometric construction of an indicatrix based
on a rigid translation of a background Riemannian metric in Zermelo’s navigation problem
differs considerably from a direction-dependent deformation included in the Matsumoto prob-
lem. This fact is related directly to the essential difference in the equations of motion that
underlie ZNP and MAT.

The general aim of Part II, focused on our results obtained in [10 20, 11l 12 T3], is
to present a set of navigation problems on a slippery mountain slope that is a Riemannian
manifold under the action of some active winds, expressed in terms of a gravitational wind and
two traction coefficients (separately or even together). A crucial role in our study is played by
the gravitational wind, which lets us collect and describe all time-optimal problems mentioned
in this part, including the classical ones (ZNP and MAT), in a convenient, unified and effective
manner. The key aspect we want to emphasize is the type and range of compensation of the
gravity effects in the described models of the mountain slopes, which then characterize the
general equations of motion and, consequently, the related Finsler metric in each case. Our
study generalizes Matsumoto’s initial exposition [106], whilst, at the same time, creating a
direct link between MAT and ZNP. In fact, these two classical problems in Finsler geometry
become the particular and boundary cases of our study. The investigation presented also
provides new applications of the respective general («, 5)-metric that are described in this
work. More precisely, we formulate and solve the slippery slope problem (Chapter 7) and the
slippery-cross-slope problem that includes the navigation problem under the cross gravitational
wind (Chapter 8). Chapter 9 unifies and extends all navigation problems developed in the
previous chapters, by the most general model of a slippery mountain slope. The key detail is
that here both the transverse and longitudinal gravity-additives with respect to direction of
motion are admitted to vary simultaneously in full ranges.
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Part I. Different aspects of complex
Finsler geometry






Chapter 1

Rudiments of complex Finsler
geometry

This chapter briefly recalls some basic notions about complex Finsler geometry with a few of
its tools (e.g., Chern-Finsler, Berwald and Rund complex linear connections) that are needed
for presenting the next chapters. For more details we specify [Il, 116} [5, [6]. In particular, we
focus on some important properties of the aforementioned complex linear connections that
were proved in our paper [26].

1.1 Complex Finsler spaces

Let M be an n-dimensional complex manifold, z = (z¥) k=1 De the complex coordinates in a
local chart. Note that by k = 1,n we mean k = 1, ..., n.

The complexified Tc M of the real tangent bundle Tgr M splits into the sum of holomorphic
tangent bundle 7" M and its conjugate T” M. The bundle T'M (7 : T'M — M) is itself a com-
plex manifold and the local coordinates in a local chart will be denoted by u = (2*, nk)k:ﬁ.
These are changed into (2%, n’k)k:ﬁ by the rules

ZF =% (2) and 't = 0" n (1.1)
927 7 '

A complex Finsler space is a pair (M, F), where F' : T'"M — R™* is a continuous function
satisfying the conditions:
i) L = F? is smooth on T'M = T'M\{0};
i) F(z,m) > 0 for all (z,n) € T'M; the equality holds if and only if 7 = 0;
iii) F(z,\n) = |[\|F(z,n) for all (z,n) € T"M and X\ € C, \ # 0;
iv) the Hermitian matrix (gﬁ(z, n)) is positive definite, where 9i; = 87?1'2(‘967]‘ is the fundamental
metric tensor. Equivalently, this means that the indicatrix of F'is strongly pseudoconver.

A function f on T"M is called (p, q)-homogeneous with respect to n and 7, respectively if
f(z,An) = NPX9f(z,n), for any XA € C, A # 0. By Euler’s theorem, this homogeneity condition
is equivalent to (%J;nk = pf and %ﬁk = qf. Consequently, from iii) we have

OL 0L

997 1 _ 9937 4, i=j
k'l T apk T gk T Bk

n" =0 and L = g;n'n.
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Thus, L = F? is (1,1)-homogeneous and gi5(z,m) are (0,0)-homogeneous with respect to 7
and 7, respectively.

Roughly speaking, the geometry of a complex Finsler space consists of the study of the
geometric objects of the complex manifold 7'M endowed with the Hermitian metric structure
defined by g;;. Therefore, the first step is to study the sections of the complexified Tc (7" M)
of the real tangent bundle Tr(7'M), which is decomposed in the sum

Te(T'M) = T'(T'M) & T"(T'M).

Let VI'M = kerm, C T'(T"M) be the vertical sub-bundle, locally spanned by {0} = %},
and VT"”M be its conjugate. A natural local frame for T}, (7"M) is {88k , O} and the Jacobi
matrix of the above transformations gives the changinig rules for 57 and Dk A complicate
form of the change rule for 2 2 leads to 1dea of complezx nonlinear connectwn briefly (c.n.c.),
which is a tool "to linearise" this geometry. More precisely, a (c.n.c.) refers to the horizontal
sub-bundle HT'M in T’(T’M) such that 7/(T"M) = HT'M ® VIT'M and H,T'M is locally
spanned by {5zk 87 - Ng 9 9.1, where N,z (z,m) are the coefficients of the (c.n.c.), that hold
the certain rule

{iazlj _ azli i 62 1% 77
T 028 T 0207k 92002k

o = %} is called the adapted frame of the (c.n.c.) which obey the

(1.2)

The pair {0 = 6zk>
change rules §; = %i ’ & and O = ‘gzz - 8’ By conjugation everywhere, it results an adapted
frame {0z, 0} on T(T'M). The dual adapted frames are {dz*, 01"} and {dz*, 67"}.

A section on T"(T"M), locally expressed as follows

0 0
S=n T—QGk(%ﬁ)aT?ka (1~3)

is a complex spray, where G* denote the spray coefficients (see [I16]). Under the changes of
complex coordinates on 7'M, the coefficients G* of the spray S hold the rule

azlz 62 17
0% a0

The notions of complex spray and (c.n.c.) are interdependent, one determlmng the other.

2G" = 2G* (1.4)

D1fferent1at1ng 1} with respect to 7/, it follows that the functions N; = W satisfy the

rule , and hence N ]l define a nonlinear connection. Conversely, any (c.n.c.) determines a
complex spray. Indeed, a simple computation shows that if N ; are the coefficients of a (c.n.c.),
then %N ; 7 satisfy and thus, they define a complex spray.

Certainly, a main problem in this geometry is to determine a (c.n.c.) related only to the
fundamental function of the complex Finsler space (M, F') and corresponding to it the action
of a derivative law D on the sections of T¢(7"M). A well-known solution is provided by
Chern-Finsler (c.n.c.), with the local coefficients

g
T i
Ny =975 5
W.hiCh, are (1,0)-homogeneous with respect to n and 7, respectively ((8kN]’)17k = N]’f and
(8,;N;)ﬁk = 0), being a main tool in complex Finsler geometry (see [116]). From now on, by
0, we mean the adapted frame with respect to the Chern-Finsler (c.n.c.).

10
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Corresponding to Chern-Finsler (c.n.c.), there exists a good complex vertical connection
D called Chern-Finsler connection in [I] or Hermitian-Finsler connection in [5}[6]. This means
that it is of (1,0)-type (i.e. DyxY = JDxY, for any section X on T'(T'M) and for any
vertical vector field Y, where J is the natural complex structure on Tc M) and metrical with
respect to the Hermitian structure. Following the notations from [I16], the Chern-Finsler

connection is locally given by CFT = (N}, L;-k, L%k, C]i-k, C’%k), where

Nj=Lij', Ljy=9"0kg7=0;Ni, Cjp=9g"0gz Lh, =C5 =0 (1.5)

and D(;k(Sj = L;kél, D(;k(% = L%kéi’ Dakaj = C’;ké),, Dakaj = Cjik&l
Denoting by ” 17 ,” |7 ,” 1”7 and ”|?, the h-, v-, h-, - covariant derivatives with respect
to Chern-Finsler connection, respectively, it turns out the following relations

M =g =1F=0, 0= 0, (1.6)

9k = 95k = 9531k = 9715 = 0-
Now, we consider the complex Cartan tensors: Cj5, = 5kgi3 and Cyjp = 8',;915.

Lemma 1.1.1. For any complex Finsler space (M, F), the following statements hold:
i) Cienje = (OnLyy,) girs
i) Cappe = (O Lig) gir + (05 N;) Cim-

_ Ogjr

= 5 7 with respect to n', this gives

Proof. Differentiating N; g7

i Ogir i
9ir = ﬁ - Nkcﬁl- (1'7)

Now, differentiating in 1D with respect to n" it results i), and then with respect to 7", it
leads to ii). O

Recall that R;Ek = —5EL§-,€ — (0zN ,i)CJi-l denote the hh - curvatures coefficients of Chern-

Finsler connection. According to [I, p. 108| and [116], p. 81], the holomorphic curvature of
the complex Finsler space (M, F') in direction 7 is defined by

2 i
Kr(z,m) = L3 Repnt i 0", (1.8)
where Rfj,;h = Rj.]—{hgﬁ,.

In [1I’s tgrminology, the complex Finsler space '(M, F) is strong?y th‘ler iff‘Tfk = 0,
Kiéhler it Tjn’ = 0 and weakly Kdhler iff gﬂTj?kn]ﬁl = 0, where T}, = L%y — Lj,. In [65]
it is proved that strongly Kéhler and Kéahler notions actually coincide. We note that in the

particular case of the complex Finsler metrics which come from Hermitian metrics on M,
so-called pure Hermitian metrics in [116] (i.e. g; = g;5(2)), all these types of Kéhler coincide.

11
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1.2 Connections on a complex Finsler space

As already emphasized in the previous section, between a complex spray and a (c.n.c.) there
exists an interdependence, one determining the other. In [I16] it is proved that the Chern-
Finsler (c.n.c.) does not generally come from a complex spray, excepting the case when the
complex metric is Kdhler. On the other hand, its local coefficients Nf =g kag“"n always
determine a complex spray with the coefficients G* = %N]’fnj, which are (2,0)-homogeneous
with respect to 1 and 7, respectively ((9,G%)n* = 2G* and (9;G*)7* = 0). Furthermore, G
C

induce a (c.n.c.) with the local coefficients denoted by N;f = 0;G" and called canonical in
[116], where it is proved that the canonical (c.n.c.) coincides with Chern-Finsler (c.n.c.) if and
only if the complex Finsler metric is Kéhler.

C .
Further on, we consider the frame {dx, 0;} with respect to the canonical (c.n.c.), where

c ¢ . c c c )
O = 3%;@ — N} 9, as well as the dual frame {dz*, n*}, where on* = dn* + Nfdzj. Moreover,
we associate to the canonical (c.n.c.) two complex linear connections. One is of Berwald type

BI' = (NZ ]k,GZ ,0,0) having the connection form

w( n) = G’kdz —|—GZ dz*, (1.9)

. c .
where sz = 8kN : kj and G = 8,5]\7 7. Another is a complex linear connection of Rund

- c c c c
type RI' = (Nl sz,L;.,—c,0,0), where L]k = lel(5kgﬂ + 0;g,;) and L;’-g = %g“(é,;gﬂ — 019,%)-
We note that RI' is only h-metrical and BI' is neither h- nor v-metrical (for more details
c

see [116]) and the spray coefficients hold the relations 2G* = N]’fnj = N]’fnj = G;knjnk and

c ¢ .
0j =0 — (Nf — Nf)@k.
A few additional properties are specific to the Kahler case. Namely, under Kahler assump-

C
tion one has that 0; = §; ([116] p. 68) and thus, 5Jgkh = 5k9jh If we contract the last
equality with ¢g¥ it results g”(éjgkh 5kg]h) 0, that is Ll = 0. By conjugation, it follows

C
that Li = 0. Also, in the Kéhler case one has L i = L]k = G
Further on, the tools related to the Berwald and Rund Connectlons will be specified every-

c ¢
where by a centred superscript, like above (e.g. dx, L} o X ?k, etc.), while for the Chern-Finsler
connection we keep the initial generic notation, without centred superscript (e.g. Jy, L;k, Xiks

etc.).

Lemma 1.2.1. For any complezx Finsler space (M, F), the following statements hold:

; =k — (-

i) Gl = 0; ) )

Wwgs +9 5 +Gham+Ghowm=—-C 5;
Flho ke 17h |0

i) 2(0;,G") gir = CO +2 = Corjo

) C"'hfk = On(yg 7 )+ (OnGly)gi; + (3hG@)gim;
ij

k
v) C"E}\Bk = aﬁ( ) (05 GY)gi7 + (ahG 1) gim + G Cis

m
gl thCwmv

12
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B
where the index O means the contraction by the fiber coordinate n and 1 is h-covariant derivative
with respect to BT .

Proof. 1) GLii* = O;[(0pG")i"] = 30;((Op N '] = 505105 (9™ e )i n'] = 0.

i) G' = 1]\”773 gmZ 85];;" nn* can be rewritten as follows
) 1 89]?" k|
Glgir = 55 & J (1.10)
Differentiating 1} with respect to 7!, it yields
o 1 (Ogir | Ogir :
Nigir = 5 <8z’: T " — G'Cim. (1.11)
Differentiating (1.11) with respect to n” it results
; L (Ogir | Ognr 1 9Cn, ° c
Wit = o (82;; azlr 3 ok b — GHOWCir) — NiCis — NiCis, (1.12)
which leads to
c K ¢, ¢ c c )
—(0kCirn)n” + NCiz + N{Cizn = Sngir + S19n7 — 2G9ir- (1.13)
¢ . _
Now, taking into account that ¢ 5 = dngir — G}, 957 — G gim and i) it turns out ii).
7| h
iii) Differentiating (.10 with respect to 77", it turns out that
L 9C c
205G gir = = byt — Nin* Oy (1.14)

But, one has also 0;(Ci5n’) = (9,C;5)7 + Cigi, = OR(Cjsi’) + Cig, = Cigp. Thus, using

oo c. . c
1.14) and Njn/ = Njn/ we obtain 2(9;,G*)gir = Sk (CrrpmIn® = 61(Cypn)n®, which together
with i) and the h-covariant derivative rule with respect to Chern-Finsler connection gives iii).

C _
iv) Using again g p = 0k9i; — Gﬁkglj — G%gim, which differentiated now with respect to n”,
ijlk
gives

. aC,; c . . _
(g b )= 7" — G.Ci5 — NLOWCiz1) — (OnGy) g5 — G4Clin — (6hG 1) gim — G5 Cin

= 6kCijn — G1y.Cijt = Giy.Cin — Gt Cimn — (OnGly) 915 — (WG gim

=C 5 —(0hGY)g; — (3hG 2 ) Giims

ijh | k
that is iv).
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For v) we compute

_ 0Cs,

35(91’53 ) = Gt — G4 iy — NL(OiCign) — (0G4 )95 — G Cin — (35G5ﬁ}€)gz’m — G%.Cipm

|k
el

_ __ l __ m (Y - m _ l _
= 0kCijr, — G Cign — G Cigm — G51.Cimi, — G, Cii

+ G%Cﬁm - (3BG§1¢)913 - (35Gﬁ)gim

=C _p —GCi+ G Cn — (0,Gh) a5 — (35Gﬁ)9im-

k

ijh |k
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Chapter 2

On complex Landsberg spaces

This chapter presents the concepts of complex Landsberg and generalized Berwald spaces
that were first introduced by us in [26], as well as a few of their subclasses. More precisely,
the intersection of these two sets of complex Finsler spaces provides the set of G-Landsberg
spaces that includes two other, strong Landsberg and G-Ké&hler spaces. We prove that a G-
Kahler space coincides with a Kéhler-Berwald space and it is included in the set of the strong
Landsberg spaces. Some special complex Finsler spaces with («, 8)-metrics (introduced by us
in [27, 36]) offer examples of generalized Berwald spaces.

2.1 Introduction and the main results

The real Landsberg spaces, in particular the real Berwald spaces, have been a major subject
of study for many geometers over the years. In 1926 L. Berwald introduced a special class of
Finsler spaces which took his name in 1964. It is known that a real Finsler space is called
a Berwald space if the local coefficients of the Berwald connection depend only on position
coordinates. An equivalent condition to this is that the Cartan tensor field is h-parallel to

the Berwald connection, (i.e. Cjjk;» = 0, where ";" means the horizontal covariant derivative
with respect to the Berwald connection). In 1934 E. Cartan emphasized that the Berwald
connection is not metrical and g;j.x = —2Cjjk,0. Therefore if Cjjr0 = 0, then it becomes

metrical. However, such a space was called a Landsberg space by L. Berwald in 1928.

Many great contributions to the geometry of the real Landsberg and Berwald spaces have
been made by Z. Szabo [136], M. Matsumoto [108], P. Antonelli [42], A. Bejancu [50], Z. Shen
[128], etc. Every Berwald space is a Landsberg space. The converse, has been a long-standing
problem [100], 137, [73].

Some general themes from real Finsler geometry about Landsberg and Berwald spaces
were broached in complex Finsler geometry by us (see [26]). There are noteworthy differences
compared to real reasoning, mainly on account of the fact that in complex Finsler geometry
there are two different horizontal covariant derivatives, in particular for the Cartan tensors, one
has Cijp, and the other Cjj 7, with respect to Chern-Finsler connection. As we have already
proved by Lemma for any complex Finsler space, the condition Cjzp,|, = 0 is equivalent
to Czp i = 0 and moreover, the horizontal coefficients of the Chern-Finsler connection depend
only on the position coordinates, namely L;k(z), in this case. Perhaps, this reason led T.

Aikou to call the complex Finsler spaces with Lé- (%), complex Berwald spaces [7]. However,
the condition for complex Berwald space can be characterized by the fact that the horizontal
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coefficients G;k of the complex linear connection of Berwald type BI' are independent of

the fibre coordinates, only in the particular context of Kéhler assumption when, Lék = G; e
Therefore an unquestionable extension of the complex Berwald spaces, directly related to the
linear connection BT, is provided by a generalized Berwald space characterized by the fact
that G;k depend only on the position z. Some characteristics of the generalized Berwald space
are collected in Theorem We note that an interesting study of the generalized Berwald
spaces was also done by C. Zhong in [160], where the terminology weakly complex Berwald
spaces is used for these.

The same arguments as in the real case were taken into account to define a complex
Landsberg space in [26]. Since in the real case, a Finsler space is Landsberg if the Berwald
and Rund connections coincide, we also used as a toolkit, besides BI', another complex linear
connection of Rund type RI', both associated to the canonical complex nonlinear connection,

C

with the local coefficients N]’f = @Gi. However, in complex Finsler geometry the things are

considerably more difficult. On one hand, the connections BI' and RI' are in general not of

(1,0)-type as Chern-Finsler connection. On the other hand, in the complex case alongside the

horizontal covariant derivative with respect to BI', we also have its conjugate and thus it is

hardly to control the relationships between these. Here, we speak about complex Landsberg
C

space iff G; = L;- ;. and various characterizations of the complex Landsberg spaces are provided
by Theorem Further on, we have defined the class of G-Landsberg spaces. This is
included in the class of complex Landsberg spaces with 3,;Gi = 0. Theorem reports
on the necessary and sufficient conditions for a complex Finsler space to be a G-Landsberg
space. A reinforcement of the tensorial characterization for a G-Landsberg space gives rise to

a subclass of G-Landsberg, namely a complex Finsler space is strong Landsberg iff C 5 =
I7h |0
0 and ¢ 5 = 0. Other characteristics of the strong Landsberg spaces are combined in

7h |0

Theoremj. Because any Kéhler space is a complex Landsberg space, the substitution
of the Landsberg condition with the Ké&hler condition in the definition of a G-Landsberg
space had to lead in [26] to another subclass of this, called G-Kdahler. Among other things,
Theorem provides that a G-Kéahler space coincides with a complex Berwald space that
satisfies in addition the Kéhler condition (a Kdhler-Berwald space). The strong Landsberg
spaces are situated somewhere between complex Berwald spaces and G-Landsberg spaces. The
proof of the aforementioned theorems is presented in Section 2.2 as well as the interrelations
among all these classes of complex Finsler spaces. An intuitive scheme with all these spaces
is summarized in Figure [2.1

The general theory on generalized Berwald spaces is fulfilled by some special outcomes
in [26] for the class of complex Finsler spaces with («, 3)-metrics (see Section 2.3). More
precisely, we prove that a complex Randers space assumed to be a generalized Berwald and
the weakly Kéhler is Kéhler-Berwald (Theorem [2.3.6)).

2.2 From complex Landsberg to generalized Berwald spaces

We begin by pointing out a few complex Finsler spaces of Landsberg type.

Definition 2.2.1. Let (M, F) be an n-dimensional complex Finsler space. (M, F) is called

C
complex Landsberg space if G}k = L}k.
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complex Landsherg spaces

Kahlerspaces

generalized Berwald spaces Kahler-Berwald

Figure 2.1: Inclusions

It is worthwhile to mention that any complex Finsler space that is K&hler is a Landsberg
C

space, because under Kéahler assumption, Lj-k = L;k = G;k Therefore, the Kéhler spaces
offer an asset family of complex Landsberg spaces.

Theorem 2.2.2. Let (M, F') be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M, F) is a complex Landsberg space;

i) O 5 =0
o , ,
jTh | k k7h | j
c
w)g 5 = (L} — G5 )gim.
ij | k

Proof. 1) < ii). A direct computation gives the relation
(&
glﬁh + ghﬁl + Glhgim + Gy ghm = 2(Lipgir — Gipgir)
which, together with Lemma ii), provides this equivalence.
i) = iii). Since (M, F) is Landsberg, one has that Gé.kg,-f = %(629]'? + (;jgky). Differentiating
it with respect to 7" yields iii).

iii) = ii). By contracting in iii) with n¥, it turns out that 2(8hG L)girn® = C 5. On the
o §7h [0
other hand, (OhG;k)gﬁnk = 0. From this we obtain ii).
[4 _ c cf
i) & iv). g"'?k = 0k9;5 — Gékgzj - G%gz’m = g"‘lrk + (Lik - Gék)glj + ( ) Gm)gzma where
i )
R
I is h-covariant derivative with respect to the connection RI'. Since RI' is h-metrical, then
C C

g 5 = (L, — le)glj (ij - Gm)gm, and thus the claim follows. O
ij |k

Definition 2.2.3. Let (M, F) be an n-dimensional complex Finsler space. (M, F) is called

G-Landsberg space if it is Landsberg and the spray coefficients G' are holomorphic with respect
ton, i.e. OpG' = 0.

17



Habilitation thesis Codruta Nicoleta Aldea

A few immediately consequences follow below.
Proposition 2.2.4. If (M, F) is a G-Landsberg space then the connection BT is of (1,0)-type.

Corollary 2.2.5. G' are holomorphic with respect to ) if and only if the connection BT is of
(1,0)-type.

Proposition 2.2.6. G* are holomorphic with respect to n if and only if the horizontal coeffi-
cients G;k of BT depend only on z.

Proof. If G* are holomorphic functions with respect to 7, then 3,;Gi = 0 which leads to
C

O Ni =0 and 3,;G§.h = 0. Thus, the functions G;h are holomorphic with respect to 7, too.
Now, we make a similar reasoning like that in [66, Proposition 1.1], but here for the
functions Géh that are homogeneous of degree 0 with respect to n (i.e. (3kG§.h)77k =0). We
consider D, = {n € TUM | F(z,n) < e, € > 0}, with ¢ sufficiently small, and we study the
functions Gé.h on D1 \ D.. Since these functions are homogeneous of degree 0 with respect to
7, their moduli achieve a maximum at an interior point of D1 \ D.. Thus, we can apply the

strong maximum principle, which gives that the functions Gé ,, are constant with respect to n
on D1 \ D.. Now, letting ¢ — 0, it turns out that the functions G;h are locally constant along

of n € T/M \ {0}. Under a change of the local coordinates (2%,7") into (2’*,n'"), the functions

i : 1o 02" 025 029 v 02" 9%z" 1
G]h hO].d the the relatlon G]k = 9. WWGSQ + WW It turns out that G]k depend

only on 2/, too. Thus, globally we have Gék(z) Conversely, if G;k(z) then 3,;G§-h = 0, which

contracted by n/n" turns out our claim. O
Corollary 2.2.7. The coefficients Gé.k depend only on z if and only if 3kG;-h =0.

Proof. 1t is obvious the fact that if G;k depend only on z, then 3kG§-h = 0. Conversely, if
5kG§h = 0, by conjugation we have 5,;G§E =0, i.e. G%E are holomorphic with respect to 7.
Since the functions G%B are also homogeneous of degree 0, by the same arguments as in the

proof of Proposition [2.2.6| one has that 3ng;3 = 0, and by conjugation 3,;G;h = 0. Applying
again Proposition 2.2.6|, we get G;k(z) O

Theorem 2.2.8. Let (M, F) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M, F) is a G-Landsberg space;
C
ii) G, = Ly (2);

“Z)C B:OandC_B_:O;
Ith |0 jOh |0

Proof. 1) « ii) is a direct consequence of Proposition[2.2.6} i) < iii) results by Lemma iii)
and Theorem ii). Under assumptions 9;G* = 0, the equivalence i) < iv) from Theorem

provides the proof for i) < iv).
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i) = v) If (M, F) is a G-Landsberg space then by Lemma ii) and v) we have

Thus, it turns out that C 5 +C 5 = 3};(9 5 +9 5 )=0and by conjugation, the last
|l

Irh | k krh 7|k k|1
relation leads to C 5 +C 5 = 0. Now, using Lemma [1.2.1|iv) and Proposition [2.2.6] it
rlh | k rkh|l
follows that C 5 +C g =0.
§Fh |k krh | j
v) = i) First, contracting with n* the identity C 5 +C 5 =0, it results C 5 =0,

§Fh | k krh | §7h |0
i.e. the space is Landsberg. On the other hand, the contraction by 7*7' of the identity
C 5 +C 5 =0gives2C 5 =0 and by conjugation, this is 2C' 5 = 0. Using Lemma

rih | k rkh |1 ] rOh |0 _0rh |0
1.2.1}iii), we have 2(9;G")gi = C 5 . From here we obtain that 9; G* = 0, which completes
07k | 0
the proof. O

Having in mind the tensorial characterization iii) from Theorem for a G-Landsberg
space, this give rise to another class of complex Landsberg spaces.

Definition 2.2.9. Let (M, F) be an n-dimensional complex Finsler space. (M, F) is called
strong Landsberg space if C 5 =0and C 5 =0.

I7h |0 §7h |0
Theorem 2.2.10. Let (M, F) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:
i) (M, F) is a strong Landsberg space;
i) g 5 (2) and &G = 0;

7 |s ) '
i) C 5 =0 and 0;G" = 0;
I7h | k
7;’()) C B = 0.
jrh | k

Proof. 1) = ii). If (M,F) is a strong Landsberg space, then by Theorem iii) it is

G-Landsberg. Therefore, by Lemma |1.2.1|iv) and v) one has that C 5 = Jn(g 5 ) and
ijh| k ij |k

C

B = 35(9 5 ), which contracted by n* lead to
I7h | k 7|k

On(g » " =05(g 5 " =0, (2.1)
ij |k 7| k

Differentiating the second equality in (2.1)) by n® it yields

0=040s(g » )"+ Ohlg »).

7lk I7|s

Now, using the first relation from 1) it results 5,;(9 5 ) = 0. Since g p are holomorphic

I7|s I7|s
and homogeneous of degree zero with respect to 7, one has that ¢ 5 depends only on z, i.e.
IF|s
g 5 (2). Now, the conditions g 5 (z) and 9;G' = 0 substituted into Lemma [1.2.1|iv), give
IF|s I7|s
C 5 =0. Thus, we have proved ii) = iii).

ijh | k
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To prove iii) = iv) we use again Lemma [1.2.1{iv). Under assumptions iii), (g 5 ) = 0,
' ik
and by conjugation, it follows that d;(g 5 ) = 0. This means that the functions g 5 are
jilk jrlk
holomorphic with respect to . Making use of their homogeneity it turns out that g 5 (2)
il k

and thus the conjugates ¢ p depend on z only. Therefore, v) from Lemma [1.2.1] leads to
=2

ij
C 5 =0, this is iv).
Irh | k
The proof is complete if we show that iv) = i). Indeed, C 5 = 0 implies C 5 = 0
o iwhlk I7h |0
and 0;G' = 0, by Lemma [1.2.1|iii). Lemma |1.2.1| v) gives that 0;(¢ 5 ) = 0 and also
ij | k
g 5 (2). Thus, by Lemma|l.2.1{iv), we obtain that C' 5 = 0, which contracted by n* yields
t|k I7h | k
5 = 0. So, the space is strong Landsberg. 0
|

Remark 2.2.11. By Theorem[2.2.8iv) and Theorem|[2.2.1( m) it follows that an n-dimensional
complex Finsler space is strong Landsberg if and only if ( jkglm)( z) and (9hGZ =0.

Having in the mind that any K&hler complex Finsler space is necessarly complex Lands-
berg, we can introduce another generalization for the G-Landsberg spaces. So, by replacing

the Landsberg condition from definition of the G-Landsberg space with the K&hler condition
we obtain:

Definition 2.2.12. Let (M, F) be an n-dimensional complex Finsler space. (M, F) is called
G-Kihler space if it is Kihler and the spray coefficients G* are holomorphic with respect to 1.

A few necessary and sufficient conditions for G-Ké&hler spaces are given by the next theorem.

Theorem 2.2.13. Let (M, F) be an n-dimensional complezx Finsler space. Then the following
assertions are equivalent:

i) (M, F) is G-Kdhler;

i) G;. = L;k,
i) G =1L 2 (2);

i) (M F) zs Kahler-Berwald space;

v) g 5 =0 and@hG’—O
g |k

(& C
Proof. i) < ii). If (M, F) is G-Kihler then L]k =0 and G]k = 0. These imply that ij = L]

. ¢ . ¢ - c c
Conversely, if G;]—C = L;‘E then OpN; = %g“(é,;gﬂ — (51—ng), which contracted by 7* gives
(& C
ﬁk(ékgﬂ) - (5[ng)ﬁk = 0.

Since nkék = 705 and (5lg Dt = (519 7)1, it follows that ((5ng1 5l93k)"7 = 0 which means

that (M, F') is Kahler, as well as GkN; = 0. The contraction of 8kNJZ = 0 by 1/ gives 9;G* = 0,
and thus, G* does not depend on 7".
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&
Taking into account that (M, F') is K&hler if and only if L;k = L;k = Gék, and using Propo-
sition [2.2.6] the claims i) < iii) and i) < iv) follow.
i) < v). It is obvious the fact that, if (M, F) is G-Kéhler, then ¢ » = g5, = 0. Conversely,
ij |k

3 = 0and 3;LG" = 0, then G;k = gh(ékgﬂ). Since G;k = sz then 5kgﬂ = 09,7 and

if g
ij |k

[

C
(5kgﬂ)7]k = (679,7)n". The later means that the space is Kéhler. O
An immediately consequence of Theorem [2.2.13] follows.

Proposition 2.2.14. (M, F) is a Kdhler-Berwald space if and only if the connections BT
and RT are of (1,0)-type.

Lemma 2.2.15. For any complex Finsler space (M, F), Cymp = 0 if and only if Cirnpr = 0.

Proof. It Cizpp, = 0, then by Lemma i), it follows that éhLék = 0 and the conjugates
8;LL;7€ = 0. This means that Lj; are holomorphic with respect to 7, which together with
their homogeneity of degree 0, gives L;k(z) Thus, by Lemma ii) it turns out that
Cirpje = 0. Conversely, if Cjz, 3 = 0 then the condition ii) from Lemma is reduced to
(371Lfk)gﬁ+ (3,3]\7,2)0@1 = 0. By contracting the last relation with n', it follows that (9,-LN,2 =0.
Thus, it turns out that 3,;Lfk = 0. Now, using i) from Lemma one has Cp, = 0. U

We note that Cig, 5 = 0 or Czpjp = 0 implies d7G* = 0, but in general the converse is not

true. The condition 0;G* = 0 together with the Kihler property gives either leh“;, =0 or
Cienjk = 0. Therefore, a tensorial characterizations for Kéhler-Berwald spaces is provided by
the next theorem.

Theorem 2.2.16. (M, F) is Kdhler-Berwald space if and only if it is Kdhler and either
Ciinjie = 0 or Clzpp = 0.

In the remainder of this section we return to the notion of the real Berwald space, [50].
It is a real Finsler space for which the coefficients of the (real) Berwald connection depend
only on the position. Our problem is to see whether there exist a corespondent of this real
assertion in complex Finsler geometry. Taking into account Theorem we have G;k(z),
for any complex Berwald space. Nevertheless the converse is not true. As one has emphasized
below, there are complex Finsler spaces with Gé.k depending only on z which are not Berwald.
Therefore, there comes into view another class of complex Finsler spaces.

Definition 2.2.17. Let (M, F) be an n-dimensional complex Finsler space. (M, F) is called
generalized Berwald if the horizontal coefficients Gé‘k of BT depend only on the position z.

Using Corollary and Proposition we have proved the following result.

Theorem 2.2.18. Let (M, F) be an n-dimensional complex Finsler space. Then the following
assertions are equivalent:

i) (M, F) is generalized Berwald;

ii) G are holomorphic with respect to m;

i11) BT s of (1,0)-type.

Corollary 2.2.19. If (M, F) is a complex Berwald space, then the space is generalized Berwald.
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Proof. Since the coefficients LZ depend only on z, we have ah i =0, which contracted by
WnP gives (‘)hGZ =0. O

We note that in the particular case of the pure Hermitian metrics (i.e. g;; = g;5(2)), the
notions of complex Berwald and generalized Berwald coincide. Summing up all the results
proved the above, the inclusions from Figure seem natural. The intersection of the sets of
complex Landsberg and generalized Berwald spaces gives the class of G-Landsberg spaces.

An example of complex Berwald space is given by the complex version of Antonelli-Shimada
metric

1
Fig = Las(z,w;n,0) = e (In|* +10]*)>, with 7,0 # 0, (2.2)

on a domain D from ﬁ\?, dim M = 2, such that its metric tensor is nondegenerated. We
relabeled the local coordinates z', 22, %, n? as z, w, 7, 0, respectively. o(z,w) is a real valued

function, [116, 37]. A direct computation leads to the following non-zero coefficients:

3 do
which depend only on z and w. Also, we get
do do do do
1 2
—9 d —0)0,
G (a 77+a )n and G (az +8 )

which do not depend on 7 and . Thus, Lyg is complex Berwald and in general, it is not
C

Kéhler. Some additional computations shows that L4g is not G-Landsberg (L;k # G;k) In
particular, if o is a constant, then the metric Lag is locally Minkowski.

Another example of generalized Berwald space is provided by the complex version of Wrona
metric on a subset of C", [160]

PQ| _ nf*
OH| ~ PP~ <zn> P

F(z,n) = (2.3)

with (z,nm) € Q = {(z,n) € C" xC" | z # An, A € C}, where P, Q € C", O is the origin of
C™, H is the projection of O on the line PQ and, |PQ| and |OH]| are the Euclidian lengths of

the segments [PQ] and [OH|, respectively. It follows that G* = 0 and also L g 7 G’k which
attest that ( is an example of generahzed Berwald metric which is nelther G- Landsberg

nor complex Berwald. Moreover it satisfies L} knJ =G jknj.
It seems that may be defined and investigated a new class of complex spaces which satisfies

LZ W] G;knj, called for example weak Landsberg, being a generalization of the complex
Landsberg spaces.

Trivial examples of strong Landsberg metrics are provided by the pure Hermitian metrics.
Moreover, any locally Minkowski manifold is Kéhler-Berwald. In the next section we came
with some nice families of generalized Berwald spaces.

2.3 Generalized Berwald spaces with («, §)-metrics

Let @ = a;5(z)dz' ®dz’ be a pure Hermitian metric and let b = b;(z)dz" be a differential (1,0)-
form. By these tools we have defined (for more details see [36, 27]) the complex (a, 3)-metric
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Fon T'M,
F(z,m) = F(a(z,m),B(z,m)]), (2.4)

where a(z,n) = \/a;(z)n'? and B(z,n) = bi(z)n'. Let us recall that the coefficients of
the Chern-Finsler connection corresponding to the pure Hermitian metric o are given by the

formulas
a a

 Oars ,
Njk:amk ;;?nl, sz—a ((5ka 1), Cir=0

and we consider also the settings b' = aﬁbj, |16])? = aﬂbibj, b= b

Lemma 2.3.1. [0’6] Let (M, F) be a complex Finsler space with («, B)-metric that holds

2
885l HbH28 . The following statements are equivalent:
raa’rm _m o m raarm
i) ||b])? babaz aﬂbb b 51
bl Lom g — 5Pmm,
i) | |8b ~F530
R

b; ¢ b, a.
) 3 <azl77 nt— 2blGl> —1—5 7m0t = 0, where Gl 1N}n].

Proposition 2.3.2. [36] Let (M, F) be a complex Finsler space with (o, §)-metric that holds
a

a(.lﬁi = HbHQaO‘ . If one of the equivalent conditions from Lemma |2.3.1| holds, then N; = NJ’

Moreover, if a is Kdhler, then F' is Kdhler.

Theorem 2.3.3. Let (M, F) be a complex Finsler space with (o, B)-metric that holds the

relation 56@ = Hb||28a,. If one of the equivalent conditions from Lemma |2.3.1| holds, then

(M, F) is generalized Berwald. Moreover, if a is Kdihler then (M, F) is Kahler-Berwald.

mk dalm

Proof. By Proposition it follows that the coefficients are expressed as G* = a n'n’
and they are holomorphic with respect to 7, i.e. the space is generalized Berwald. Assumlng

the Kahler property for a,j, it turns out that the space is Kéhler-Berwald. O

In [26], we focused on two classes of complex (a, )-metrics, namely the complex Randers
metrics F' = « + |3| and the complex Kropina metrics F' = ‘%j', |B] # 0. Subsequently, we
present only a few results regarding generalized Berwald-Randers spaces.

Considering the complex Randers metric F' = o+ || we recall the following notations and
formulas [27],

da 1 alBl _ B oL F. FpB
- = —;, - = ——0;, ;= = —; + —b;, 2.5
ot 2« ont  2|p] 1 on' « 1B (25)
ob"  B% Oby B 8b7
N NZ Iy o
+3 (55~ s ) €+ g
where k™ = 2aa/ + %jwlm)niﬁr — @b@r — %(Bﬁigr + Bb'"), v = L+ o*(||b]|* — 1),
¢ = Bn' + a®b’. Consequently, the corresponding spray coefficients are given by
1 o % Oby B (%f ;
Gt = Gz l 7" ) & k™ . 2.6
2 (5 ~ s ) €7+ i 29

Moreover, for the weakly K&hler complex Randers spaces we have proven.
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Proposition 2.3.4. [27] A complex Randers space (M, F') is weakly Kdhler if and only if

o131 [l 4150 g (9 _ O nObn]
n abf —r Fo=j l abm —m, r __
— <a6Fkl + abl@n + 2\5|alerk77]> N+ aby o= 0, (2.7)

- 1 3 . 2(1pl12—182 = 1 7k, 00> Oa;s
where C; = Cj},lkghk: —5 (glj _ %ly) with § = clbIE=18° %, re = Lgrk (20 Sy

18] 2y
ob, obi
and Fy = 5% — —azf,

Theorem 2.3.5. Let (M, F) be a connected complex Randers space. (M, F') is a generalized
Berwald space if and only if (Blr ggj + ng;n = 0.

Proof. It (M, F) is generahzed Berwald then 2G' = G” w(2) mIn®, which means that G is
quadratic in 7. Thus, using ( we have

alBI{ = BI(@®([BII* + [B*)a™ + bl 270" — a*b7b" — Bi'b” — BT G5

LABRAGE - G} + BRI + B12)(GF — G) — 2028a7 ey

— (Bl 25 + By — R (Bl 2 — B ) b] = 0
which contains an irrational part and another rational one. Thus, we obtain
B(@[bl* + [B*)a™ + |[bl P77 — ®b"0 — Bn'b" — Boi| G50
a
= 4|p|*(G* — G*) and

(Blrazj +5§Z§77 )77]77 + |5|2 (6#% — glz’gn )n]bl +2a2ﬁamabr
= 2(e?|b|* + [B*)(G" — GZ).

Their contractions by b; and [; yield
(Gz’ _ Gi)bi — 0;
481G — Gl + 280> (|[o i7" — B07) G5 = 0;

B(a?|[bl[? + 181215507 — B(a?|[bl[* — [812) S + 202|BJ2b" S5 = 0;

a

(2|[bl1? + IBP)(G = Gl + a2 (Blr 55 + B9 )T = 0.
Adding the second and the third relations from (2.8)), we obtain

8b“

4|B17(G" = Gl + (a|[b]* + [BI*) (Bl
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This together with the fourth equation from (2.8)) implies

@ + /Bab'r
07 0z

(G'—=GHl; =0 and (Blr )’ = 0.

Conversely, if (Bl72 8ZJ " Bglz’jn )n? = 0, by differentiation with respect to 7™ we deduce

that (ZT D27 b + 5‘%’”)773 = 0. The last two relations give

i O B by b, )
j _ rbz 7 d bm
92" T gm0 and Vg = bl

B by,
EErEEES

a
which substituted into 1} imply that G* = G* and thus, G are holomorphic in 7, i.e. the
space is generalized Berwald. O

Theorem 2.3.6. Let (M, F) be a connected complexr Randers space. (M, F) is a Kdihler-
Berwald space if and only if it is generalized Berwald and weakly Kdhler.

Proof. If (M, F) is Kéhler-Berwald then it is obvious that the space is generalized Berwald
and in particular, weakly K&hler. Now, we prove the converse. On the one hand, if the space
is generalized Berwald, by Theorem [2.3.5] it turns out that (5122 dz7 + ng; 7" )’ = 0, which
can be rewritten as

ob; ° Obm _
B (8 rwil ' — leGl) + 5@77 ' =0. (2.9)
Moreover, (2.9) implies that

b
5 —n'=0. (2.10)

~ (0b; @ m
16125 (Goan'a’ — 20G') + 1515
On the second hand, the space is assumed to be weakly Kéhler. Therefore, (2.9) and (2.10))
substituted into (2.7)) lead to

_ oy . Oy, .
o’ <5kal + B kT —beg Ul> + 2a|BlaFl% 7 =0, (2.11)

which contains two parts: the first is rational and the second is irrational. It results that

by, -
—by—— 91 "amnt =0 and a7 = 0. (2.12)

The second condition from (2.12)) gives the Kahler property for . Thus, differentiating (2.9))
with respect to 1" it follows that

by _, by ., by 0
bk 1 _ _ ﬁ ( 1 k

aZﬂ? n = _/Bazkn W + 8’) nl + QBblN,lc. (2.13)

Now, (2.13)) together with the first condition from (2.12)) implies that

o b
oor + 0T =0 244
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and from this, it follows its derivative with respect to 7™

ob” Obg,
lz-—bm, —F =0. 2.15
0zk +8 Ozk ( )
Moreover, the relations (2.14]) and (2.15) imply that
_ . Obp, B Obr_. . __ Ob, 5 B 0Obs _
L b d "m— = ||b||*—= . 2.1
o2k~ [pEar" Y VU = g (2.16)

a a a
Plugging (2.14) and ([2.16]) into 1} we obtain N]Zf = N; and thus, Li;j = L};j = Lé-k = L;.k,
i.e. the Randers space (M, F') is Kahler which proves our claim. O

It is worth mentioning that the last result (Theorem [2.3.6]) is valid for any complex Finsler
space, [24]. Alternative proof of Theorem is presented in the next chapter, for any
complex Finsler space.
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Chapter 3

Projectivities in complex Finsler
geometry

Several subjects from projective real Finsler geometry were studied by us in complex Finsler
geometry [25], 24, 23]. This chapter is focussed on the concept of projectively related com-
plex Finsler metrics, in an attempt to approach complex variants of Rapcsik’s theorem and
Hilbert’s fourth problem. As an application of our theory, we study the projectivities of a
complex Randers metric [25].

3.1 Introduction and the main results

The problem of the projectively related real Finsler metrics is quite dated and results from
the formulation of Hilbert’s fourth problem: determine the metrics on an open subset in
R™, whose geodesics are straight lines. Roughly speaking, two Finsler metrics, on a common
underlying manifold, are called projectively related if they have the same geodesics as point
sets. The study of the projective real Finsler spaces was initiated by L. Berwald [53] 52], his
studies mainly concern two dimensional Finsler spaces. Further substantial contributions on
this topic have been made by A. Rapcsék [123], R.B. Misra [108] and, especially Z. Szabo [130]
and M. Matsumoto [109]. The problem of projective Finsler spaces is strongly connected to
projectively related sprays, as Z. Shen pointed out in [I128]. Moreover, the topic on projective
real Finsler spaces continues to be of interest also for some special classes of Finsler metrics
(see [46] 49, 69, 99, 54], etc.).

Based on some ideas from the real case, we introduced in complex Finsler geometry the
concept of projectively related complex Finsler metrics [25]. There are meaningful differences
when compared to real reasoning mainly on account that in complex Finsler geometry, the
notion of a complex geodesic curve comports two nuances: one in the sense of Abate-Patrizio
[1], and the other as introduced by Royden [125]. It is worth mentioning that while a complex
geodesic curve in Royden’s sense has been obtained under weakly Kahler condition along the
curve, a complex geodesic curve in Abate-Patrizio’s sense does not require any such restric-
tion. Thus, we can state that any complex geodesic curve in Royden’s sense is a complex
geodesic curve in Abate-Patrizio’s sense. In order to address a general characterization of
the projectively related complex Finsler metrics, we have considered the complex geodesics in
Abate-Patrizio’s sense.

An overview of the chapter’s content is below. In Section 3.2 we describe the projectively
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related complex Finsler metrics, pointing out the necessary and sufficient conditions for this
(Theorem and Corollary . Theorem attests the invariance of the weakly
Kahler property under a projective change. Complex versions of Rapcsak’s theorem are given
by Theorems [3.2.10] [3.2.11] and [3.2.12] and a complex Finsler solution for Hilbert’s fourth
problem is provided by Theorem The last part of the chapter (Section 3.3) is devoted
to the projectivities of the complex Randers metric F=a+ |B|. We provide the necessary
and sufficient conditions for the metrics F and « to be projectively related (Theorem .
Based on the previous results, we prove that a complex Randers metric F=a+ |B| defined
on a domain D from C" is projectively related to the complex Euclidean metric on D if and
only if « is projectively related to the Euclidean metric and F is a K&hler-Berwald metric

(Theorem [3.3.3)).

3.2 Projectively related complex Finsler metrics

Before presenting the concept of projectively related complex Finsler metrics, we recall the
notion of the complex geodesic curve from [I]. Based on this, we can emphasize an important
property of the Kéhler-Berwald spaces, proved in [24].
In Abate-Patrizio’s sense (see [I, p. 101]) a complex geodesic curve is provided by the
equation
D

o™ =07 (T, Th),

where T" is the horizontal lift of the tangent vector along the curve and in the local coordinates,
0* is expressed as . ) ) ‘ ‘
0* = gmkgiﬁ(Lgm — L7 -)d2' ANdZ @ 0.

Moreover, the differential equations satisfied by a complex geodesic curve z = z(s) of (M, F),
with s a real parameter, can be written locally as

d*z 4 dz . dz

2G" —) =6 — 3.1
G (x(s), ) = 07(x(s), ), (31)

where 2(s), i = 1,n, denote the coordinates along of the curve z = 2(s) and

) o c. ) = c
2G" = Nj = Ny’ and 0™ = 2¢”'5; L.

c ¢ . . .
Since §; = d; — (Nj’-‘C — Nf)@k and 0;L = 0, immediately results that 6*'n; = 0, where n; = 0;L.
We note that the functions 6* are vanished if and only if the space is weakly Kéhler [116].
Moreover, 0*" are (1,1)-homogeneous with respect to 1 and 7 respectively, i.e. (0,0*)n* = *
and (0p0*))7k = 0*1.
Lemma 3.2.1. Let (M, F) be a complex Finsler space. Then, (OzG*)n; = 0.

. .. ; Ogn; . .
Proof. 1t results differentiating G'g;; = % agz”'j n"n® with respect to 7* and then contracting on

it by 7. O

As a consequence of Lemma it follows that the holomorphic curvature of the complex
Finsler space (M, F) in direction 7 can be simply expressed in the terms of the spray coefficients
G*, namely

4 oGk,
ICF(ZW) = _ﬁgkmﬁﬁhn .
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Also, it is necessary to compute

O™ = 200(¢7'0;L) = —2¢7 g™ (Ogim) (5;L) + 297 94 (55 L)

*l i jig 1 OL T

L - O%L . C . c_
. 2 - .
Now, using Lemma |3.2.1{ and % = Nj’.”gkf we obtain

(5#\;37'7)(3@) = (8k]\;§)ﬁr = [0;(0kG")]ir = O5[(OkGT )] — (OxGT)(;01)
= —(0G")Cy1,

where 7, = ;L and C’lﬁnl = 35777". Therefore,

6" = —0"Cly + 27 [(NT = NT)gir + (DG Cip)- (3.2)

Theorem 3.2.2. [2]|] Let (M, F) be a complex Finsler space that satisfies the weakly Kdhler
and generalized Berwald conditions. Then (M, F) is a Kdihler-Berwald space.

c

Proof. Under given assumptions, the relation 1} is 293i(N§ — Nf gk = 0, which contracted

C
by 3gimg®" gives N5, — N5 =0, i.e. F is Kéhler. This, together with the assumption that F
is generalized Berwald, proves our claim. O

Let us consider L another complex Finsler metric on the complex manifold M.

Definition 3.2.3. The complez Finsler metrics L and L on the complez manifold M, are
called projectively related if they have the same complex geodesics as point sets.

This means that for any complex geodesic z = z(s) of (M, L) there is a transformation of
the parameter s, such that § = §(s), with % > 0 and z = 2(8) is a geodesic of (M, L) and,
conversely.

We assume that z = z(s) is a complex geodesic of (M, L). Thus, it satisfies (3.1)). Taking
an arbitrary transformation of the parameter ¢t = t(s), with % > 0, generally, the equations
cannot be preserved. Indeed, for the new parameter ¢ we have

i i i i 2 i 2
dz' _ dz'dt 2 d*z (dt) +dz d*t ok (z’dz> _ (dt) e @)

ds _ dt ds’  ds®  dt2 \ds dt ds?’ ds ds T dt
Then,
d2 dz Codz ] [dt\? A2z dZ d?t dz dz
- - 2 (2 - _0*Z -~ - — o - 2 (2 - _0*1 -~
gz T ) 0 dt)] (ds> B7 arae g e )
_dddn
o dt ds?’
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Therefore, we get the equations (3.1) in parameter ¢,

d?z . dz , dz dzt d’t 1
— +2G"(2(t), —) = 0" (2(t), —) — ———— =1 3.3
7+ 2. ) = 0. )~ G =T (33)
which is equivalent to
a2z 7 dz *7 dz
W‘l‘QG(z,E)—G (Z’E):_@ 1 i=1n (34)
dZi d82 (@)27 ) . .
dt ds

Corresponding to the complex Finsler metric L on the same manifold M, we have the spray
coefficients G* and the functions §*. If L and L are projectively related, then z = z(3(s)) is
a complex geodesic of (M, I~/), where § is the parameter corresponding to L. Now, we assume
that the same parameter ¢ is transformed by ¢ = ¢(3) and as the above we obtain

2 i ~ P
G 2602, F) -0 (= F)  d 1

. _ Yt i—1n (3.5)
dz? 2 29 ? 9
a (%)

The difference between (3.4 and (3.5)) gives

s dzo s dz i, dz wi, dz d’t 1 d’t 1 dz*
2 ) e ) 2P ) T ) gy T @ |

(2 = T I & (3.6)
ds ds

i = 1,n. Since the equations (3.6]) is satisfied along any geodesic curve, they can be rewritten
as

2G(z,m) — 20" (z,n) = G*(2,1) — 0" (2,n) + B'(z,n) + 2P(z,n)n’, i=T,n (3.7)

s, dz ~, dz odz odz dz dz

2G" (z,—) — 0" (2, —) =2G" (2, —) — 0" (2, —) + 2P(z, — ) —

(5 %) 5°(:, ) = 26(, %)~ 6°(, 2) 4 2P (2, )

for some smooth functions P on T'M. Using the notation B* = %(é*l — 0*%), the homogeneity

of the functions 6* and 6* give (9, B)n* = B' and (0;B')7* = B'. Based on these, the
relations (3.7)) are simplified as

i=TI,n (3.8)

Gi=G'+ B+ Pr. (3.9)

Now we are going to point out some properties for P. To do this, we redeem the homo-
geneities of the functions which are included in (3.9), going from 1 to An for any A € C, A # 0.
More precisely, differentiating in (3.9)) with respect to n and 77 and then setting A = 1, it turns
out

B! = [(0yP)n* — Pln' and B’ = —(9;P)i*n (3.10)

and thus, for every i = 1, n, ) .
(OxP)n* + (05 P)i" = P. (3.11)

Lemma 3.2.4. Between the spray coefficients G* and G* of the metrics L and L on M there are
the relations , where P is a smooth function on T'M, if and only if G* = G+ (O P)n*n’,
B'(z,n) = —(0pP)*n’ and (0pP)n* + (9 P)7* = P, for any i =T,n.
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From the above considerations, we get

Lemma 3.2.5. If the complex Finsler metrics L and L are projectively related, then there is
a smooth function P on T'M satisfying (OxP)n* + (0zP)7* = P, such that

éi(z,n) = Gi(z,n) + (5kP)nkni and Bi(z,n) = —(3,-€P)ﬁk77i, 1=1,n. (3.12)

If we consider the notations V = (9, P)n* and Q = —2(9zP)7, it results that P = V-3
Moreover, taking into account again the homogeneity of the functlons G', G' and B’ it turns
out that V is (1,0)-homogeneous and @ is (0, 1)-homogeneous.

Further on, we focus on the converse implication. Namely, under assumption that z = z(s)
is a complex geodesic of (M, L), we show that the complex Finsler metric L with the spray
coefficients G* given by

Gi=G + B+ Py,

where P is a smooth function on T"M, is projectively related to L, i.e. there is a parametriza-
tion § = 5(s), with ills > 0, such that z = z(5(s)) is a geodesic of (M L).
If there is a parametrization § = 5(s) and z = 2(s) is a complex geodesic of (M, L), it
follows that
d*z dz dz d’s 1 d

o, Yo/ e 4 Hey B2 haiadl
432 G'(z, d~) 6 (=, 7 ds? (d5)? d5

for any i = 1,n, and moreover using (3.12), it leads to

d?z dz dz dz d’s 1 dz*
) Vo e WY L o aiad oP(z. )22 - V& i1
32 (2 )+ d§)+< (55~ @2 (35)2> FEA

Thus, z = z(3(s)) is a geodesic of (M, L) if and only if

dz d?s 1 dz .
<2P( d~) d82(§§)2> e 0,7=1,n. (3.13)

Assuming that the complex geodesic curve is not a line, it results

dz . ds  d°3
Denoting by u(s) = gs, we get Z—Z and so, 2Pz, %)u = %. We obtain u = ae/ 2P(® &)ds

From here, it results that there is 5(s) = afefQP(z’%)des + b, where a,b are arbitrary
constants.
Summing up all the above results, we have proven the following theorem.

Theorem 3.2.6. Let L and L be complez Finsler metrics on M. Then L and L are projectively
related if and only if there is a smooth function P on T'M, such that

G'=G +B + Py, i=1,n. (3.15)
As a consequence of Lemma [3.2.4] we have the following result.
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Corollary 3.2.7. Let L and L be complex Finsler metrics on M. L and L are projectively
related if and only if there is a smooth functwn P on T'M, such that G' = G* + (O P)nnt,
—(OP)*n' and (O P)n* + (05 P)it* = P, for any i = T,n.

The relations (} which link the spray coeflicients G’ and G’ of the projectively related
complex Finsler metrics L and L is called projective change.

Theorem 3.2.8. Let L and L be two projectively related complex Finsler metrics on M. Then,
L is weakly Kdhler if and only if L 1s also weakly Kdhler. In this case, the projective change
is G = G' + Pn', where P is a (1,0)-homogeneous function.

Proof. Since L and L are projectively related, then G = G' + (8, P)n*n', B = (8,C Yigkn

and (8kP)77 + (0 P)* = P. First, if L is weakly Kéhler, then 6% = 0 This implies that
9*Z = —2(6k )7*nt, which contracted by Girii” = O;L, gives 0 Girf = —2(6k )" L. Next,
0*igirf” = 0. Thus we get (ak )7¥ = 0, which implies 6* = 0, i.e. L is weakly Kshler
and P = (9, P)n®. Moreover, it follows that G' = G + Ppj'. The converse implication results
immediately following the same arguments. O

Lemma 3.2.9. Let L and L be complex Finsler metrics on M. The spray coefficients G' and
G' of the metrics L and L satisfy

Gl=Gly ;g 0.GeLyn* +26,6@D)] i =T (3.16)

Proof. Starting with 5kL = 2= Nk(alL) by a direct computation we obtain

.. oL 02L °
Or(0kL) = Or <8 % Nk@l@) PRT (Or Nk)(alL) Nigir-

_. C
If we contract last relation with §"n¥, and we take into account the relation n*8, = n¥é, it
turns out that

FiO(Se )t = §0n(5u L)t = 2G7 — 257 (-G (G L) — 26
and thus, (3.16) is justified. O

Next, we prove few complex versions of the Rapcsak’s theorem.

Theorem 3.2.10. Let L and L be complex Finsler metrics on M. Then, L and L are projec-
tively related if and only if

1
2
[(6xL)n* +6° (0 L)].

[&@ﬂmﬁ+m&0wam = P(O;L) + B'Gir, r =1,m, (3.17)

; = 1
with P = 57
Proof. We assume that L and L are projectively related. Then, by Theorem and the
relation (3.16]) we have

B'+ Py =

s

fﬂ&@ﬂmﬁ+m&0wam,iz1, (3.18)
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First, if these relations are contracted by g;7»7"", we get

1 . .- - 1. - . .-
—ie*Z(aiL) + PL = 5(zﬁ((skL)?y’%m + (0 GHF™(O,L),

because of B'§;mn™ 10”(3 L).
Usmg the homogenelty of the functions G* (thls is (8 GHpm ' = 0) and the fact that
Om (Sp L)nFa™ = (5kL) , it turns out that P = —[(5kL) + 0*1(9;L)]. Second, contracting

the relatlon 8) only by gim, we obtain (3.17).

Conversely, substltutmg the formulas (3.17) into (3.16)), it leads to the relation (3.15) with
P = [(5kL)77 + 6*(d;L)], i.e. L and L are projectively related. O

Theorem 3.2.11. Let L and L be complex Finsler metrics on M. Then, L and L are projec-
tively related if and only if

00 Ly +20,GNOIE) = = (oL B D), (3.19)

B" = —;EH*Z(@.J/)UT, r=1,n,
P = {(GeEp + 07 (L)
Moreover, the projective change is G' = G + i(éki)nkn’
Proof. By Corollary if L and L are projectively related, then there is a smooth function

P on T'M, such that G* = G + (. P)n*n’, B' = — (03 P)i*n’ and (O P)n* + (0pP)7* = P,
for any i = 1,n. Using (3.16)), it follows that

) 1 ) - : .-
(OcPyn'’ = 55" [a,:(akL)nk +20:GYHL)|, i =T)m, (3.20)
which contracted firstly by g;m and secondly by g;»7"™ give
e (51 L)n* + 2(8:GH (L) = 2(0, P)n* (9;L)

and (9 P)n* = i(éki)nk respectively, since 6L is (1, 1) homogeneous. Now, contracting
Bt = —(0yP)i*n" with §;n7™ and using the fact that B* §m7™ 10”(3 L), it turns out
that (9 P)if* = 550*(9;L). Therefore, it follows that P = [( kL)n + 6*(O;L)].

Conversely, substituting the first condition (3.19) into @I}, we obtain G* = G + Vil
where V = i(&kL)nk. Now, since P = i[(ékl/)nk + 0*1(9;L)], we get

hl‘H sl

. 1 - . 1 . . .
OP)* = — (5. L)n" =S and (0;P)7* = —0"(9;L).
(OxP)n 2L(k n and (O P)7 57 (0:L)

Thus, these lead to G = G* + (O, P)n*n’, B = — (0 P)i*n’ and (9 P)n* + (05 P)7* = P. O

Plugging L = F? into 1D we have proven another equivalent complex version of Rapc-
sék’s theorem.

33



Habilitation thesis Codruta Nicoleta Aldea

Theorem 3.2.12. Let F and F be the complex Finsler metrics on M. Then, F and F are
projectively related if and only if

Oe(SkE ) + 2(0:GY) (O F) = ;(@F)nk(@ﬁ), (3.21)
1 .
B" = —=0" (O, F)y", r =1,n,
Lo@Er, =T

p- 115[(5,415)77% + 058, F).

Moreover, the projective change is G* = G' + %(&gﬁ’)nkni.

Theorem 3.2.13. Let L be a weakly Kahler complex Finsler metric and L another complex
Finsler metric, both on M. Then, L and L are projectively related if and only if L is weakly
Kahler and

Or(0xL)n* + 2(8:GH (9 L) = 2P(d:L), r =1, n, (3.22)

1 -
P = _—_(8.L)n".
2L(k)77

Moreover, the projective change is G* = G* + Pn' and P is (1,0)-homogeneous.

Proof. Having in mind the Theorems [3.2.§] and [3.2.11] the direct implication is obvious. For
the converse, we have B' = 0*! = §*/ = 0, because L and L are weakly Kéhler, which together
with (3.22) are sufficient conditions for the projectivity of the metrics L and L. Now, plugging
(3.22) into (3.16) it follows that G' = G + Py’ and P is (1,0)-homogeneous. O

Paying more attention to Theorem [3.2.12] we obtain the following result.

Corollary 3.2.14. Let F be a generalized Berwald metric and F another complex Finsler
metric, both on M. Then, F and F are projectively related if and only if

OOk F Y = < (B F ) GoF) 5 BT = 20" Gy (3:23)

P:

e

[(5xF)n™ + 671 (0;F)],

for any r = 1,n. Moreover, the projective change is G =G+ %(5kﬁ)nk7f and F is also
generalized Berwald.

Proof. The equivalence results by Theorem [3.2.12} where 0:Gl = 0, because F'is a generalized
Berwald metric. In order to show that F' is generalized Berwald, we compute

. 1 o~ = 1. -
Or|= (01 F "] = ——=— (0 F) (6, F)n* + =0r(6, F)n* = 0,
[Z O E)"] = =5 (O F) (0 F)0" + = 0r (01 F)n

where we used the first identity from (3.23). Now, by differentiating the projective change
G =G+ %(%F)nkni with respect to 77" it follows that 0,G' = 0, i.e. F is generalized
Berwald. [

In particular, if F'is a Kahler-Berwald metric, then by Theorems 3.2.13]and Corollary
3.2.14] we obtain the following result.
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Corollary 3.2.15. Let F be a Kihler-Berwald metric and F another complex Finsler metric,
both on M. Then, F and F are projectively related if and only if F is weakly Kdhler and

&wﬁwﬁ:P@i%r:Lnamz%:;@fm@ (3.24)

Moreover, the projective change is G =G+ P’ and F is Kihler-Berwald.

Proposition 3.2.16. Lel F and F be two projectively related complex Finsler metrics on M.
If P is (1,0)-homogeneous and F is generalized Berwald, then P is holomorphic with respect
to n.

Proof. Since G = Gi+Bi+P17~i and P is (1,0)-homogenous, then B? = 0. Thus, by Corollary
3.2.14} it turns out that 0*(O;F) =0, P = é( F)n* and, moreover d;P = 0. O

Proposition 3.2.17. Let F and F be two projectively related complex Finsler metrics on M.
If P is (0,1)-homogeneous then B = —Pn' and the projective change is G* = G*, for any
1=1,n.

Proof. Under the assumptions G' = G' 4+ B + Py’ and P is (0, 1)-homogenous and taking
into account that G* and G* are (2,0)- homogeneous and Bt and Pn' are (1,1)-homogeneous,
it follows that G* = G and B = — Py O

Further on, a complex version of the Hilbert’s fourth problem is approached.

Theorem 3.2.18. Let L be complez Euclidean metric on a domain D from C" and L another
complez Finsler metric on D. Then, L and L are projectively related if and only if L is weakly
Kahler and

~ 1 0L ki

(A
T op ok

(3.25)

\_H
S

Moreover, L is Kihler-Berwald.

Proof. The complex Euclidean metric L = |n|? = Y_7_ n*7* is Kihler with the local spray
coefficients G* = 0, for any i = 1,n. By these assumptions, the conditions (3.22) can be
rewritten as

oL -

Or (8zk) = 2P(0rL), (3.26)
for any r = 1,n , where P = 21L g Lk n*. Next, by contraction in ([3.26)) with §™ and using again
1} it follows that G = Pn’, since G* = 3 gﬁé'f(%)nk. The converse is obvious. O
We note that if we replace L = F2 into (3.25)), it can be rewritten as G¥ = %gﬁ nknt, i =1, n.

Example. Some examples of complex Finsler metrics that are projectively related to the
complex Kuclidean metric are given by the following pure Hermitian metrics

- [nf? + & (112l = |< 2, >[)
(2777) - (1 +€’Z‘2)2

,e<0, (3.27)
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defined on the disk AT = {z eC” |zl<r, r= \/1/|€|} C C", where |22 = Y7_2F7F,
< z,n>= Zzzlzkﬁk and |< z,n >]2 =< z,m>< z,n >. We note that a direct computation
leads to G = —(ii’;ZE) = ;gﬁ n*n'. Moreover, the metrics (3.27) are Kihler with constant
holomorphic curvature K = 4e. In particular, for e = —1, (3.27)) provides the Bergman metric
on the unit disk A™ = AT.

3.3 Projectivities of a complex Randers metric

Let us consider the complex Randers metric F = o + |8] on T'M with B(z,7) = b;(2)n" a
differential (1,0)-form and a(z,7) = y/a;(2)n'7’ a pure Hermitian metric on M. By these
objects we have defined

8a_il' ol B . aj;_~ Fﬁ

of 22" o 28 T oy TG
S Lo B2 oby N i, B0
G‘G+<laﬂ 1BPaz" )5 U =L

li=agi, b =ab;, |p|]*=a'bb;, o=V,

a ~ . —_ . .
where GZ = lN]’-Anj are the spray coefficients of o, v = L + o2(||b]|? — 1), & = Bn’ + o?b® and

ki = 2007 + HlMEEATD i 20 i 20305 4 i),

First our aim is to determine the necessary and sufficient conditions such that the complex
Randers metric F' is projectively related to the Hermitian metric . A simple computation
shows that,

Br by,

SeF)nt = (6 Pt F 3.28
()" = (0klBI)n"* 2|5|(/3’ B R (3.28)
because (dza)n* = 0 and B
S~ ﬁ i
0 (O F) = ———Th b, 2
(0:F) = R k' (3:29)
where 0 = a = N 8 and F L= 1a” (%‘?f %Zr) Taking into account Theorem [2.3.5| we

have proven the followmg result

Lemma 3.3.1. Let (M, F) be a connected complex Randers space. Then, (M, 15) is a gener-
alized Berwald space if and only if (0|8])n* = 0.

Theorem 3.3.2. Let (M, F) be a connected complex Randers space. Then,
i) a and F are projectively related if and only if F s generalized Berwald and B' = —Pn',
a

for any i = 1,n, where P = — TEbpn'i?. Moreover, the projective change is Gt = G.

2Flﬁl i
it) « is Kahler and « is projectively related to F if and only if F is a Kihler-Berwald metric.

Proof. We first prove i). Since a is pure Hermitian then is generalized Berwald. If « and F are
projectively related, then by Corollary |3.2.14] it results that F' is generalized Berwald. Thus,
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by ( -7 and Lemma the conditions (3.23) are reduced to B* = —Pn‘, for any

i=1,n, Where P = —WFk—bkniﬁj . Conversely, if F is generalized Berwald, then the first

condition from 3.?3) is identically satisfied and by 1} it turns out that B’ = —%«9*1(?115)77”
and P = %9*’(6¢F ). All these conditions imply the projectivity of the metrics o and F.

ii) is a consequence of i), under assumptions that the metrics o and F are Kahler, respectively.
O

Example. Let A = {(z,w) € C?, |w| < |z| <1} be the Hartogs triangle with the pure
Kahler-Hermitian metric

d? 1 -
—=—(1 2 i1, 0) = a-n"1’ 3.30
Where Z, w, 1, 6 are the local coordinates z', 22, n', n?, respectively, and |2/|?> = 2'Z!, with
2' e {z,w}, n' € {n,0}. We choose
w z
b= ——, by= . 3.31
B N F 330

With these tools we have constructed in [28] the complex Randers metric F = o + | 3], where
a(z,w,n,0) = \/ag(z,wypip and B(z,n) = bi(z,w)y'. It is a Kihler-Berwald metric, and
thus, by Theorem i), a and F are projectively related.

Our second goal is to find when a complex Randers metric F=oa+ |B] on a domain D
from C" is projectively related to the complex Euclidean metric F' on D.
To do this, we make several assumptions. First, we assume that F is a Kihler-Berwald
metric. Thus, by Theorem , ii) it turns out that « and F are projectively related, a is
a

Kihler and G* = G*. Next, we assume that « is projectively related to the Euclidean metric F.
a

Therefore, Theorem [3.2.18|implies that G* = 1 aa Da pkyi Under these statements, we compute

7 — 7 1_ 7 _ ) 9 b 7
8ann 8ann+Fa == UUJTWF (OrIBN)N" + 268G Dy | n
_ o S \6|18a ki i
= FG +—Fa—8zk7717 =G

Thus, G' = %%}anni, for any i = 1,n, which together with the Kihler-Berwald assumption

for F, lead to the fact that F' is projectively related to the complex Euclidean metric F.

Conversely, by Theorem [3.2.18]it results that F and F are projectively related if and only

if the complex Randers metric F is weakly Kéhler and G = % gf; n*n, for any i = 1,n. These

induce that F is generalized Berwald and morover, by Theorem , F is a Kihler-Berwald
metric. Now, taking into account Theorem , ii) it results that F' and « are projectively
a

related, o is Kihler and G = G'. So, we obtain

ai_i aOé k ﬁ 1 >
G' = F( + |5’G b (3.32)
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a
If we contract (3.32) with b; it results the relation G'b; = g%nk, which substituted into

a
3.32) yields G* = l%nkni, i.e. « is projectively related to the Euclidean metric F.

(63
Therefore, the following theorem is proved

Theorem 3.3.3. Let ' = a+|8| be a complex Randers metric on a domain D from C" and
F the complez Euclidean metric on D. Then, F' and F are projectively related if and only if
a 1s projectively related to the Euclidean metric F' and F is Kdhler-Berwald.
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Chapter 4

Projective invariants of a complex
Finsler space

This chapter, based on our papers [24, 23], extends the results presented in the previous
chapter, exploring the projective change relationship of the complex Finsler metrics. It is
a survey of the projective curvature invariants of Douglas and Weyl type which allow the
complex Douglas space in relation to other special classes of complex Finsler spaces to be
described.

4.1 Introduction and the main results

The subject of projective real Finsler spaces continues to be topical because of the projective
curvature invariants that include Douglas curvature, Weyl curvature, generalized Douglas-
Weyl curvature among others [53], [123], 128, 42| T09]. Exploration of these projective invariants
leads to the special classes of metrics such as Douglas metrics and Finsler metrics of scalar
flag curvature [46], 49, [69] [42], 128, 99, [43], 136]. A theorem by J. Douglas states that a Finsler
space is projectively flat, if and only if, its Weyl and Douglas curvature invariants are zero.
Some generalizations of the notion of Berwald space are strongly connected to the equation
of geodesics, as pointed out by S. Bacsé and M. Matsumoto [46].

Recent years have seen evidence of significant progress in the study of complex Finsler
geometry |7, 141, [144] 65, 160l 25, 26, 117]. Nevertheless, many subordinate subjects may
be defined and studied. The prolongation of Chapter 3 aims to construct and investigate
the projective invariants on complex Finsler manifolds, with a view to pointing out other
applications of the complex projective change relationship. In [24] we stated the existence
of the complex versions of the projective curvature invariants of Douglas and Weyl type and
then, we clarified some notions related to these. There are some formal similarities with the
real approach, but the differences between real and complex cases are more thorough. For
example, there are three projective curvature invariants of Douglas type and the vanishing
of these invariants characterizes the complex Douglas spaces. The study of complex Finsler
metrics with constant holomorphic curvature is one most important problems in this geometry
(see for instance [Il 00, 125] 144] 28]). Moreover, in [24], we proposed a characterization of
the Kéhler-Berwald spaces with constant holomorphic curvature, by means of a projective
curvature invariant of Weyl type.

Subsequently, we make an overview of the chapter’s content. In Section 4.2.1, we start
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by considering the structure equations satisfied by the connection form of the complex linear
connection of Berwald type BI'. Next, we have derived some of the Bianchi identities which
specify the relations among the covariant derivatives of the curvature coefficients of BI'. The
first class of projective curvature invariants obtained by successive vertical differentiations of
the projective change relationship is explored in Section 4.2.2. A direct consequence is the
existence of three projective invariants of Douglas type and, by means of these, the complex
Douglas spaces are defined. Additional investigations have to lead to some necessary and
sufficient conditions that a complex Finsler space is of Douglas and generalized Kéhler type,
(Theorems [£.2.7 and [£.2.9] Corollary £.2.12). Moreover, the complex Douglas property is
preserved by the projective changes (Theorem . We have shown that any pure Hermitian
complex Finsler space is a complex Douglas space. Thus, properly complex Douglas tensors
are non-pure Hermitian quantities. The study of weakly Ké&hler projective changes is more
significant (Section 4.2.3). We have proved that weakly Kéhler Douglas spaces are Kéhler-
Berwald spaces (Theorem . A projective curvature invariant of Weyl type Wj’fkh, that
formally looks the same as in the real case, is obtained. It vanishes in the K&hler context. For
Kahler-Berwald spaces another projective curvature invariant of Weyl type W;l}h is found and

moreover we have shown that W;I—Ch = 0 if and only if the space is either pure Hermitian with
the holomorphic curvature K equal to a constant value, or non-pure Hermitian with r =0
(Theorem [£.2.20).

Section 4.3 is devoted to the locally projectively flat complex Finsler metrics. The necessary
and sufficient conditions for the locally projective flatness of a complex Finsler metric and other
characterizations are established in Theorems [4.3.1] 4.3.4] {£.3.5] and Propositions
At the end of this section, the locally projectively flat complex Finsler metrics are exemplified,
illustrating better the interest for this work (Theorem [4.3.6).

In Section 4.4 a key detail for our arguments is that the equations of the complex geodesic

: : SN d?27  k  d%2k g jk
curves can be rewritten in a more significant form, 50" — 51’ +2D’% = 0. Consequently,
the study of the complex Douglas spaces and their subclasses is reduced to the investigation of
the functions D7* derived from the equations of the geodesic curves. For example, some vertical
differentiations of these function provide the tensors ijﬁm and Dflllfm, which characterize the
complex Douglas spaces (Theorems[4.4.2land [4.4.3)). Also, the holomorphicity of the functions
DJ* is proper to the Kihler-Berwald spaces (Theorem w

The general theory on complex Douglas spaces is applied to the class of complex Randers
spaces, in Section 4.5. Theorems [4.5.1] and [4.5.3| report on the necessary and sufficient con-
ditions for a complex Randers metric F' = o + || to be a complex Douglas metric. Namely,
a complex Randers metric F' = « + || is Douglas, if and only if, a and F' are projectively
related (Theorem . Moreover, a complex Randers-Douglas space of dimension two is a
Kahler-Berwald space and the existence of the complex Randers-Douglas spaces is attested
by some explicit examples for dimension n > 3.

4.2 Projective curvature invariants

Although the Chern-Finsler complex nonlinear connection (defined by the local coefficients

(1.5))) is frequently used in complex Finsler geometry [IL [116], in this study, we use the canon-
(&

ical complex nonlinear connection because it derives from a complex spray, i.e. NJZ» = 0;G"
and G* = %N;nf . Associated to the canonical complex nonlinear connection, we have the
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connection of Berwald type BI' which is our key tool for studying the projective changes of
the complex Finsler metrics.

4.2.1 Curvature forms and Bianchi identities

Before of all, our goal is to describe the curvature forms and the Bianchi identities corre-
sponding to BI'. Let us to cosider the connection form wj-(z,n) = ;kdzk + G;Ede of BT,
this satisfying the following structure equations

. . . c . c . .
d(dz®) — dzF Awl = kO, d(0n') — on® A wl = v, dw w Awl = Q’ (4.1)
and their conjugates, where d is exterior differential with respect to the canonical (c.n.c.).
Since
S i i PR j i gk j i Sk j i Sk j
d(0n') = dN; Ndz? = inkdz Ndz! + ©%pdz" N dZ? + Gpdn™ AN dz? + Gipon” A dz
and G;k =G, ;» the torsion and curvature forms are given by the following formulas:
hQY = —Gé,;dzj AdzF,
i Loi o k_ @i 2.0 nask _ (v .0 A sek _ ovi S5 oA g5k
v} = —inkdz ANdz —@jkdz ANdz —GjEdz A —Gj,—gén ANdz",

] 1 ] k 1 h ) k —=h

. c . . C . c
— Glpdz" Ao — Glppdz® A Sif — Gl dz" AT+ G ot N a2,

where
c € c €

Kiy = 8N — 5N, 0 = N7 and
e = 0nGlh — 0Gly, + GL.G, — GGl
= G &G+ GGl - GLGl
Kiy = oGl — 0;Gly + GGl — GL Gl
are hh-, hh- and hh- curvature tensors, respectively. We note that

Gilkn = Gl Glgp

y zﬁhGﬁk, G-

_ 9 (i
jkh — 3’1Gj12
are hv-, ho- and ho- curvature tensors, respectively. Moreover, they have the following prop-

erties ' L o
K’kh:&K}Ch, K’ =K}, K, + K';. =0,

J I jkh ]hk L )
szhn 0, szhn =0, GZ h773 G;k, szhn G;;% (4.2)
(amijh)n = ijh? (a G;k:h) leh’ (a G;kh)nm 0.

We mention that we preferred to denote by K;kh the horizontal curvature tensors of BT,
instead of classical real notation R; wn- In this way, we avoid any confusion with the horizontal
curvatures coefficients of the Chern-Finsler connection from (1.5
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Considering the exterior differential of the third structure equation from (4.1)), it follows
that
! ' ! i i

which leads to sixteen Bianchi identities. We mention here only some of these, which are
needed for our proposed study

3 Gé‘kh = 3hGi.kra arG;k = 8hG 8rG§E‘ — ath

jkr? jkr’
5 ijh = 8hG],,k, 877G;];‘B = ahG;kr, 8FG‘Zjh - 6hG]1“k (44)
When the space is generalized Berwald, the following identities are true:
aqujZ:kh == 0, 87K;kh = 0, &«Kth = O7 8FK‘;E}1 == 0
and for Kéhler-Berwald spaces we get
K = K Kirnn = Ko (4.5)

where we denoted by ', 7 the horizontal covariant derivative with respect to Chern-Finsler
connection.

4.2.2 Projective curvature invariants of Douglas type

As already mentioned in the previous chapter, the differential equations satisfied by a geodesic
curve z = z(s) of (M, F'), with s a real parameter, are given by

d* dz ; dz
2G" —)=0" — 4.6
120 (a(s), %) = 0 (a(5), ), (4.6
where 2(s), i = 1,n, denote the coordinates along of the curve z = z(s). We mention that
(&

. . . . =. C .
2G* = Njny = Nji and 60" = 2¢7'0;L. The functions 6** are (1,1)-homogeneous, this is,
Orin* = 0% and 059" = 0%, where 0}’ = 940" and 03’ = 9;0*. Moreover, the functions 6*
hold the following relations:

9*1 k O 9*@ k_e*z’ 9*1 =k 9*1 9*17

*7 *i _ *7 —k *7 *7 —k
kﬂ"n 0.77" 9 0 erkj - 07’]’ ejkh =0, (4 7)
*1 _ *’L *J *] *J 1 _ p*J .
9]%_1 9 fjhlrm77 Ejghlr’ *],th m ghrm’
_ m . j _
ahZTm O (9hl7"m77 ehlr ahlfm O’

where the subscripts indicate differentiation with respect to n or 7, for example 6;;; = 3]-9}:@' =
3k0;fi, H:I%j = @9:}{ = 8719;% = akﬂ“ L 8m9 ., etc. We also emphasize the fact that

Jr Zrmkj
0*kn;, = 0, where 7, = 3kL

Let F be another complex Finsler metric on the underlying complex manifold M. Corre-
sponding to the metric F, we have the spray coefficients G and the functions g*. According
to Theorem u the complex Finsler metrics F and F on M are pro jectively related if and
only if there is a smooth function P on 7'M, such that

G'=G +B +Pp, i=1,n, (4.8)
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where B! = %(é*’ — 6*%), the relation () being called the projective change. An equivalent
form for this is

G'=G +Vn and 0" =0""+Qn', i=1,n, (4.9)
where V — 1Q = P, V = (8 P)n* is (1,0)-homogeneous and Q = —2(dzP)7* is (0,1)-
homogeneous.
Differentiating in (4.9) with respect to 77, we get
C (&
N! =N+ Vin' + V& and 67 =05+ Q' + Q5 (4.10)
where V; = ajV, Qj = 8 Q, 9*’ = 0“ and 9*1 = @9*’ Thus, V, 2QJ P;, with P; = 8 P.
To eliminate V and @ from , we sum with ¢ = j. Since Vn =Vand Q;n' =0, -

gives
1
n+1

]

c 1 - .
(N} = Nj) and Q = —(8;" - 6. (4.11)

C
It follows that P = %(N N’) 2 (07 — 077). Substituting this in 1} we find that the
projective change is

. 1 . 1 ¢ c 1 A
i Y (¥t *1 L Nt = (ol prly i s
G'=G"+ 2(9 —0") + +1(Nl Ni)n Zn(el o), i=1,n. (4.12)
From here we can extract
. 1 ¢ 1 .
l)Z = GZ — lean — 5(0*1 — H*l Z), (413)

which are the components of a projective invariant, under the projective change (4.8).

Proposition 4.2.1. Let (M, F) be a compler Finsler space. The functions D' are the local
coefficients of a complex spray if and only if F' is weakly Kdhler.

C
Proof. First, D' satisfy the rule () forasmuch as Nllni, 6** and Hl*lni have changes all like
vectors. Second, D' are (2,0)-homogeneous if and only if §* = %Hl*lni. The last relation
contracted by n; gives 0 = 0*in; = %Ol*lL. Hence, Hl*l =0 and so 6* = 0. g

Further on, the projective change (4.8)) gives rise to various projective invariants. Indeed,
some successive differentiations of (4.12)) with respect to n and 7 yield

. 1 A
jin = G+ 7 1OnDy = OnDsn’ + 3 (Djn = Djn)di]
(k,3,h)
1 N1 *7 1 Y. Nl
+§( kn — Oikn) — %[(3}1%1@ O + Z (014, — 07101,
(4:k,h)
. 1 ) ;
Gjig}} = ]kh +— n+1 [(3 EE 3 th)n + (th Dl}ﬁ>5j]
*7 *7 1 * % * * 7
(eﬂch - ijh) Kaheuig 859z1‘ij) (Qllih Hllihéj]
=i 1 i | (T ; ~ i
Gj;;h = ijh +— ol [(3th] ahDEj)n + (Dg; — Dg;j)0h + (Dgp, — Dgy)05]
i *7 Ol *[ ) Nl *[ )
(ejkh - Hgk;h) Kahelk] 8h9lk])77 + (O — 050 + (%), — 015) 951,

(4.14)
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where Dy, = Gﬁkh, Dyr = Gil’cﬁ and Dy, = G;:]}h are respectively, hv-, ho- and ho- Ricci
tensors and Z is the cyclic sum. From this we deduce the following three projective

(5,k;h)
curvature invariants of Douglas type

Dj’kh = G;'kh - %H[(ghDjk)ﬁi + 2k g,h) Djndy] = %{Qﬁ;h [(aheljk)”i + 2 (k) eﬁhé’i]}’
Dt G;kh (05D’ + Dyjdi] — {aykh i (Or07; )ni + 053031}

kh_G;kh n+1[(8thg)77 + Dy;0}, + Dipdj] — 2{9;74;1 1D 9;;) ef;ijéme@f;ih%]}

(4.15)

J

Definition 4.2.2. A complex Finsler space (M, F) is called complex Douglas space if all of
the invariants are vanishing.

Remark 4.2.3. If F is thler—Berwald (i.e. G;k(z) and F is weakly Kdihler, according to
Theorem , then Gy = Gln = = G’ = 0 and Dy, = Dy, = Dy, = 0 = 0, and
thus the pmjectwe curvature invariants szouglas type are vanishing. It turns out that any

Kahler-Berwald space is a complex Douglas space.

Subsequently, the key of the proofs is the strong maximum principle which gives the
independence of the fiber coordinates of the holomorphic and (0, 0)-homogenous functions on
T'M.

Lemma 4.2.4. If one of hv-, hi- or hv- Ricci tensors is vanishing then they are all vanishing.

Proof. Supposing Dy, = 0, it results G‘ wn = 0, which is equivalent with (%GA = 0. By
conjugation, GhGl = 0, and so, G’E— are holomorphlc with respect to n. But, G - are (0,0)-
homogeneous and so they depend only on z, (G; = G; (z)). Hence, Gi, depend only on

c

z and E?,—LGﬁk = Dj, = 0 which contracted by n* give 3;LNf = 0, i.e. G:E = 0. So that,
Dy, = 05,G = 0.

If Dzj, = 0 then 6‘,36’;]—{ = 0 which contracted by 7" yield GEI—C = 0, because Gzl—d—lﬁh = —Gzl—g.
It results 3,;G§h =0, i.e. Dy, = 0. Further on using the holomorphicity with respect to n and
the homogeneity of the coefficients Gﬁh it results that Géh depend on z alone. So, @Géh =0
which give Dp; = 0.

If Dy, =0 then 3,;G§h = 0 and similarly it results that Géh depend only on z and Gél—c = 0.
This implies Dp; = Dgj = 0.

Proposition 4.2.5. Let (M, F) be a complex Finsler space. If D;l}h = 0 then F s generalized
Berwald and

1

h = { o — - 8h9l]k n'+ Z 051 1) (4.16)
(4:k,h)
7 *{ 7
Dign = —*{ o *Kah%g) 0050
O = [(ahe;;lk) +05,0h + 07,6]-
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Proof. If D;‘I?:h = 0 then

G’L

i = me[(OnDp ) + Dy + D) + 107, — L[@u0L ) + 63183 + 071, 511},

lkh™J
(4.17)
which will be contracted by njn and then by »;.

Usmg lehnj G’ = G, (0; Dgp)w’n" = 0, Dy = G and taking into account
, after the contractlon by nt of G’kh, we obtain

. . 2 1
8EG’L = mGZET]’L

Due to Lemma Le. (8',{(;')77@ =0, the contraction of the above relation with »; leads to
Gl = 0. Its dlfferentlal with respect to " gives leh = 0, i.e. Dy, = 0 which plugged into

7) yields

i L «l «l o si
ngh {gykh Kahalk]) 91kg5h + 91kh5]]}

The last relation contracted by 77 gives Gi = 0. Next, it results GkG -, = 0 which means that
Gt %, are holomorphic functions with respect to n. Together with their homogeneity it turns

out Gjh—GJh( z). Hence G]kh—G] . —Oand O

Proposition 4.2.6. Let (M, F) be a complex Finsler space. If D’—— = 0 then F is generalized
Berwald and

1

h = —5{ o — 5h9l]k n'+ Z 07h01] (4.18)
(4:k,h)
*7 1 *[ 7
jkh — ﬁ[(ahg )’7 + elkhéj]
]kh {H;klleh Kahezgk)" + elgkéh + Gl*lih%]}‘
Proof. 1f D;]—d—l =0 then
) 1 7 *7 * 3 * 7
Gl = o ——[(0; Dgp)n’ + Dypi] + = {%h [(aheljk) + 07k 51} (4.19)

The contraction of 4.19 loy njﬁh'm 'and'using ) and GZ——n W = G;.Enj = —3;;Gi,
Dy = =G, (0 D)’ = —(0;G )’ = =G, lead to

2L

_(8EGZ)77@ nt 1k

which implies Gl = 0 and so, G;kh =0, i.e. Dg; = 0. Plugging Dy, = 0 into 1} we obtain

7 *7 1 * 7
G]kh 7{9 E[(ahe ! )77 + Hlkh(sg]}

Now, the last relations contracted only by 7" leads to G;]—C = 0. As above we obtain that G;h
depend only on z. So, the space is generalized Berwald and the relations (4.18)) are true. [

45



Habilitation thesis Codruta Nicoleta Aldea

Theorem 4.2.7. Let (M, F) be a complex Finsler space. (M, F) is a complex Douglas space
if and only if it is generalized Berwald with

= [ 8h913k n' + Z 9th (4.20)
(4:k,h)
*7 1 * ?
kb — EKaﬁgljlk)n + 91kh‘53]
1

*7 *[ *l_ 1 [ ¢
Oikn = [(6h0ljk) + 0)550n + 0rn 051}

Proof. The direct implication is obvious by Propositions [4.2.5] and [4.2.6] Conversely, if the
space is generalized Berwald, replacing the relations (4.20) into (4.15)), it follows D;Eh =

D]—D—O O

Let ﬁ;kh, D;‘l}}} and ﬁ;l—gh be the projective curvature invariants of Douglas type corre-

sponding to the complex Finsler metric F. From 1} and 1’ we immediately obtain the
following result.

Theorem 4.2.8. Let F' and ]:j be projectively related complex Finsler metrics on M. F is a
Douglas metric if and only if F is also a Douglas metric.

Since conditions are checked for any weakly Kihler complex Finsler metric, the
class of the complex Finsler spaces that fulfill generalizes the class of the weakly Kahler
complex Finsler spaces. We call this class as generalized Kdhler.

The next theorem provides the necessary and sufficient conditions that a complex Finsler
space to be generalized Kihler. We use the notation K*® = §*/ — %9;‘1777;

Theorem 4.2.9. Let (M, F) be a complex Finsler space. (M, F) is a generalized Kdahler
space if and only if the functions K' are homogeneous polynomials in n and in 7 of first
degree. Moreover, if the functions K* vanish identically, then the space is weakly Kihler.

Proof. We assume that the conditions (4.20)) are checked. Due to (4.7)), the contraction of
these with n? gives

Differentiating (4.21)) with respect to n and 7, it leads to (4.20). Thus, the sistems (4.20]) and
(4.21) are equivalent.

After two successive integrations with respect to 77 of the second formula in (4.21), using
the homogeneity conditions, we have §* = %Gl*lni + f]%ﬁk, where f,%(z, z,m). The subscript f};
does not mean differentiation with respect to 7* here. Since fi depend only on z, Z and 7,
then fiﬁk are homogeneous polynomials in 77 of first degree.

It follows that ;% = L(0;, 0" + 05161 + 0;10%) + 9xOn(fin7"), which with the first formula
in (4.21)) implies Ok (9n(fi7")) = 0. Hence 9y (fii7") does not depend on 7 and thus there exist
the smooth functions ¢, (z, z) such that on(fin") = oL, 7. Obviously, the subscripts in ¢%,
do not indicate the differentiation with respect to 7" and n".

The last equation obtained can be rewritten as O, (fi7") = 9y (k7). Integration with
respect to 1 gives fin" = @L.p"n® + ', where ¥'(z,z,7) must be homogeneous polynomials
in 77 of first degree.
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This results in §* = %Gl*lni + L™ n® + 1, but the homogeneity properties of * and Hl*l
lead to ¥* = 0. It still hold that K* = ¢L.n"n®, that is K* are the homogeneous polynomials
in 17 and in 7 of first degree.

Conversely, if K' = ¢k ij'n®, where ¢L,(2,%), then a few derivations of these conditions
with respect to n and 7 yield .

In particular, if K¢ = 0, then 6* = %Hl*lni, which contracted with n; gives 91*1 = 0 and
thus 6** = 0. O

Some sufficient circumstances for the generalized K&hler property of a complex Finsler
space are given in the following.

Proposition 4.2.10. Let (M, F) be a complex Finsler space. If 0*' are homogeneous polyno-
mials in 1 and in 7 of first degree, then (M, F) is a generalized Kdhler space.

Proof. Under our assumption, we have 0 = flsnrns where f% (z,2). Differentiating these
with respect to n and 7 leads to e1ther 9;:,}1 = 9’—"— =0or 9;:,}1 =0 and 0]’;—1 depend only on z
and Zz. Thus, the conditions in are fulﬁlled and the space is generalized Kéhler. O

Examples of complex Douglas metrics are provided first by the class of pure Hermitian
metrics. Considering the pure Hermitian metric g,z = gﬁ(z)7 we obtain

i __ mzaglm 1 *1 __ mi agl'r’n aglfc l=k
G—2g a]nnandﬁ —g™( livre))

o7k~ gzm/N

On one hand, since 3,-ZGi = 0 any pure Hermitian metric is generalized Berwald. On the other
hand, because the functions gml(% — gglﬁ) depend only on z and Z we have that 6* are
homogeneous polynomials in 1 and in 77 of first degree. According to Proposition any
pure Hermitian metric is then generalized Kéhler.

Owing to Theorem we have the following result.

Corollary 4.2.11. Let (M, F) be a complex Finsler space. (M, F) is a weakly Kdihler space
if and only if the functions K vanish identically.

In addition, by Theorem [4.2.9] an unsophisticated equivalent form of the Theorem
can be formulated.

Corollary 4.2.12. Let (M,F) be a complex Finsler space. (M,F) is a compler Douglas
space if and only if it is a generalized Berwald space and K' = @L 1™ n®, where L, are smooth
functions that depend only on z and Z.

4.2.3 Weakly Kihler projective changes

The next discussion is focused on the weakly K&hler complex Finsler spaces. In this case, the
projective invariants of Douglas type (4.15]) are reduced to

i ; 1
Dipn = Glgn — l 5 Dip)n' + 2 D]kéh (4.22)
(4:k,h)
% % 1 i
ngh =Gl — ST ——[(0; D)0’ + Dygj 6%,
i 1 i i i
Dl =Gl — 1 ——[(0; D)’ + Dy 05 + Dy;6p]-

By Lemma {4.2.4] it immediately turns out the following result.
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Proposition 4.2.13. Let (M, F) be a weakly Kdihler complex Finsler space. If one of hv-,
hv- or hv- Ricci tensors is vanishing, then

) _ i
Diyy, = Gligns D = G

] JER ]kh =G (4.23)

Jkh®

Proposition 4.2.14. Let (M, F) be a weakly Kdhler complex Finsler space. If one of state-
ments is true, then the hv-, ho- and hv- Ricci tensors are vanishing.

P'roof, Suppose that D;.M = Gé‘l}ﬁ' Then, using 1} it results (@-D,-cﬁ)ni +DEB5§‘ = 0. Since
(0;Dzp)n’ = Dz, hence (n+1)Dzj, = 0, and so Dzj = 0. By Lemmal.2.4 hv-, and ho- Ricci

. . . . . 7» _ 7» 7» _ 7
tensors are vanishing. The proof is similar for D7, = G%,, or Djl?; ngh O

Corroborating (4.22)) with Propositions and it follows

Corollary 4.2.15. Let (M, F) be a weakly Kdhler complex Finsler space.
i) If Dip, =0 then D]kh = Dig; =
i) IfD’—— = 0 then D} D;k:h_o'

Theorem 4.2.16. Let (M, F) be a weakly Kihler complex Finsler space. If either D;l?;ﬁ =0
or D;Eh = 0 then the space is Kdhler- Berwald.

Proof. 1f either DZ—— =0 or Dl = 0 then G = G W(2 ), Wthh means that the space is
generalized Berwafd The proof 1s completed by Theorem O

Theorem 4.2.17. If (M, F) is a complex weakly Kdhler Douglas space then it is Kdahler-
Berwald.

Proof. 1t results by Theorem [4.2.16] O
By Corollary 4.2.11) and Theorem [4.2.17] we have the next result.

Theorem 4.2.18. If (M, F) is a complez Douglas space and the functions K* vanish identi-
cally, then it is a Kdhler-Berwald space.

According to Theorem (or |25, Theorem 3.2]), the weakly Kéhler property is preserved
by the projective changes, and moreover we have

Gt =G+ Py, (4.24)

where P is a (1,0)-homogeneous function. Under this simplified expression of the projective
change, it turns out that

N’ NZ+PJ77 + P, gk—(skz_(Plcn'"i'P&)é (4.25)

where Py, = 0yP; = Pyj, P, = 0P, Pjj, = 0P = 0;P;. In addition, the (1,0) - homogeneity
of P 1mphes

Pun® =P, Pgif* =0, Pyn* =0, Pi* =0, Pgn’ = ;.
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Hereinafter, we study the hh-curvatures tensor Kj’kh Under the projective change 1 ,
we have

f(lih = Klih + A(k,h)[Pklls 772' + (P,‘g - PPh)‘Szig],
~ , , 4.26
Ky = K + Ay [P 5 '+ P 5 05+ (P — PPy, — PPy)dj], (420
jk|h klh’ jlh
where " 7 is the horizontal covariant derivative with respect to BI" and Ay p,) is the alternate
|k
operator, for example A p) {P } =P — P 5 . Next we make the following notations
|h k|h Bk

th:PB —PB and Xh:PB —PPh
k|h h|k | h

which have the properties

0;Xp =Py — PP~ PPy, 9;Xn—0pX;=Pr —P s =X,
jlh ilh h|j
0 Xen=P 5 =P 5, (0 Xp)0 = Xp, (0;Xpn)n’ =0, (4.27)

) kj|h hj|k
ij'r]] :PB —PB :Xk‘O'
klo |k

By means of these, the changes (4.26]) become

Kkh —Kkh—i-thn +Xh(5 —Xkéh,

Kl = Kl + (0, Xen)n' + Xindt + (0;X5)5% — (0; X35,

(4.28)

Now, we introduce the hh- Ricci tensor Ky = kah- Another important tensor is Hj, =
K;kz The link between these horizontal curvature tensors is Hy; — Hj, = Kj;. Summing by
i = j and then i = h together with a contraction by 7/, in the second relation from (4.28), it

yields

Jlr : (Kin — Kpp) = n}rl[(ﬁhk — Hyp) — (Hpi, — Hyn)), (4.29)

I:I()k = Hoyp + Xpo — (n — 1)Xk.

Xgh =

From here, it turns out that

1 - -
Xwo=——\(Hor — Hig) — (Hop. — H 4.30
0= [(Hor — Hio) — (Hor — Hio)l, (4.30)
1 ~ 1
Xp,=—(H,— H ith Hy, = H H
k n+1< k k), Wi k n—l(n ok + Hio),
for any n > 2. Moreover,
Kjk; = 8ij0 — 3kHj0 = akHoj — 8jH0k, with ij = (%'Hgk. (4.31)
Now, substituting (4.29)) and (4.30) in (4.28) we obtain the following invariants
1 ) )
th = Kkh + n+ 1A(k’h) (Hkh?’]z + Hh(gllg), (432)
Wihen = Ky, + mA(k,h)[(éijh)ni + Hyp, 8% + (05 Hy)5}),

in which the second formula is a projective curvature invariant of Weyl type. We note that,
if (M, F) is Kéhler, then W}, = 0.
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Theorem 4.2.19. Let (M, F) be a weakly Kdhler n-dimensional complex Finsler space, n > 2.
i) Wi, =0 if and only if W}, = 0;

i) If Kin = 0 then Wiy, = Ky, + 515 (Hjnd), — Hjd},);

i11) If Hgp, = 0 then Wihen = Kigp-

Proof. i) If Wi, = 0, then

, 1 ) . . ) .
ikh = —ni_i_1«4(k,h)[(5'1‘chh)77Z + Hndj + (07 Hp )],
which contracted by 7’ give K}, = —,%HA(k,h)(kai + Hpd!) and hence, W}, = 0.
Conversely, if W}, = 0 then K}, = —%_HA(k,h)(Hkhni—thé,i). Differentiating with respect
to 7, it results

; 1 : ; i A ;
Skh = —mA(k,h)[(aijh)U + Hyndj + (07 Hp )],
that is, W;kh =0.

ii) If Kyp, = 0 then Hy; = Hjj,. Substituting into (4.32)) and using (4.30) and (4.31), it results
our claim. iii) immediately results by (4.32) and (4.30)). O

Aiming to obtain another projective curvature invariant of Weyl type, we assume that the
weakly Kéhler complex Finsler metric F' is generalized Berwald. Therefore, we have K;EE =0,

K;.]—fh = —50,;G§-h and by Bianchi identities, we get éTK;‘Eh =0 and 3;K;Eh =0.

We note that by a projective change, the generalized Berwald property of the metric L
is transferred to the metric L. Moreover, the generalized Berwald property together with
the weakly Kéahler assumption implies that F' and F are Kihler-Berwald metrics (Theorem
. Hence, K;Eh = —5,;L§h. Therefore, under these assumptions, the function P from the

projective change (4.24) is holomorphic with respect to 7, i.e. P; = 0 (see Proposition [3.2.16)),
and

N} = Nj + Py’ + P8}, op = 6x — (Pen)' + P6})0;, (4.33)
L'y = Liy + Py + Pidy + Pioy, Gl = Gl =0,
Consequently,
Kl = Kl = P’ — Py, — Puyid (4.34)

0= Py’ + Pipg0y + Pijidh + Py

Next, we consider the hh-Ricci tensor K, = Kz‘iléh‘ Since F' is Kébhler, K:Eh = K}’Jm
Making i = j in (4.34)), it turns out
1

m(f(,;h — Kjy,) and By, ; =0, (4.35)

Ph|E:_

which substituted into the first equation from (4.34)), give a new projective curvature invariant
of Weyl type, which is valid only for the Kéhler-Berwald spaces, namely

W K

jkh = kR T m(KEijZ + Kl_ghéj‘)- (4.36)
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We note that for any Kihler-Berwald space, the hh-curvatures coefficients of Chern-Finsler

connection can be rewritten as Rj =K. +K! ij’:l. Thus,

jkh mkh'!

Rpjpn = Kejin + K. 0™ Clin,

where K7z, = K;,Ehgﬁ, and Rfj,;hnj = Kfj,;hnj. This implies that the holomorphic curvature

of the Kéhler-Berwald space (M, F') in direction n can be expressed as

2 i
Kr(z,m) = 23 Kl /"
Theorem 4.2.20. Let (M, F) be a connected n-dimensional Kdihler-Berwald spaces, n > 2.
Then, W;E =0 4f and only iof Ky, 5, = 4F (gj;;ghm + gni9im). In this case, Kr = ¢, where c
c(n+1)

is a constant on M and the space is either pure Hermitian with Kp; =
Hermitian with ¢ =0 and K;'Eh =0.

Proof. Using 1D and W;l—m =0, it results

gji or non-pure

1 A .
K]Zkh 1 (ngéfl + Kfch(s;‘) (4.37)
which contracted with g;7 gives
1
K jin = na1 (Kk]ghm + Kgpgim)s (4.38)
and )
ijl?:h ntl (Kkjghm + Kppgim + Kk:m Cjimn)s (4.39)

where Cjmp = Opgjm. Since Riign = Repgy (see [1L p. 105]), it results Rz, = Ryjm,, and
therefore, ' ‘

Kiiwn? = Kijrn’ - (4.40)

From 1-} also follows that Kp =

L,CF = n+1

Bianchi identity akah = 0, it follows that Kpf, + L(@mICF) = n+1K nj. Now, due to

(4.40)), we obtain

(n+1)KkJ77 7¥, which indeed, can be rewritten as

i K '7*. Differentiating this last formula with respect to 7™ and using again the

Kpim = mejnJ- (4.41)
Thus, L(émlCF) = 0 and so, Kr depends only on z. Differentiating 1) with respect to 1!,
. . K
it gives Ky = Mglm, which plugged into 1) yields Ky, ipp, = 4F (gj;;ghm + 9ppgim)-
Conversely, since K;I—Ch = T(gjkéh + ghkéj) and Kz = %9%7 the relation (4.36
implies W’ =
In order to prove that K is a constant on M we use the Bianchi identity Kz,klh K]Zhldr
from ). Contracting by gimf™ 10" 0¥, it gives
1 _
Krg = 7 Krpmn- (4.42)
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Taking into account ICF\EU = /CF|J-‘E = 0, where ’|;, 7 is the vertical covariant derivative with

respect to Chern-Finsler connection, and differentiating (4.42)), we easily deduce

1 1
0=LKppli = T Krplgjm — 2057n):

which multiplied by gEj7 it turns out that %(n — 1)ICF|@ = 0. Plugging it into 1' it follows

that ’CF|E =0, ie. ‘%’C?f = 0. By conjugation, %’% = 0 and so, Kr is a constant ¢ on M. This
implies K; = C(njl)gﬂ; and its derivative with respect to n' leads to c(é?lgj,;) = 0, and hence
the last claim. O

4.3 Locally projectively flat complex Finsler metrics

The purpose of this section is to survey the locally projectively flat complex Finsler metrics.

Let L be a locally Minkowski complex Finsler metric on the underlying manifold M.
According to [5], this means that corresponding to L, at any point of M there exist local
charts in which the fundamental metric tensor g;; depends only on fiber coordinate 7. Thus,
it turns out that the spray coefficients G* = 0 and the functions #* = 0 (in such local charts).
The complex Finsler metrics L is called locally projectively flat if it is projectively related
to the locally Minkowski metric L. Since the weakly Kéhler property is preserved under the
projective change, any locally projectively flat metric is weakly Kéhler. Taking into account
Theorem (or [25, Theorem 3.3]), we state the following result.

Theorem 4.3.1. L is locally projectively flat of and only if it is weakly Kdhler and

Or(0xL)* + 2(8:GY (9 L) = 2P(d:L), r=1,n, (4.43)
where P = ﬁ(dki)nk. Moreover, G* = —Pn'.

Proof. The above equivalence results by Theorem [3.2.10] in which Lisa locally Minkowski
metric on M. Taking into account (6,L)n* = —2G*(9,L), the condition (4.43) is equivalent to

—Glg = P(9;L). By contraction with §™, we obtain G = —Pnl. O
Proposition 4.3.2. If L is locally projectively flat then G* = ﬁ%nkni and L s generalized
Berwald.

Proof. Since G' = %gmi%nknr and L is locally projectively flat, then

_ O .
gmz ag;‘;nnknr — _2P77Z'

Contracting with n;, it leads to P = —i%nk. So that, G* = ﬁ%ﬁkﬁi-

Moreover, we have gmiaagTT,Tnknr = %%nkni, which implies

. . . 2 . . 8gir i . . .
0rG = — gz S5 'l + o goger ' = — 1 G + gp s’ = — 1 G + £ G = 0,

i.e. F'is generalized Berwald. O

Proposition 4.3.3. Let (M, F) be a complex Finsler space. If F is locally projectively flat
then it is a Kdhler-Berwald metric with W;Eh =0.
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Proof. By Proposmon 2land Theorem [3.2.2] it follows that L is a complex Berwald metric.
Since K o = Kkh =0, the relations (4.34)) and (4.35)), give K;.];h = 7 (K500 + K7,0%) and

S0, ijch =0. O

By Theorem [4.2.20| we have proved the following result.

Theorem 4.3.4. Let (M, F) be a connected n-dimensional complex Finsler space, n > 2. If
F s locally projectively flat then it is of constant holomorphic curvature. Moreover, if the
constant value of the holomorphic curvature is non-zero, then (M, F) is a pure Hermitian
space.

Some refinements of the above results on locally projectively flat metrics we obtained in
[14, Theorem 2.4]. Namely, if F' is a Kéhler-Berwald metric on domain D from C" with
G = } g:; n*n’, then according to Theorem , it is projectively related to the standard
Euclidean metric on D, and thus it is locally projectively flat. Conversely, if F' is locally
projectively flat, then by Propositionsi4.3.2land |4 it is Kéhler-Berwald and G* = [17 gj}: nknt.

So, we have Justlﬁed the following result.

Theorem 4.3.5. Let F' be a complex Finsler metric on domain D from C". F is locally
projectively flat if and only if it is Kihler-Berwald and G* = 1{“35@ nFnt.

Next we study as an apphcatlon the weakly Kéhler complex Finsler metrics L with the
spray coefficients G* = p,n"n’, where p is a smooth complex function depending only on
zeM, pr = % and p,j, = g i is Hermitian, i.e. p,;, = pnr, and it is nondegenerated.

Theorem 4.3.6. Let (M, F) be a connected weakly Kdihler n-dimensional complex Finsler
space, n > 2, with G* = p.n™n". Then,

i) L is locally projectively flat;

i1) L is a Kdhler-Berwald metric;

i11) L is a pure Hermitian of non-zero constant holomorphic curvature Kp = —%pr,;?fﬁh.

i) p satisfies the differential equations

Prik = PrPih + PkPriys (4.44)

__ 9pp _ Opkn _ Oprk o
where p.p = G = F5 = a0 and poiy = Pry

Proof. In order to prove i), we use Theorem “ Let L be a locally Minkowski metric
on M. Since L is weakly Kéhler, We must show only that the equation is satisfied.
Indeed, We have 9;G' = 0, (6,L)n* = —2GY L) = —2p,n"n (O, L) = —2Lprn and thus
Or (6kL) = —2(d;L)pin}, which implies the equation 1)

Since 9;G' = 0, L is generalized Berwald. Thus, Theorem yields ii).

iii) Theoremtogether with i) and ii) show that W;kh = () and L is of constant holomorphic

(& . .
curvature. Since L is a Kahler-Berwald metric, 0 = 0 and L}, = GZ Hence KZ —0g L,
which will be rewritten in terms of derivatives of p. Indeed, two successwe dlfferentlatlons of
the equations G* = p,n"n’ lead to L’k, = pk5 + p]5 Consequently, KZ p]ké phkéj
which gives Kyz, = —prgnr — pripgsr and thus
Kp = — 2 p 4.45
F= =P (4.45)
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Since p,;, is nondegenerated, Kr # 0 and by Theorem it results that L is a pure Hermitian
metric.
iv) To justify that p satisfies (4.44]), we use (4.45)). This implies

4 _ _
L=~ ptl 1" = g 0", (4.46)
which gives
4 4
Irh = _K:inTB and 5kgrﬁ = _Eprﬁk' (447)
Now, using 1' and L;k = pkéj. + pjéli, it turns out that
Okgjm = PkYjm + PjGkm (4.48)
The substitution of (4.47)) into (4.48) implies (4.44). Moreover, the Kéhler property of L gives
Prak = Pkhr- O

4.4 Some results on complex Douglas spaces

Considering z = z(s) a geodesic curve of (M, F), it satisfies (5.29)). Taking an arbitrary
transformation of the parameter ¢ = t(s), with % > 0, the equations 1} are generally

not preserved. Indeed, for the new parameter ¢ we have the following relations Cfi%i = ”ilzti %,
2 i 2 i 24 % 2 oy . .
el Al ()P deld g g7 (2, 92) = (9)% 07R(2, 92), which yield that
a2z i, d dt\2 _ d?2' _ dzt &Pt wi(, dzy _ _d2' d?t
(25 1 201, %) — (2, 89)] ()7 = 25— 420 24 4 90z, ) - 97z, ) = 5
Therefore, the equations (5.29) in ¢ parameter became,
d?z - dz < dz Az d’t 1
2G ' (z(t), —)=0"(z(t),—) — —————>, i =1 4.49
dt2 + (Z( )7 dt) (Z( )7 dt) dt d52 (@)27 4 7n7 ( )
ds
which are equivalent to
7 o 9*1 2, dz d2t 1
(= dif) (2 &) = e i=1,n. (4.50)
dt 5 (E)
We can rewrite li taking two different values for i, as
2 *] *
a7 - 4k T Td2 (an?’ '
dt dt (E)
for any j, k = 1,n, and the first equation in (4.51)) leads to
A2 dzF d?RR ded dz2P dz’ dz* dzt
—_— = — 4 2GT = oGP =g — g 4.52
dt? dt dt? dt + dt dt dt dt ( )

Since n* = %, along the geodesic curve z = z(t(s)) of (M, F') the differential equations

hold A
d?z . d%2F

2 T e 7’ + 2Dk =0, (4.53)
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where DI* = Gink — GFnpJ — $(0%Ink — g*Fp).
The homogeneity property of the spray coefficients G* and of the functions 6* leads to

. . . , 1 . .
DIk 4 DIFgr = 3D7%  and DR = —5(9*377’6 — *F), (4.54)

where D,Zk = & DI* and Df—;k = éijk. Furthermore, differentiating 1} with respect to n
gives

" - " . - .,

D+ DA =2 Dl + Dl = Dl

Dl + Dl =0, Dy + Dlvyii” = 0,

Fhim T mihl

(4.55)

where fol = 3hD,Zk, Dﬁ_llz = 3th—;k, Dizl = GZD%;Z, and all that. W’S note that the sequence of
the subscripts does not matter; for example D7y, is same with D7}, .
Successive differentiations of DI with respect to 1 or 7 yield the tensors

D?Llrm = (?mGkngr)nf_‘_ E?Llréfn + kG?leff +kGiLmr5lk + Ginlr(sf]i + thrmnk
+ 047,00 + 041,08 + O 0F + 007,08 — [5, K],
gk _ (4 J k J sk J k *J k *j ok *j ok :
Dy = OmGrz)n® + Grgpm + G p Oy + Oy 0™ + Op7.0m + 0,70, — 7.kl (4.56)
gk _ (4 J k J sk J k J k *J k
Dh[rm - (amGth)n + thr(sm + thmér + Gmfr(sh + ghfrmn

*) sk *] sk *j ok .
+ th_rdm + ehl_m(sr + Hml_rdh o []7 k]’

where [j, k] denotes interchanges of indices j and k of the preceding terms.

Lgmma 4.4.1. The tensors D{jm and Dillfm depend only on z and Z if and only if Dz%m =
Di]lffm = 0. Moreover, given any of them, valem =0.

Proof. The direct implication is obvious. Conversely, Di’;rm = D% =0 with 1) implies

— “hirm

that D{lﬁm and Dillfmare holomorphic with respect to n and (0, 0)-homogeneous. Thus, applying
the strong maximum principle (see [26]), it results Diﬁm(z,é) and Di]lfm(z,é). Any of these
gives DZilm =0. O

Theorem 4.4.2. Let (M, F) be a complex Finsler space. (M, F) is Douglas if and only if it
Jk j

AT Di’;m depending only on z and Z.

1s generalized Berwald with D

Proof. Whether or not the space is Douglas, according to Theorem [£.2.7] it is generalized
Berwald with 1) Using the fact that G;k(z, Z) (i.e. the generalized Berwald property), it
follows that

Di,lrm = ehg?“m?7 + thr(sm + Hzgm@" + 9h3nr5l + ewjblr(sh - []a k]a (457)
Jjk _ o Lk *j sk *j ok .
hlrm thfmn + HhZf(sm + em[f(sh - [-]7 k]:
jk _ *J k *j <k xj <k xj <k AR

Dhl_rm - ehl_rmn + th_r(sm + ehl_m(sr + gml_r(sh o [j’ k]’

Substituting 1} into , then yields D%’;Tm = D{L]lffm = Dfl%m = 0 and thus,

D]} (2,%) and DIV (z,%).

hrm
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Conversely, under assumption of generalized Berwald the tensors D%I;Tm, ij;, and D;j -

are given by (4.57)). Summing in these by k& = m and bearing (4.7, we obtain

; 1
D‘;Lllgrk‘ = "{thr 5[ Onb3t I + Z Oihi7
(k,hol)
ik 1 xk xk ¢J
Dy = n{ehr 5[(6 O + O0-on]},
. i 1o« , . .
Dity = n{03, - g[(ahekl:l’)”] + Oid? + 0503},

which with (4.15)), lead to

jk j jk jk
Dy .= (n+1)Dj, | Dibl - =(n+ 1)Dim Dibl i =(n+ 1)D] (4.58)

However, under our assumptions we also have Drhlm = Dijrm = Dij;_ = 0. These, along
with - prove that the space is Douglas. O

Theorem 4.4.3. Let (M, F) be a complea: Finsler space. (M, F) is Douglas if and only if it

1s generalized Kdhler with D% and D] . depending only on z and Z.

hrm

Proof. The direct implication follows from Theorems [£.2.7] and {.4.2] Conversely, under as-
sumption that the space is generalized K&hler, the conditions (4.20]) are identically checked
(&

and D;:k =—(n+1)GF +Njnk — @k "n®, where @k, are smooth functions which depends only
on z and Z. After three derivations of these last relations with respect to n or 7, it follows that

k . .
Dl = —(n+ )G+ @D+ > Dl
(j7h7k)
DF = —(n+ 1G5+ (8D )" + Dy 0F
jrhm ( ) rhm (T hm)n + hmYr>
1 .
jrﬁm = 7( )G:‘hm (aTDBm)nk + D;LT(;Tk;'l + D?Lm(sf

2 m(%, Z) and Dillfm(z, zZ), along with the conditions (]4.20[) and (]4.15'), then

lead to D;kh = Djkh = D;Eh = 0, that is, the space is Douglas. O

Our assumptions D7

Lemma 4.4.4. Let (M, F) be a complex Finsler space. Then, G* = Pn', where P is a smooth
function on T'M, if and only if DI* = —%(G*jnk — 0*Fnd). Moreover, given any of them, the
functions DI* are (2,1)-homogeneous and (M, F) is a generalized Berwald space.

Proof. Supposing thatG? = Pn’, it immediately results that D/* = —%(H*jnk — 0*F7). Con-
versely, the fact that DI¥ = —%(H*jnk —0*Fnd) implies GIn* — GFnJ = 0, for which contraction
with g leads to

o1 1 gir 5 1 Jg; »
G'= 2 G ' = 2Lg’°’“a”,:?7 e’ = 5y’ = P,

where P = i%ﬁf Wn"i" is a smooth function on T'M.
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A trivial computation shows that D/* are (2,1)-homogeneous. Since G* = %gmi%’%g’nkﬁr,

we write %gmiaag%}f‘nknr = Pn'. Contraction with 7;, leads to P = i%nk. Further on, the
equality g™ —ag;;f nkn" = %%nkni implies

. 1 0oL , 1 9°L : 1 1 0gir ; 1 :
-Gt = —_—_ =% ko i= - k = _ = P gk,
" YR AT = e A ey A U Y A
1 . 1 .
= _EGlﬁr + szﬁr =0,
that is, F' is generalized Berwald. O

Corollary 4.4.5. Let (M, F) be a complex Finsler space. If Dk

AT D{ll;m depend only on
z and Z and either DIk = —%(G*Jnk — 0**p7) or G* = P, where P is a smooth function on

T'M, then the space is Douglas.

Proof. 1t results by Theorem [.4.2] and Lemma [4.4.4 O

Lemma 4.4.6. Let (M, F) be a complex Finsler space. Then, the functions DI* are holomor-
phic with respect to 1 if and only if they are homogeneous polynomials in n of degree three and
in 7 of degree zero. Moreover, given any of them, the space (M, F) is weakly Kdhler.

Proof. If D7* are holomorphic with respect to 1, then Dﬁ—-k = 0 and by , we have Df;k "=
3D7% and 0*ink — §**ni = 0. Therefore, DI* = GIn* — G*1? which are (3,0)-homogeneous
with respect to 7. In addition, we have Dgzlm = 0 and owing to , Dﬁzlmﬂ = 0. The last
two conditions mean that Difbl are holomorphic with respect to n and (0,0)-homogeneous.
Thus, by the strong maximum principle, the fgnctions Diil depend ounly on z and Zz. Taking
into account , we then obtain DI* = 6Dizl(z)nrnhnl, which proves our claim.
Conversely, if D7* are homogeneous polynomials in 7 of degree three and in 7 of degree
zero, then there exists the functions qu;fl(z,é,ﬁ) such that DIk = fg,lfl(z,i,ﬁ)n"nhnl, with

fﬂ:l = fj”lfl = ffv Hence, Difm = Gfgfm(z,é,ﬁ) and Dizlm = 0, and from 1' it follows
that D%ﬁlmﬁ” = 0. By conjugation, D;gl—m = 0 and Digimnr = 0 which means that the

functions D%’lfm are holomorphic with respect to n and (0, 0)-homogeneous. Applying again

the strong maximum principle, D%’lgm does not depend on 7 or 7). Therefore, their conjugation

Dfl’;m depend only on z and Z which implies D7* = éDile(z, Z)n"n"n! and thus Df;k =0.
Finally, after contraction on §*n* — 0**nJ = 0 with n we deduce §*/ = 0, that is, (M, F)

is weakly Kéahler. O

Theorem 4.4.7. Let (M, F) be a complex Finsler space. The functions DI* are holomorphic
with respect to n if and only if (M, F) is a Kahler-Berwald space.

Proof. If D% are holomorphic with respect to 7, then #*7 = 0 and D7* = Gin* — G¥1) . Thus,

(4.56) becomes

Dgz]lcrm = (8mG;Llr)77k + G?llr(sﬁl + G;le(sf + G?zmr(slk + anlr(sflj - [j7 k]’
pirm = OmGEIn” + Gy + G oy — [ K,
Jk — (D (Y k Jj sk Jj sk Jj sk .

Dh[rm - (8mGth)n + thr(;m + thm(sr + Gmfréh B [‘7’ k}

o7
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complex
Douglas
spaces

generalized
Berwald spaces

Kahler-Berwald
spaces

locally
projectively flat

generalized
Kahler
spaces

weakly
Kahler
spaces

Figure 4.1: Inclusion diagram

Setting k = m and using the formulas (4.2) and (4.4)), these yield

1
ik
Dy = (n+1){Ghlr — [(0 D)’ +(§)Dhl5]}

ik
D;L[Fk = (n + 1){Ghlr n 4 1 [(ath'r‘) + D[’T‘%]}?
. 1
e = (0 1){Ghlr ol ——[(0r D)0’ + Dy, 81 + Dy 671}
Substituting l-b with 6*/ = 0 into these, we obtain D}y = (”+1)D?xlrv D?j L = (n+ 1)Dil-
and Dil L= (n+ )DJ However, we also have Di,k;lm = Di’;”rm = DiLl_ = 0. Thus, D}, =

Dfll, = DJ i = 0, that is, the space is Douglas. Moreover, by Theorem {4.2.17} it is Kéhler-
Berwald. .
Conversely, if the space is Kédhler-Berwald, then 6*) = 0 and 0;G' = 0. These lead to
k= Gingk — G*ni and DIF = 0. O

Using Lemma, and Theorem [£.4.7] it is justified the following result.

Corollary 4.4.8. Let (M, F) be a complex Finsler space. Then, the functions DI are ho-
mogeneous polynomials in n of degree three and in 7 of degree zero if and only if (M, F) is a
Kdhler-Berwald space.

Consider F' a complex Finsler metric on the complex manifold M which is locally pro-
jectively flat. Thus, as we already proved, the spray coefficients corresponding to F' are
G' = 21L ngnkn and F is weakly Kihler (i.e. 6* = 0, see Section 4.3 and [24]), which
give DIk = 0. Moreover, any locally projectively flat complex Finsler metric is a complex
Kahler-Berwald metric. The converse is not true, but any complex Kéahler-Berwald metric
with G* = Pn', where P is a smooth function on 7'M, is a locally projectively flat metric.

Combining all the results proved above, we can present the inclusion diagram shown in

Figure [4.1] In the next section we describe an interesting family of complex Douglas spaces.

4.5 Complex Douglas spaces with Randers metrics

a = a;(2)dz' ® dz7 be a pure Hermitian metric and let b = b;(2)dz* be a differential
(1,0)-form, both on M. By these objects we have defined (for more details see |27, 26}, 25]) the

o8
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complex Randers metric F(z,1) = a+ ||, where a(z,1) = y/a;;(2)n' and B(z,n) = bi(z)n’

We note that the complex Randers metrics are arresting in complex Finsler geometry,
and they represent a medium such that Hermitian geometry interferes with complex Finsler
geometry properly. Since any pure Hermitian metric is a complex Douglas metric, our next
study is focused on the complex Randers metrics with § % 0. Recall that for a complex
Randers metric we have

O 1 9|8 B oL F FB
- = —;, - = ——};, ;= - = —[; + —V;, 4.59
N e =t E (459)
o= Fa* ll + 55 F !
gz] - o 1] 2|ﬁ| 77177];
2
i @ i W‘(aHbH 16D i o a i
g Fa + I n'i Fvbb] FV(Bnb“rﬁbn),
4 o B% Obs 3 . Ob
Nt — Nz AT L T i
j e~ g + 3
where k™ = 2aa™ + wniﬁr - Ebigr — 27«1(6771‘57« + Bb'"), v = L+ o2(||b]> — 1),

a

& = B’ + a2, NF = a™kmpl with the settings b' = alib;, ||[bl|> = alib;b;, b' = b,
Therefore, the spray coefﬁcients are
1, ob 2 0by ;0by

—(lr p T " b kT rn]. (4.60)
2y "0 [P O 48|
and for the generalized Berwald Randers spaces we have proven Theorem which attest
that a connected complex Randers space (M, F') is a generalized Berwald space if and only if

a

(Bl=5%; 80 + 85" )n? = 0. Moreover, one has that G' = G".
All subsequent rea,somng is under assumptions of generalized Berwald property. Since

G = Gl then Nk m"“(8‘”’" + 8%’”)77 , which together with (4.59)), leads to

G' = GZ

e +

027 0zl
c F FB
6L = ——Tyrm ™) 4.61
22
where Flrm = 85;? 6%7 Q= NS bs — ibr% n - |§|2 dibrlnn 7t = }amlnm - 777[ + %bl'
From and , it follows that
a
0" = —Tyma™nli, (4.62)
i Qﬁ B
0 o= (FleTlT/r + = ‘B‘ )(hmZ - ;bmnl)v
where h™ = g™ — O‘;bmbi.
a a

Once we obtain §*' and 6*', a technical computation yields the expressions for K? and K*.
This involves some trivial calculus, which leads to

a
K' = ~Tig(a™ — ga™ )i,
; B 17 i1 = 20\ i i
Ki= _FlFm[ Bl 711(aml w;ﬂmeZ)nz}n — 20, [T[Zﬁhmz a|€|(1 _ Igz' _ %)bmn]’
(4.63)
202(1-[p[|?)

1 _ o
where w =1 |B|+ 5
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Theorem 4.5.1. Let (M, F) be a connected complex Randers space. (M, F) is a complex
a
Douglas space if and only if (5[,,22] + ﬁgg; 7)n? = 0 and K* = K. Given any of them,

Q7 = —%Fl,:mblﬁr. Moreover, if a is Kahler, then (M, F) is a Kahler-Berwald space.
Proof. If (M, F) is complex Douglas space, then (Bl " +5§Z§ )’ = 0and K* = ¢t (2, 2)7 n®,

. r 62]
which means that K* are homogeneous polynomials in 7 and in 9 of first degree. Thus, using

(4.63) we have

. _ _ 3 21Bl12 + 5 2(a2|(bl|2 2y _ B
Oé|ﬁ’ {Kz + Tyrm [hmznrnl _ %[aml _ g(l _ %)bmnl 4 wbmbl)]nrnz

+%(1 + a2|\b\|2+|5|2)Q_bm z} + Fl?m a25hmiﬁrbl o %[&2E(a2\\b||2+\6|2)bmnl

Y
_052’/3‘2( 2042||bH )bmbl]—r % +2Qm OCQﬁhmi—i- ailfp(l_ 202Jy|b||2)bm77i} :07

which contains an irrational part and a rational part. We can deduce that
Ki = —Tjpm {h™i7} — %[aml _ g(l _ w)bmnl + ‘IQ(O‘Q”I’L'Q*WR)bmb’)]ﬁrni}
%(1 + OZQHijJrIBI2 Qb and
(4.64)
Tipm{a? Byt — L@ IEHBE iyt 025121 — 222 I0IE gty
= —205{a2Bn™ + IO (1 — 20WIE Yy

Contractions with /; and b; in the second formula in (4.64]) yield the homogeneous linear system

(4.65)

o 2 2 2
{ B2(n — 1+ 22 4 B IPHRYy g
[n(

202|[b]|2 2| bl 12+
a2[|b][2) + |82 ( ag” )X — B2l || 181%) y- Y =0
with the unknowns X = (Cirmi b 4 2Q7)b™ and Y = Tyt nrbm Since its determinant is
_ 2nBIBIF (?[[bl*+]8[%) £
v

nonzero, A =
that is,

0, then the system (4.65)) admits only the null solution,

(Tirmi b 4 2Q:)0™ = 0, (4.66)
Fl?ﬁﬂ? 7"
By derivations with respect to n and 7, the second relation in (4.66) implies T'jz7b™ = 0.
When substituted in the first relation in (4.66), this yields Q6™ = 0. These, along with
a
4.64), lead to K = K°.
a
Conversely, since K are always homogeneous polynomials in 7 and in 7 of first degree
a
and K* = K, then (M, F) is a generalized Kéhler space. This together with Theorem [2.3.5
completes our claim.

If the space is complex Douglas, then I'jz7b™ = Q70™ = 0. When substituted into the
second formula in 1’ this yields Q7 = —%Flrmblﬁf
a

Moreover, if a is Kéhler, then K = K = 0. According to Theorem {4.2.17, (M, F) is a
Kahler-Berwald space. O

Theorem 4.5.2. Let (M, F) be a connected complex Randers space. If (M, F) is a generalized
a a
Berwald space then, K' = K* if and only if 0** = *.
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Proof. Under the assumption of generalized Berwald property, we have the relations (4.62)
a

and (4.63). If K? = K’ then, the second formula in (4.63) can be rewritten as the sum of an
irrational part and a rational part. This implies that

2 . 2 201512 20 211h]12 2 . _
{—%Ulbl + %[g(l 2« ’UbH )nl _« (o Hb’U +18] )bl)]nz}rlfﬁzbmnr

n %(1 n aQHijHﬁIQ)memni —0

and the second formula (4.64)). Similar reasoning to that in the proof of Theorem [4.5.1} gives
Iirmb™ = 0 and Q70™ = 0. Therefore, Q = —%FlfmblﬁT. Substitution of the last three

a
relations in (4.62)), leads to 6* = 6*'.
a

Conversely, if 0% = * then, the second formula (4.62) is

_Oz’|y5|l—xlfmnlnr(a2bi + an)bm +a2ﬁ(rlv‘-mﬁrbl + QQm)(hﬁm _

which contains an irrational part and a rational part. It follows that

L' (0?0 + By )b™ = 0, (4.67)

(rlrmnrbl+29m)(hmi—ﬁbmni) = 0.
Contracting in (4.67) with either [; or b;, we obtain [jp7b™ = 0, Qzb™ = 0 and Q5 =
—3T0rmbl". Substituted in (4.63), these give K' = K'. O

An immediate consequence of above theorems follows.

Theorem 4.5.3. Let (M, F) be a connected complex Randers space. (M, F) is a complex
— a
Douglas space if and only if (5122 + ﬁ%ﬁr)nj =0 and 6*" = 6*.

"0z

To establish another characteristic of complex Douglas spaces with Randers metric, we

recall Theorem i).

Theorem 4.5.4. Let (M, F) be a connected complex Randers space. Then, « and F are
projectively related if and only if F' is generalized Berwald and B' = —Pnl, for any i = 1, n,

where P = —%wnfmbmnlﬁ’".

Theorem 4.5.5. Let (M, F) be a connected complex Randers space. (M, F) is a complex
Douglas space if and only if a and F are projectively related.

a

Proof. If (M, F) is a complex Douglas space, then by Theorem [4.5.3] we have §* = 6* and
a

thus, B = 0. Moreover, by Theorem [2.3.5, we have G = G*. Hence P = 0 and, according
to Theorem [£.5.4] the metrics o and F are projectively related. Conversely, if « and F are
projectively related and since « is a complex Douglas metric, according to Theorem [£.2.8] the
Randers metric F' is also a complex Douglas metric. O
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Now we consider a connected complex Randers metric F' = « + ||, on a two-dimensional
complex manifold M. Assuming that F' = a+ |3] is a complex Douglas metric, it satisfies the
conditions B B

Lypb! + Tysb? = 0, with I,r = 1,2. (4.68)

Since Tymm = 0 and T3 = —Tpsq, with Lm = 1,2, (4.68) reduces to Tj3b' = 0 and
I';13b? = 0. These give I';13 = 0, because at least one of coefficients b™ is nonzero. This means
that the metric o is Kéhler, and thus, by Theorem [£.5.1] a complex Randers Douglas space
of dimension two is Kahler-Berwald space.

However, there exist the complex Randers Douglas spaces that are not Kahler-Berwald for
dimension n > 3. We show this fact using an example. Hereinafter, we construct an explicit
example of complex Randers metric that is complex Douglas, i.e. it satisfies the conditions of
Theorems and

On M = C3 we set the pure Hermitian metric

Q? = & P 4 e PP g T ) (4.69)

and we choose the (1,0)-differential form 8 given by3 = e*"n2. Then, |3|* = e**+2° ‘172‘2 and
thus b; = b* =0, i € {1,3}, by = e* and b? = e~*". Tn addition, we have [}z = 0, excepting
the coefficients T'yp3 = —a37 = €2 +7 72°+2° £ 0. Thus, the metric is not Kéhler. With
these tools we construct the complex Randers metric

F o= \fer 5 F e 2t e e g Jet e e (470)

which has det(g;;) = % det(a;;) > 0, i,j = 1,2,3. Some computations lead to the conclu-

sion that the the metric (4.70)) is generalized Berwald, this is,

b b . . - b _9by
B T 5T\ — _ =2

(81

Moreover, we have Ijzrb™ = 50 = 0, Dbl = Topmb? = 0, Qr = 0, r = 1,2,3. If we
a a

substitute these into (4.62) and (4.63)), it turns out #* = #* and K* = K*, i = 1,2, 3. Thus,
by Theorems [4.5.1 and [4.5.3] (4.70]) is a complex Douglas metric.
We note that the above example can be generalized to examples of complex Douglas metric,
n
taking on M = C", a2 = 5 e#+7 ‘nklz + e HE I ‘n3}2. For 3 we can choose one
k=1, k#3
of the following possibilities 8 = e* 0¥, where k = I, n, excepting k = 1 and 3.
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Chapter 5

Zermelo’s deformation of Hermitian
metrics

In this chapter, mainly based on the paper [9], we first present Zermelo’s navigation on Hermi-
tian manifolds making use of the real homogeneous complex Finsler metrics (briefly R-complex
Finsler metrics). More precisely, R-complex Randers metrics are obtained by Zermelo’s defor-
mation of the Hermitian metrics, with space-dependent ship’s relative speed under the action
of weak complex vector fields. Next, we indicate the behaviour of certain properties of a
Hermitian metric under Zermelo deformation in a special holomorphic wind.

5.1 Motivation and the main results

In Zermelo’s navigation problem, formulated initially by E. Zermelo in [I57], the objective
is to find the paths which minimize travel time of the ship proceeding from one point to
another point in the presence of perturbing wind W, under assumption the ship sails at
constant maximum speed relative to the surrounding sea. Exploration of this problem has led
to important generalizations and results in Riemann-Finsler geometry. It was shown that the
solutions of Zermelo’s problem on Riemannian manifold (M, h) are represented by geodesics
of a Randers metric (in weak wind) or Kropina metric (in critical wind) [45, [124] [76] 154], 93],
96]. This subject is still being addressed because of its various applications in the essential
theoretical investigations [45], 124, [76, 84, [154] 93] O6] as well as in the real world problems
[104], 95, 94].

Zermelo’s navigation was also considered by us on Hermitian manifolds, where the solu-
tions are represented by the complex Randers and complex Kropina metrics [40, 14, 15]. It is
worth mentioning that, in contrast to a real analogue, a complex Randers metric commenced
to be studied much later (2007, cf. [36]). In order to benefit from similar interest like this
given by real Randers metrics, it was natural to find some applications for them. Thus, the
concepts in real setting presented in [45] were referred by us in [40], where the navigation
problem was investigated on a Hermitian manifold. The application of a navigation represen-
tation in a complex landscape enabled to obtain the concrete examples of complex Randers
metrics [40] and to point out the essential difference in comparison to the analogous problem
on Riemannian manifolds. Namely, the complex Randers metrics are not of constant holomor-
phic curvature by perturbation of some Hermitian metrics of constant holomorphic sectional
curvature via the Zermelo’s navigation [40]. Nevertheless, it was necessary to work out the
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additional geometric assumptions which come from the complex homogeneity requirement for
complex Finsler metrics [I4), 15]. Without this restriction, the solutions of the problem are
only real homogeneous, actually R-complex Finsler metrics. These have been developed in
[120] 41, 211 22]. Thus, the first purpose of this chapter is to describe R-complex Finsler met-
rics as solutions of Zermelo’s navigation problem on Hermitian manifolds (M, h), under action
of weak winds W and with variable space-dependent ship’s relative speed ||u||;,. The second
objective is to investigate the holomorphic curvature of a class of R-complex Finsler metrics
obtained by Zermelo’s navigation, that is, as the deformation of some Hermitian metrics by
certain holomorphic vector fields.

An overview of the chapter’s content. In Section 5.2 we summarize some preliminary
notions on n-dimensional R-complex Finsler spaces. In Section 5.3, following [93], we describe
the generalized Zermelo navigation problem (briefly, generalized ZNP) on Hermitian manifolds,
the main result being Theorem [5.3.3] which attests that the R-complex Hermitian Finsler
metrics are of Randers type if and only if they solve the generalized ZNP on Hermitian
manifolds. Besides the meaning that the generalized ZNP provides a concrete application for
the R-complex Hermitian Randers metrics, more valuable is the fact that by generalized ZNP
we can construct explicit non-Hermitian metrics (called W-Zermelo deformations), deforming
the background Hermitian metric h by given data W and ||u(2)||,. This is followed in Section
5.4, where we study the holomorphic curvature of some W-Zermelo deformations F', taking
into consideration holomorphic vector fields. Assuming that the holomorphic curvature of
W -Zermelo deformation F'is only space-dependent and W is a special holomorphic wind, we
prove that the holomorphic curvature of F' is vanishing (Theorem . Moreover, we study
the effects of the Zermelo deformation on some properties of a Hermitian metric h, e.g. Kahler

property and the holomorphic sectional curvature (Theorems|5.4.6, and Corollary [5.4.9)).

5.2 Few rudiments of R-complex Finsler geometry

To begin with, we point out some basic notions from R-complex Finsler geometry [1} 116} 120,
A7), 21, 22], 26]. Next, we introduce the class of R-complex Randers metrics which solve the
Zermelo’s navigation problem in the Hermitian landscape. This is more general approach to
the subject than the class studied in [41], 22].

Basic notions and notations. Let M be an n-dimensional complex manifold and (z*) k=Tm
be the complex coordinates in a local chart in z € M. We recall that T"M denotes the
holomorphic tangent bundle, T"M being a 2n-dimensional complex manifold with (z*, n*) k=Tm
the local coordinates in (z,n) € T"M.

Definition 5.2.1. [T20] An R-complex Finsler space is a pair (M, F'), where F is a continuous
function F: T'"M — Ry satisfying the conditions:

i) L = F? is smooth on M =T'M\{0};

ii) F(z,m) >0 for all (z,n) € T'M; the equality holds if and only if n = 0;

i) F(z,An,z,\ip) = AF (2,1, 2,7), for all X\ > 0.

We note that this definition refers to complex Finsler metrics, where we restrict the ho-
mogeneity condition #74) to the real scalars. The Hessian and the Levi matrices of L induce
the tensors

9L 9L 9L
Gij = W’ 9i5 = W? 95 = W7 (5.1)
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that obey the below properties

(O:L)n' + (0:L)n" = 2L, gi5n" + g’ = 0L, L =Re{gin'n’} + g;n'1’, (5.2)
(Ojgie) + (O59)7 =0, (9ig)7 + (9;9:)7 = 0.
They are obtained as consequences of the real homogeneity condition ).

Subsequently, a smooth function ¢(z,n) with (3ig0)77i+(35<p)ﬁi = sy is called R-homogenous
of degree s in the fibre variable . Thus, according to L is R-homogenous of degree 2 in
the fibre variable and the tensors g;; and g;; are R-homogenous of degree 0.

As mentioned in the Chapter 1, a strong pseudoconvexity is assumed in complex Finsler
geometry. This implies the matrix (g,;) is positive definite on M. But here, due to the
real homogeneity condition the fundamental function L acquires a more general form than in
complex Finsler geometry, namely L = Re{g;;n'n’ } + gijniﬁj by . Consequently, there are
highlighted two general classes of R-complex Finsler spaces. Namely, the class of R-complex
Hermitian Finsler spaces, i.e. the Levi matrix (g;;) is positive definite on M, and the class of
R-complex non-Hermitian Finsler spaces, i.e. the Hessian matrix (g;;) is positive definite on
M. Thus, in this way two different geometries were developed on T"M. That is, Hermitian
and non-Hermitian, related by L (see [120]) and actually also the geometry of the strongly
convex R-complex Finsler spaces, where both matrices (g;;) and (g;;) are positive definite on

M (see [21]).

Further on, for our purpose we ought to focus on the class of R-complex Hermitian Finsler
spaces. In particular, if g;; depends only on 2, then we called an R-complex Hermitian Finsler
space with g;5(2) a pure Hermitian space. Note that also g;; depends only on z (cf. [22]) and
the fundamental function L is smooth on whole 7'M in this case.

In R-complex Hermitian Finsler geometry Chern-Finsler complex nonlinear connection
(with the local coefficients N} = g™ az‘?fa%m = g™ [(Okgrm )" + (Okgsm)n®]) is the main tool
to study [120]. Thus, from now on, dj is considered with respect to the above nonlinear
connection.

Also, Chern-Finsler complex nonlinear connection induces a complex spray

0
0%t

S = 77i - QGZ(zv n)aza
where 2G" = N;nj . Since L is R-homogenous of degree 2 in the fibre variables, the local
coefficients N ; and G' are R-homogeneous of degree 1 and 2, respectively, with respect to the
fibre variables. s . .

Moreover, the Chern-Finsler connection D : T(T'M) — T(TEM @ T'M) (i.e. metrical
compatible and of (1,0)— type, see [120, 21])) is retrieved in an R-complex Hermitian Finsler
space. Locally D is given by

Ly = g™ (Gigkm)s  Ch = 9™ (Djgkm), Ll =Clp =0, (5.3)

and it has the properties Lz.k = 0;N} and Nj = Léknj + (0-N})i" [21].

If in addition F' is assumed to satisfy T;k =0or T;knJ = 0, where Tj’k = ;k — }cj, then the
R-complex Hermitian Finsler space (M, F') is called strongly Kdhler or Kdihler, respectively.
Any strongly Kéhler metric is a Kdhler metric and, in the pure Hermitian case both these

1 99im _ 9gim
types are the same with =577 = S,
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Let v : [0,1] — M, v(t) = (v*(t)) = (¢*(t)), k = T,n with a real parameter ¢ and the
velocity % = n¥(t), be a regular curve with F (1), dé—gp) = c > 0. 7 is a geodesic curve
corresponding to the R-complex Hermitian Finsler function F on M iff % (g—# (7,7)) =
L (~,%), where L = F? and 4 = & (see [120]). The last equation is equivalent to

Py L . oL P PL
i _ nl — : 7 T =0 =1 5.4
(gﬁ a2 oz 82’) * <ng a2+ ozog" > ,i=Ln, o (54)

822

in which the brackets cannot be vanished like in [120] due to real homogeneity of L. The
equation (5.4 of the geodesic curve 7(t) can be written in the local coordinate as follows

d2r7] j . s . dQ’Yk k * . .
i \ gz 1267 () )+ T (0, 9) + i | gz +267 (1,7) ) =07 (v,9) =0, i =1,n, (5.5)

where T; = %(251gi]~ 5@913)77 n — lek(a NHP*p" and 0F = szTlm]

The holomorphic curvature of a complex Finsler space is the analogue of the holomorphic
sectional curvature from Hermitian geometry [I]. Following [I],[120], the holomorphic curvature
of R-complex Hermitian Finsler function F' in direction 7 is

2
Kr(zm) = = = gim B 0™, (5.6)
where R;’Ek = _5EL§‘ . — (67N} )Cll are the horizontal curvature coefficients of the Chern-Finsler

connection D and L = gmm nm

R-complex Randers metrics. Next, we have introduced an important class of R-complex
Hermitian Finsler metrics. Considering z € M, n € T.M, n = n’ 8821., an R-complex Randers
function is defined by

F(z,m) = alz,n,2,10) + 62,1, 2,1), (5.7)
where a?(z,n,%,7) = Re{ain'n’} + aijniﬁj, B(z,m,2,1) = Re{bin'}, with b = b;(2)d2" a
differential (1,0)-form, b # 0, and a;; = a;5 (2) which comes from a Hermitian metric a =
a;;dz' ®dz’ on M [138,90]. Note that o gives us an example of R-complex Hermitian Finsler
metric which is pure Hermitian and, by , a;;(2) = &33042 and a;j(z) = 9;0;0°2.
In [4I] we studied a particular R-complex Hermitian Finsler space with Randers metrics,
setting with a;; = 0. Here we treat a;; a bit more general, namely

aij = xbibj, (5'8)

where z € [0, 1) is a real parameter. Considering the notations b* = ajkb3 and |[b]|? = ajib,-bj
(b; means b;), we prove (as in [43]) that the condition ||b||?> € (0, 1) guarantees the positivity

’lx

of F' given by 1’ with 1’ The below shown proof is for x = 2, le. a;; = %bibj.

Lemma 5.2.2. Let F' = o+ [ be an R-complex Randers function with a;; = %bibj. Then, F' is
positive on M if and only if ||b||> < 2. Moreover, any of these assertions implies o — 32 > 0.
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Proof. We assume that F > 0 on M. This leads to\/Re{aijninj} + agn'iy > —Re{bin'} for

all n # 0, which can be equivalently rewritten as \/%Re{(bmi)z} + agn'? > —Re{bin'}. Since
b # 0, substituting in the last relation 1’ with —b’, it results that ||b||* < 2. Conversely, under
the assumptions ||b||2 < 2 and 7 # 0, the Cauchy-Schwarz inequality yields

i’ |2 < aggn'i Bl < 2a5m'7, (5.9)
where |b;nt|? = (bin®)(b:777).
The inequality 1} is equivalent to (Re{bm"})2 < 1Re{(bin")?} + a;n'i’ which implies

a? — 8% >0, and —Re{bin'} < |[Re{bin'}| < \/%Re{(bmi)z} + a7, that is, F' is positive.
O

By some technical computations and making use of |27, Propositin 2.2|, we get the result:

Proposition 5.2.3. Let F' = a+ 3 be an R- complea: Randers function with a;; = %bibj. Then

_n2
/L) gzg (a’zi 2a2ll + F3 77277]) and L = (204 18)2(5 g +E€) )

i) 9ij = a(b b a2l} + 3 77177j)
iii) g7 = %(a?’ + (¢ — A0,
i) det(g ”) (g)n&% det(a Z;), where

a2 = linl—i_E ZE’ li:aﬁﬁj7 5:bj77ja €+§:267
~ € F (- &4 2«
i = Li+5bi, mi=—|L+ bi ),
2 « 2
¢ = W, 0= [ e~ WP 7+ 2F(F — )b,

H = 4(a® =% +ea(2—|bl|?), J=H-+2aF(©2+|[b]]?).

We notice that the condition ||b]|> < 2 also assures positive-definiteness of g7 Thus, F
given by 1} with a;; = %bibj is an R-complex Hermitian Randers metric (briefly R-complex
Randers metric).

5.3 Generalized Zermelo navigation under weak wind

Let (M, h) be an n-dimensional Hermitian manifold, where h = hﬁdzi®d2j is a pure Hermitian
metric determined by the components h;z(2) = h(azJ ) B -2-) in the local coordinates (zk)k:ﬁ

of z € M [I38,90]. The norm of the tangent vectors n € T/ M, n = 1/ -2 with respect to h,

927
(i.e. its h-length), is ||n||n = Vh(n,7) = 1/hj,-g(,z)nﬂnk. We consider the Zermelo navigation
problem on the imaginary sea represented by (M, h) in the presence of wind determined by
a vector field W € T/M, W = WJ 8 . Like in the standard formulation of the problem [45],
we denote by wu the velocity of a Shlp in the absence of wind, but in order to follow the idea
of the generalizations from [93, [96) 14 15], it need not have h-unit length. Actually, as in
[93] we admit that ||ull, € (||W]|n,1]. This implies the ship’s relative speed ||u||, may be
space-dependent because also the wind speed ||[W||;, has this property and it is more realistic
model from a practical point of view.
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Further on, by notation (h, f(z), W) we mean the generalized navigation data, where f(z) =
||u(2)||n. Function f: M — (||[W||n, 1] is assumed to be a smooth, positive and real valued
which depends on z (also on z), and W is a weak wind, i.e. 0 < |[[W]||, < ||u(z)||n, < 1. Due to
the existence of perturbing vector field W a ship’s resulting velocity will be represented by the
tangent vector v = u+ W which starts from z. Substituting v = v—W into ||u||, = \/h(u, @),

it results that ||ull, = \/Hv||% — 2Reh(v, W) + ||[W||3. Since Reh(v, W) = |[v]|n||[W]|1, cos b,
where here 6 is the angle between v and W, the last relation can be rewritten as

o[l = 2ol [W[a cos§ — 3 = 0, (5.10)

with ¢ = [[ul[} — [[W]]}.

In particular, on the calm Hermitian sea (M, h), i.e. W = 0, the solutions of the standard
Zermelo navigation problem (with ||ul|, = 1) are the geodesics of h. However, in the presence
of wind (W # 0), the pure Hermitian metric h is deformed into a function F' on 7" M such that
F(z,v) = 1 @E5]. Since ||[W]|, < ||u|ln, the quadratic equation (5.10) admits a positive root
which is expressed by |[v||? = ¢ + p, where ¢ = \/[Reh(v, W)]2 + |Jv||24 and p = Reh(v, W).
All these lead to

L a—p  \/[Reh(o, W)+ 0lvlF—Reh(v, V)
F(e) = Wl 5= 5 = J -

In order to obtain F(z,n) for arbitrary non-zero vector n € T, M, we take into consideration
the fact that every non-zero 7 is written as a complex (in particular, real) multiple A of some
v, n = Av. In general, the function F' obtained in is not complex homogeneous. In [14]
a strong condition is required for the purpose of complex homogeneity and then solves the
generalized problem. But without any additional condition, F' is only real homogeneous, i.e.
F(z,n) = F(z,\v) = A\F(z,v) = A, where A > 0. And thus from it is derived as the

smooth function on M

(5.11)

\/[Reh(n, W2 + [l Reny, )
(4 (4

which may be an R-complex Finsler metric. Actually, the resulting function F' is a sum
F =a+ 3, with

F(z,n) = (5.12)

Reh(n, W)2 + ||n||?v — — Reh(n, W i
- \/[ }2 = \/Re{aim’n]} +agn'’, B= —L = Re{bin'},
4 v
where « is a pure Hermitian metric and Reh(n, W) # 0 and
h.= W, W- W.W. W
__ v J _ 1YV g o 7
a; = w + 207 ajj = YR b; = 0 (5.13)

Wi = thj , Wi = Wi, W5 = Wj. Some computations lead to the inverse of a;;(z) from
(5.13) and also other terms of F, i.e.

(0
Y+ f?

2|[Wlz

72— 1)
272~ WIR

2+ |[b]?
(5.14)

W), b = 2 ) =

aﬁ = ¢(h§l - ) = v+ f2

W, |lblf* =
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Moreover, |[b||? € (0,2) because the wind W is weak, i.e. 0 < |[|[W||, < f(z) < 1 and
Reh(n, W) # 0. Hence, it ensures the positivity of the function F(z,7) from (5.12) and the
1

positive definitness of g;; = 818317 2. Therefore, it is an R-complex Randers metric with z = 5

Note that in absence of wind, formula (5.12)) simplifies to F(z,n) = ﬁ”ﬁ”h Thus, it

is a pure Hermitian metric conformal to the background metric h, ie. g;; = f%(z)hl'j' In

particular, for f(z) = 1, F(z,n) = ||n||n. Here we can observe the influence of the variable
factor f(z). More precisely, if W = 0, then the geodesics of the background Hermitian metric
h are not necessarily the solutions to the problem as they are in the standard case, i.e. with
f(z) =1 [14].

The obtained solutions of the generalized ZNP can be summarized by the following propo-
sition. Thus, we have

Proposition 5.3.1. Let (M,h) be a Hermitian manifold. The generalized navigation data
(h, f(2), W) induce on the holomorphic tangent bundle T'M the following:

i) If ||[W||n € (0,1), then the solution of the generalized ZNP is the R-complex Randers metric
F=a+8 from (B.12));

ii) If W =0, then the solution of the generalized ZNP is the pure Hermitian metric F(z,n) =
ﬁ“n\]h, conformal to h.

Since the generalized ZNP also produces pure Hermitian metrics which are conformal to
the background metric h, it is natural to ask whether the converse is true. Namely, we have
the following result

Corollary 5.3.2. If F = ﬁHth 1s a conformal solution of the generalized ZNP, then W =0

and \/9) = f.
Proof. It F(z,n) = ﬁHth stands for a solution of the generalized ZNP, then by equation
(5.12) we have Reh(n, W) = 0, for any 7. This implies W = 0 and /1) = f. O

Concluding, the generalized navigation data (h, f(z), W) generate R-complex Randers
metrics and the corresponding geodesics are the solutions of the generalized ZNP.

The inverse problem is also of our interest. Namely, can every R-complex Randers metric
F(z,m) = a + B be achieved via the perturbation of the pure Hermitian metric A by some
vector field W which satisfy 0 < ||[W||,, < f(z) < 1, where f(z) = ||u||,? Although the proof
for the inverse problem runs along similar lines likewise [14], there are subtle adjustments
necessary to fit the argument to each new situation. Considering the R-complex Randers

metric F(2,17) = a+6, with o =  [Re{aignia } + agniap, § = Re{bin'}, ag; = Sbiby, b = o',
and ||b||? = b'b; € (0,2), we construct h, f(z) and W in the following way

- 1 i —(O+ A
hij(z) = w(aﬁ — 561‘[)5), HuHh: f(z)’ W (2) — (2@)7 (5_15)
where w = %. By (5.15)), some straightforward computations give

j_ - Lo — @+ )Y el -

= haWI = @(as — =bibs)——— L7 GO

W, W w(al] 2b bj) 5 2 I b wb

~ 2\ 3 ~ 2 2 2011112
2y ip oy (@) (@4 ) |BIP_ 2/7b]
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Since [|b||? < 2, then ||[W]|, < f(z). Moreover,

2Bl _ g€

T bR @, |l = a@(agm'y — =) =a(a® - %), e=bn'

__ f2
b=t >

and thus, h(n, W) = hgn'W’ = Win' = —@e which turns out that Reh(n, W) = —@p.
Replacing the obtained expressions for ¢, ||n||2 and Reh(n, W) with (5.12)), we rediscover the
R-complex Randers metric F(z,7) = a +  under consideration.

Summarizing, we get

Theorem 5.3.3. An R-complex Hermitian Finsler metric F is of Randers type, i.e. F = a+f
with , if and only if it solves the generalized Zermelo navigation problem on o Hermitian
manifold (M, h), with space-dependent ship’s relative speed ||u(z)||n, < 1 and under action of
weak wind W. Moreover, F' is a pure Hermitian metric conformal to h, with the conformal
factor m, if and only of W = 0.

Further on, an R-complex Randers metric F' = «a + 8 with (5.13) which describe the
Zermelo deformation of the Hermitian metric h by weak wind W, with a space-dependent
ship’s relative speed ||u||, will be called briefly W-Zermelo deformation.

5.4 W-Zermelo metric

Next, our aim is to investigate how some properties of a Hermitian metric h, i.e. Kéahler
property and the holomorphic sectional curvature, behave by the Zermelo deformation, if
the weak wind W is a special vector field. For that attempt, first of all we need to find
the connections among the geometric tools corresponding to the metric h and W -Zermelo
deformation F.

5.4.1 From h to W-Zermelo metric F via «

The study of R-complex Hermitian Randers metrics was developed in a few papers [41], 22], but
only in particular case a;; = 0. In contrast, for the investigation on the Zermelo deformation
we need to have developed geometry of R-complex Randers metrics with a;; = %bibj. Some of
the elements and properties of such metrics were pointed out in Section 5.2. Now, we come
with some new results from point of view of our purposes. Once obtained the metric tensor
of an R-complex Randers metric F' (Proposition it is a technical computation to give

the local coefficients of the Chern-Finsler complex nonlinear connection, N ; = g™ af,jg;m.
Certainly, it involves some simple calculus which leads to
i i, 2.8 i, 10br
Nj :N]Jrj((sjﬂ)% +jazjk s (516)
where J is defined in Proposition and
]\(;i i &’ _ i [Oasm 5 | € 0bm 1 0br rpi
= 9zionm ¢ 921 292 292"
a 65 ak . ob" - 1 0bs 2\ — 7
2 1 = = — N — ——lF - 2 — T " 5 .
(558) = 5 — NF (@) = 5+ 5 52 [(2 = [blP)a — & (5.17)

K = aJa” + 2(28 + a||b|>)n'7" — bt — 2F (20 — )b,
»' =22a —e)n' + (2Fa — e&)b'.
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Here the differential (1,0)-form b = b;(2)d2" is said to be biholomorphic, if the functions b;

and b’ are holomorphic, i.e. gg;@ = gbl 0, for all 2,k =1,n.

Lemma 5.4.1. The differential (1,0)-form b is biholomorphic if and only if g],é’ =0.

a a - _
Proof. Since §; = @ - N;an” we get 2(;8) = ggjl + %glz’g [(2 = ||b||*)7" — €b"], and thus

a
the direct implication results immediately. Conversely, the condition §;3 = 0 can be rewritten

as B
ab" - 10bs

927 T 202

Differentiating (|5 with respect to n results that abm +Qim = 0. Thus, 2 8zﬂ =0, and so b’ are

holomorphic. Moreover, becomes gg; [(2- HbH )" — &b"] = 0. Now, differentiating
the last relation with respect to 7 yields

(2= |[B|]*)n" —&b"] =o. (5.18)

by b,
S (2= %)~ S b = 0 (5.19)

which contracted by b™ leads to bmabm( — ||6]?) = 0. We distinguish two cases. First, if
|[b]|? # 1, then b™ ‘%m =0. By (5 it follows that ‘%’" =0, i.e. b; are holomorphic. Second,

if [|b]|> = 1, then bm %’;L =0, because bt are holomorphlc. Using again by 1} it turns out
that b; are holomorphic. O

Lemma 5.4.2. Let F' = o+ 8 be an R-complex Randers metric with a;; = %bibj and b
bzholomorphzc Then,

a a
i) NJZ = sz and G* = GZ where G = %N;nj are the spray coefficients of o
. ONi
i) 5ztbi = 0;
i11) o is Kahler if and only if F is strongly Kdhler;
i) the holomorphic curvature in direction n corresponding to F is

Kr(e,n) = Pla? = B+ 5 Ka(z,n) (5:20)

_ al2a?(2a—B)F—3(a—B)(a?—B%+c8) 8]
where P = F3Ra—p)2 (a?— 2T )? and IC
rection 1 which corresponds to c.

o(2,1m) is the holomorphic curvature in di-

a
Proof. Since b is biholomorphic, the formula (5.16) is reduced to N ; =N ; =a™ dasmn The

a

. AN s @ . b , b .
last relatlon leads to —]b' = L(N’b‘) = %(gzj)ns = 8‘; (3;) = 0, i.e. ii). Moreover,

NZ N’ 1mphes k = T’ which justifies iii), where T;k was defined in Section 5.2 and

(l
T;.k = 834]\7}C — 8kN]’~. Now, using 1), ii), iii), i and Proposition [5.2.3] by straightforward
computations we obtain ((5.20)). O

Next step is to find some links between a and h in terms of the generalized navigation data
(h, f(2), W). Remark that the pure Hermitian metric @ is only an intermediary step on the
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way to W-Zermelo deformation F. Thus, starting with the relations between the Hermitian
metrics a and h, i.e. (5.13)) and (5.14)), after a straightforward computation we are led to

Wo + Wh
’l]Z) )

a h<_8kgw Wb+W%Hm(8W’ abg¢

Nj =N - =25 20 s »%Wa (5.21)

h
where N7 L= pm ah””n denotes the coefficients of Chern-Finsler complex nonlinear connec-

tions correspondlng to the Hermitian metric h and the indices 0 and 0 mean the contractions
by n and 7, respectively.

5.4.2 Holomorphic Zermelo deformation

The vector field W (or the weak wind in our approach) is the section of 7"M and in terms of
local complex coordinates (2%), 1= o itis W= Wk d . Following [110], we say that the weak

wind Wkis the holomorphic vector field, if the components Wk are the holomorphic functions,
oW

ie. 55 =0, for all K = 1,n. Further on, we pay our attention to the holomorphic vector
fields W with
dlog f?
kE_ k
W = 927 W*, (5.22)

where VVU = a(;/vw’f + hk ah”" W7 and they will be called f-holomorphic. In particular, if h is

Kahler, then hmk% = F?T which denotes the Christoffel symbols corresponding to h.

Lemma 5.4.3. Let (h, f(z), W) be the generalized navigation data. If W is f-holomorphic,

then
Z) Wm _ alngQW_

0zl — 0zJ
) dlog f2 _ dlogy __ 8108;““’“%.
o 0zl 0z 027 ’

ii) [|W|2 = cf?, o = (1—c)f? where c is a constant, c € (0,1).

Proof. We assume that W is an f-holomorphic vector field. Differentiating Wy, = hym WF

2
and ||[W||2 = Wz W™ with respect to z yield an = algfjf Wi, i.e. i), and moreover, it

2
follows that dlogf dlogaHyVHh Since ¢ = f? — HW |2, its differentiation with respect to z
Z
gives

dlogy  f*  dlog||W|[}

0z 04 027
which leads to dlggjf = 8181%¢, and thus ii). Having integrated ii) with respect to z yields
the relations in iii), where ¢ is the constant of integration. Since W is weak, it results that
€ (0,1). O

Corollary 5.4.4. Let (h, f(z), W) be the generalized navigation data. Then the vector field W
is f-holomorphic if and only if the differential (1,0)-form b is biholomorphic, with b; = —%.

Proof. Whether or not W is f-holomorphic and b is biholomorphic, since b™ = Jf}% wm,
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_ m 2 _ _ AW
by, = and |[b]|* = b"bm, = Wlwhlli’ it follows that
o™ 2 f? dlog f?  Ology W 2 OW™
025 (¢ + f2)2 027 029 v+ f2 0207

0 " 9 (5:23)

O, nObn _ APIWIR (9logs?  dlog|WIR
023" 0z (2f2—||[W2)2 \ 02 0z '
If W is f-holomorphic, then from (5.23) and Lemma it results that b is biholomorphic.

Conversely, since b is biholomorphic, the conditions (5.23)) lead to the fact that W is f-
holomorphic. O

FEA "

Corollary 5.4.5. Let (h, f(z), W) be the generalized navigation data. If the vector field W is
f-holomorphic, then the local coefficients of the Chern-Finsler complex nonlinear connection
corresponding to W-Zermelo deformation F are given by

h 2
- . Olog f
T i 7
N; = Nj 550 (5.24)
In particular, if f is constant, then NZ Njﬂ 88[2[;” =0 and W‘ =0.
Proof. The proof follows from Corollary [.4.4] Lemma[5.4.3 and (5.21). O

Further on, an f-holomorphic weak wind W, with f = const., is said to be biholomorphic.

Theorem 5.4.6. Let (M, h) be an n-dimensional Kahler manifold, n > 2, and (h, f(z), W)
be the generalized navigation data, with W an f-holomorphic vector field. Then, W is biholo-
morphic if and only if W-Zermelo deformation F' is strongly Kdhler.

Proof. Under our assumptions the direct implication results by Corollary F Conversely,
810gf 51 o 8logf

since F' is strongly Kéhler, the equation (|5.24]) implies that (5Z = 0. Summing

with i = j, we deduce that (n — 1)815%102 = 0. Thus, f is constant. O

Next, also by the assumption that the weak wind W is f-holomorphic and using (5.24)),
some computations lead to the link between holomorphic curvatures in direction 7, corre-
sponding to h and a. Namely, we obtain

ib4
(I-af -+ 57

h

T k=m

where ’Ch(Z,U) hlmR ]Tknjn nn, Rijf‘k = -
We thus have the followmg result.
Theorem 5.4.7. Let (M, h) be an n-dimensional Hermitian manifold and (h, f(z), W) be the

generalized navigation data, with W an f-holomorphic vector field. Then, the holomorphic
curvature in direction n, corresponding to W-Zermelo deformation F 1s

2 02 logf2

</Ch(z,n) + = a1 ) ; (5.25)

Ka(z,m) = 9705

. h ~
a2r (O3N}) and h = [ln[lp, = /¥ (a? = 3?).

h*P 2 9%log f2
K =—— (K — 5.26
F(2,m) (1—c)f2< w(m+ 55 e >7 (5.26)
where c € (0,1). If algfjf is a holomorphic function, then Kp(z,n) = (1 C) QICh(z n).
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Proof. Substituting (5.25)) into (5.20)), we obtain (5.26)). The particular case is obvious. O

Theorem 5.4.8. Let (M,h) be an n-dimensional Hermitian manifold and (h, f(z), W) be
the generalized navigation data, with W an f-holomorphic vector field. If the holomorphic
curvature Kr(z,n) of W-Zermelo deformation F depends only on z, Kp(z,nm) = k(z), then
k(z) =0 and

2 9%log f? jm
B2 9zi0zm ‘

Kn(z,m) = (5.27)

Proof. Since A = (1?# (ICh(z,n) + }%%2?;; njﬁm) is a polynomial in 1 and % of second

degree and Kp(z,n) = k(z), formula (5.26) can be rewritten as
af(4a* — B* 4+ a?B2)k(z) — (4o — 36* 4+ o282 + 3e86%) A]
+B[(8a* + B* — 5a?B2)k(2) + (a* — 3a?B% + 3c2a?)A] = 0,

which contains an irrational part and a rational part. This implies the following homogeneous
linear system

{ (4a* — B* + a?B2)k(2) — (4ot — 3B + o282 + 3e52)A =0

(80 + B4 — 50282)k(2) + (af — 3026 + 3eca®)A =0 (5.28)

with the unknowns k(z) and A. Since the associated determinant is nonzero, system (5.28))
admits only the null solution, i.e. k(z) =0 and A = 0. O

Note that, if there exists an f-holomorphic vector field W such that (5.27) holds, then by
(5.26) it follows that Kr(z,n7) = 0. Owing to Theorem we have the following corollaries

Corollary 5.4.9. Let (M, h) be an n-dimensional Hermitian manifold and (h, f(z), W) be the

d 9?2 log_f2

5. s a holomor-

generalized navigation data, with an f-holomorphic vector field W, an
phic function. Then, Kp(z,m) =0 if and only if Cp(z,n) = 0.

Corollary 5.4.10. Let (M, h) be an n-dimensional Kihler manifold and (h, f(z), W) be the
generalized navigation data, with o biholomorphic vector field W. Then, the geodesic curves
~(t) corresponding to W-Zermelo deformation F are the solutions of the system

d2"}/j h d2,.yl_€ h]} _
ij W+2G3 (V7)) | + 9k W+2G (v, | +Ti (v, %) =0, (5.29)

where Ti(z, n) = 1_9ajm (pbi + qii)bm + (gb; — 4B)l~i]ﬁm}njnl, i=1,n,q=2(2a%— Be) and

~ 8a3 92!

P = 8a3 + 40?B — Be? + 4a’e.
Proof. Under our assumptions, making use of (5.5)), it yields (5.29)). O
Lastly, we exemplify the Zermelo deformation by a few relevant models based on the

generalized navigation data (h, f(z), W), where W is an f-holomorphic vector field.

Example 5.4.11 Let h be the standard Euclidean metric (h;; = ;) on C" and let W
be a weak wind with constant components, i.e. WF = \i, \p € C, k = 1,n, such that
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W2 = Yy IMe? < f2(2) = 1. These lead to 1 = 1 — >, _; |A\g|> = const., b; = ixi,

aG = ii + ﬁj\i)\k and thus, g;; and g;; corresponding to W-Zermelo deformation F' depend

only on 7, i.e. F is locally Minkowski. Moreover, it follows that Krp = K, = 0.

In what follows we consider the Hermitian manifold M represented by C? or a subset of
C2%. Asi 1n dimension two we denote the local position coordinates (z!, 22) by (z,w), and the

fibres (n',7%) by (1, 0).

Example 5.4.12 On C? we consider the generalized navigation data (h, f =1, W = &~ D)
2Rez
with <h (2, w)) = < € 62§ew ) These imply that ||[W|[? = 1, Wi = 0, W, = %,

0
662Rez 0
< 0 762Rew ) :

. Thus, W is biholomorphic and

P = % and then, by =0, by = _236w as well as (aﬁ(z,w)) -

ol Ol

Consequently, we obtain b' = 0, b = —
W-Zermelo deformation F' = « + 8 has the components

2 . _ 2
o? = 5 6e*T* \77]2 + TeWT® \Q\Q + Re(eQU’QQ)} , 8= _gRe(ewg).

h h h h
Since Ni = N} =n', N = NJ = N} = N? =0, NJ = N3 = n?, it follows that F is strongly
Kéahler and Krp = K, = 0.

Example 5.4.13 We consider the Hartogs triangle A = {(z,w) € C?, |w| < |z| < 1} with
2
the generalized navigation data (h”(z w)) = ( 2170 ), 2=z and W = %%.

0
It turns out that [[W]]? = %7 Wi = b =0, Wo = g, v = |7\27 by = _% and
6 0
(aﬁ(z,w)) = % 0 ‘% . In this case W is f-holomorphic and the components of W-
z

Zermelo deformation F' = o + 3 are

9 7 2 2 2

|z|? 3z

Moreover, by Corollary , Kr = 0 because K = 0 and 81?97%]02 =1

e

Example 5.4.14 On the Hartogs triangle A = {(z,w) € C?, |w| < |z| < 1} we consider the

|27 = Jw]* 0

pure Hermitian metric (h;(z,w)) = ( ) and the same data as in the last

0 1
example, f%=|z|? and W = 2 8w
These lead to the same tools, namely, ||[W||2 = %, Wiy =b =0, Wy = %, S %,
_ 2 e ae whi : _ 2 [ 6(zF —Jwf) 0
by = —3, excepting a;z which here is (a;(z,w) = 9 0 L

Thus, this also influences W-Zermelo deformation F' = « + 8 which has the same § as in

(5.30) and

a2_2[6<|z|2—|w|2> Tlof | o &
9

2 0
g T TR,
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Although for any j,m = 1,2 we have %2 i-og_{? = 0, the holomorphic curvature of F' is not
Sinllze—unl?
2|n|”|zo—wn

vanishing (Kr # 0) because Kp, = PP (w1
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Chapter 6

Rudiments of real Finsler geometry

In this chapter we briefly recall the notions and general facts from Riemann-Finsler geometry
that are needed for presenting and proving our results. For more details, see, e.g. [71] 58] 45,
127, 155, 89, [154] [611, ’5].

6.1 Finsler manifolds

Let (M, h) be a Riemannian manifold, where M is an n-dimensional C*°-manifold, n > 1, and
h is a Riemannian metric on M. Let T, M be the tangent space at * € M and (2%),i=1,...,n
be the local coordinate system on a local chart in x € M. The set {a?ﬂ-} ,t=1,...,n denotes
the natural basis for the tangent bundle TM = xGUMTxM which is itself a C'"°°-manifold. Thus,
0

rmi

for every y € T, M, one has y = ¢/’ and the coordinates on a local chart in (z,y) € TM are
denoted by (2,y%),i=1,...,n.

A natural generalization of a Riemannian metric is a Finsler metric. Specifically, the pair
(M, F) is a Finsler manifold if F': TM — [0,00) is a continuous function with the following
properties:

i) F'is a C*-function on the slit tangent bundle T'My = TM\{0};

i1) F' is positively homogeneous of degree one with respect to y, i.e. F(x,cy) = cF(z,y), for
all ¢ > 0;
i11) the Hessian g;;(x,y) = %%

Denoting by Ip = {(x,y) € TM | F(z,y) = 1} the indicatrix of F', one can remark that
the property iii) refers to the fact that Iy is strongly convex. In particular, the Finsler metric
F' is a Riemannian metric if and only if g;;(z,y) does not depend on y, i.e. g;j(z,y) = gij(z).

Let A be a conic open subset of TMy. According to [61] [87, [88], this means that for each
xe M, A, = ANT,M is a conic subset, i.e. if y € A,, then \y € A, for every A > 0. In
particular, a conic Finsler metric is a Finsler metric on A, i.e. F': A — [0,00) is a continuous
function satisfying i), ii) and iii) for all (z,y) € A (see [61], 87]).

A smooth vector field on 7'My, locally expressed by S = ¢/ azi —2G° 82“ is called a spray
on M. The functions G¢ = G*(z,y), i = 1, ...,n are positively homogeneous of degree two with
respect to y, i.e. Gi(x,cy) = c2G'(x,y), for all ¢ > 0, and they are called the spray coefficients
[71]. In the case where the spray is induced by a Finsler metric F' =+/g;;(z,y)y’y?, the spray

is positive definite for all (z,y) € T'Mj.
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coefficients are given by

G'(w,y) = 79" {[F)oryt” = [F*] i} = 29" <239;Jkl — 8;?) Yyt (6.1)

(¢"") being the inverse matrix of (gy).

Let us consider a regular piecewise C™-curve on M, v : [0,1] — M, y(t) = (7i(t)),
i = 1,...,n, where the velocity vector of v is denoted by §(t) = %‘ The curve ~v is called
F-geodesic if 4(t) is parallel along the curve, i.e. in the local coordinates, v'(t), i = 1,....,n
are the solutions of the ODE system

(1) +2G'(1(t),4(t) = 0. (6.2)

It is worthwhile to mention that Zermelo’s navigation, apart from the fact that it is a
classic optimal control problem, provides a technique to construct a new Finsler metric by
perturbing a given Finsler metric (the so called background metric) by a vector field W, i.e. a
time-independent wind on a manifold M, under some constraints. In particular, by considering
that the background metric is a Riemannian one, denoted by h, the Randers metric solves
Zermelo’s problem of navigation in the case of weak wind W, i.e. ||[W||;, < 1 [45, [71]. When
W is a critical wind, i.e. |[|[W]|, = 1, the problem is solved by the Kropina metric [I54]. In
this respect, we mention the following result (see [127, Lemma 3.1|, [61, Proposition 2.14], [71]
Lemma 1.4.1]).

Proposition 6.1.1. Let (M, F) be a Finsler manifold and W a vector field on M such that
F(z,—W) < 1. Then the solution of the Zermelo’s navigation problem with the navigation
data (F,W) is a Finsler metric F' obtained by solving the equation

F(x,y— F(z,y)W) = F(x,y), (6.3)
for any nonzeroy € T, M, x € M.

Since the indicatrix I is strongly convex and it is assumed that F'(z, —W) < 1, (6.3) admits a
unique positive solution F' for any nonzero y € T, M [61] 127]. Another key remark regarding
the inequality F'(x,—W) < 1 is that it assures the fact that F' is a Finsler metric, having

the indicatrix Iz = {(x, y) e TM | F(z,y) = 1} strongly convex, as well as, for any x € M,

= 0 belongs to the region bounded by I;; for more details, see [61]. Additionally, any
regular piecewise C*°-curve v : [0,1] — M, parametrized by time, that represents a trajectory
in Zermelo’s navigation problem has unit F-length, i.e. EF(y(t),%(t)) = 1, where #(t) is the
velocity vector [71, Lemma 1.4.1].

6.2 General (o, 3)-metrics

Various examples of Finsler manifolds can be found in the literature and a few of them are
outlined in the sequel. Let a? = a;;(x)y’y’ be a quadratic form, where a;;(z) is a Riemannian
metric on M, and B = b;(z)dz’ be a differential 1-form on M, also expressed as 3 = b;y'.
The pair (M, F) is called Finsler manifold with general («, 8)-metric if the Finsler metric
F can be read as F' = a¢(b?,s), where ¢(b?,s) is a positive C-function in the variables
b? = ||8]|2 = a¥b;b; and s = 2, with |s| < b < by and 0 < by < o0; for more details, see [155].
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The examples of general (a, 8)-metrics are provided by the slippery slope, slippery-cross-slope
metrics and (7, 77)-slope metric, which have been presented recently in |10} 1], 12, [13]. In the
case where ¢ depends only on the variable s, the function F' = a¢(s) is known as («a, §)-metric.
Such an example is the Randers metric F' = a+ 3, with ¢(s) = 1 + s which solves Zermelo’s
navigation problem under the influence of a weak wind, i.e. |s| < b < 1 [7I]. Another example
is provided by the Matsumoto metric F' = aa—jﬁ, with ¢(s) = % and |s| < b < 3, which
carries out the solution to Matsumoto’s slope-of-a-mountain problem [106].

From the theory of the general (o, 3)-metrics we recall only a few key results for our
arguments.

Proposition 6.2.1. [155] Let M be an n-dimensional manifold. F = a¢(b?,s) is a Finsler
metric for any Riemannian metric o and 1-form B, with ||B||a < bo if and only if ¢ = ¢(b?, s)
15 a positive C°-function satisfying

¢ — 5o >0, ¢—spy+ (b — s2)pao >0,

when n > 3 or
¢ — sy + (b? — 5%)aa > 0,
when n =2, where s = 5 and b = ||B||a satisfy |s| < b < by.

«

We notice that ¢; and ¢ denote the derivatives of the function ¢ with respect to the first
variable b? and the second variable s, respectively. Similarly, ¢12 and ¢ denote the derivatives
of ¢1 and ¢o with respect to s. When ¢ is a function only of variable s, the derivatives ¢ and
¢92 are simply denoted by ¢’ and ¢”, respectively.

To conclude the presentation of the desired results, we also need to recall the following
notations

rij = 5(bij +bjpi)s i =Vr, rt=ar, oo =riy'y?, o =ry', r=>br,
sij = 3(biy; — bjji),  si =Vsj, st=ds;,  sh=a"spyF,  so = sy,
(6.4)
with & = a?'b;, b, b _ Ffjbk and I‘fj = Lakm (a“m + Qaim _ aa”) being the Christoffel

li = B ozt oxJ oz
symbols of the Riemannian metric a;;. We point out that the differential 1-form £ is closed if
and only if s;; = 0 (see [71]).

Proposition 6.2.2. [153] For a general (o, B)-metric F = a¢(b?, s), its spray coefficients G
are related to the spray coefficients G, of a by
G' = Gl +aQsy+ [@(—2aQso + 700 + 2% Rr) 4 aQ(ro + 30)} yE

+ [¥(—2aQs0 + roo + 202 Rr) + all(rg + 50)] b — &®R(r' + %),

where

0 — _ P2 o — (¢ — sp2)p2 — sppao
¢ — s’ 20[¢ — s 4 (b2 — 52)aa]’

U = P22 o - (¢ — sp2)p12 — sP122
2[p — s¢2 + (b7 — 52) o]’ (¢ — s5¢2)[d — sp2 + (b2 — 52) 2]’
201 s¢+ (b* — %) o1

Q = = = )

¢ ¢ t R ¢ — P2
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Chapter 7

Time geodesics on a slippery slope
under gravitational wind

The current chapter, which is based on the paper [I0], presents the concept of a slippery
mountain slope and the purely geometric solutions for time-minimal navigation on such a
slope by means of Finsler geometry. This approach allowed us to generalize and interlink
Matsumoto’s slope-of-a-mountain problem with Zermelo’s navigation problem on Riemannian
manifolds under the influence of a weak gravitational wind.

7.1 Slippery slope model

Prior to stating the navigation problem on a slippery slope and formulating the main results,
it is necessary to introduce some basic concepts, to set up a new terminology and notation.

7.1.1 Gravitational wind

Let (M, h) be a surface embedded in R?, i.e. a 2-dimensional Riemannian manifold, and mo be
the tangent plane to M at an arbitrary point O € M. Considering that G is a gravitational
field in R? that affects a mountain slope M, this can be decomposed into two orthogonal
components, G = GT 4+ G+, where G' is orthogonal and G” is tangent to M in O. The
latter acts along an anti-gradient (a negative gradient), i.e. the steepest descent (downhill)
direction. Further on, GT will be called a gravitational wind, and the norm of G’ with respect
to his ||GT|, = v/h(GT,GT). In general, GT depends on the gradient vector field related
to the slope M and a given acceleration of gravity. Note that we set up this terminology in
order to be later on in line with the standard nomenclature widely used in different studies
on the Zermelo navigation in Finsler geometry [45] [124], 154] [61].

Matsumoto formulated and solved the slope-of-a-mountain problem on the surface (M, h) in
1989 by a purely geometric approach in Finsler geometry [106]. By constructing a rectangular
basis {e1, e2} in the tangent plane 7o, where e1 has the same direction with GT he considered
a person who walks or runs on 7o expressed by the coordinates X, Y with respect to {e1, ea}
in the clockwise direction 6 and with a constant self-speed ||u||;, = a. Thus, the distance range
reached in all possible directions in unit time, i.e. the indicatrix is represented by a limacon
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described in the polar coordinates (r, 6) of the plane 7o as
r=a+wcosHl (7.1)

where w = §sine, g is the gravitational acceleration, ¢ is the angle of inclination of mo with
respect to the horizontal plane z = 0, and sin € is the norm of the surface gradient with respect
to h. The convexity of the limagon (7.1)) is assured under the condition a > 2w [63], 131, 106].

/s

VmAT

Figure 7.1: A model of a planar slippery slope (an inclined plane of the slope angle ¢) under the
gravity field, G = G’ 4 G*, normal to the horizontal plane (base of the slope), where G” is the
gravitational wind acting tangentially to the slope in the steepest downhill direction X and G is
the component of gravity normal to the slope; OX 1 OY. On further reading, the boundary cases
represented by the resultant velocities vz p (blue), varar (green) are denoted by v,, where n = 0,1,
i.e. the tangent vectors to the Zermelo-Randers and Matsumoto geodesics, respectively. The lateral
component AB (a cross wind; red) of the active wind G,, = OB depends in particular on the traction
coefficient 7.

It is worth pointing out that our approach presented in [I0)] substantially extends the
original Matsumoto’s reasoning. Namely, while the earth’s gravity acts on a runner on the
slope, the component of a gravitational wind perpendicular to a desired direction of motion
represented by a control vector u (cross-gravity effect, i.e. the transversal component of the
gravitational wind) is not regarded to be cancelled now, i.e. H@Hh > 0 (see Figure [7.1)).
Obviously, another component O A pushes a runner downhill continuously. In this new setting
the slide caused by gravity is also considered off the planned track, that is, not only the gravity
additive along the self-velocity u (along-gravity effect, i.e. the longitudinal component of the
gravitational wind). As a consequence, the resulting velocity and the self-velocity are not
collinear in general, unlike the situation considered in [I06], where the cross-gravity effect is
omittedﬂ or, in other words, completely compensated, i.e. B = A. The velocities are collinear,
if the steepest route is followed, i.e. the gradient (uphill) or anti-gradient (downhill) direction.

The proposed model refers to a slippery slope of a hill or a mountain in real world, ad-
mitting the cross-track slides, the range of which depends on, among others, the interaction
between the type of ground on a slope and tread, e.g., shoes, tyres, skis. On the other hand,
observe that if the cross-component AB of the gravitational wind is not compensated at all,
i.e. B = C, then such setting becomes a scenario like in the Zermelo navigation (with the
wind navigation data W = GT), which has been intensively investigated and widely used

!The original notation in Matsumoto’s paper ([I08]) is: 7 = v + a cos 8, where a = wsin .
2Matsumoto justifies this issue in a word, assuming that the component perpendicular to u is regarded to
be cancelled by planting runner’s legs on the desired road determined by w [106} p. 19].
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as the efficient geometric method in Finsler geometry over the last twenty years; see, e.g.
[45] [76, 127]. This case models a full slide or an undisturbed drift (without any loss of free
wind effect) like perfect sailing or flying in water or air currents.

As already mentioned, on the mountainsides in real world situations some specific or
external circumstances, e.g. type of ground (wet, muddy, icy) or the tread can cause the slope
to be slippery. Due to this fact, we introduce a cross-traction coefficient n € [0, 1], which has
an impact on the sliding effect on a slippery slope being represented by the norm ||AB||, in the
plane 7p; for clarity, see Figure [7.I] The lesser the traction, the greater the sliding. Roughly
speaking, this parameter generally refers to the outcome of sliding, and not to its causes. In
its usual sense, traction means the ability, for instance, of a wheel, tyre or shoe to hold the
ground without sliding. Here, due to traction, the gravitational wind acting on the slope can
now be written as GT = O? + BC'. The vector OB is called an active wind, denoted by Gy,

and the vector B? is called a dead wind, since the former is the actual impact of gravity on
the motion and the latter represents the offset (vanished) effect of gravity on the slope due
to the existing traction. In short, the norm of dead wind is a measure of compensation of
the acting gravitational wind. One can say that the influence of the gravitational wind GT
“blowing” on a slope is weakened because of n-effect, if we do not follow the steepest routes.
Furthermore, the active wind is decomposed as

G, = OA + AB, (7.2)

—
where OA is the orthogonal projection of GT' (or G,;) on the self-velocity u, and it is called
an effective wind, denoted by Gaar. Thus, ||Gylln € [[|Garar||n, [|GT|]n], for any n € [0,1]

and ||Gazar|[n € [0,]|GT||n]. Moreover, we call the vector AB a cross wind. Its norm is the
sliding measure on a slippery slope, generally depending on the traction coefficient n, direction
of motion @ and gravitational wind force ||GT||.

This movement can be compared to the vessel’s sideways sliding motion (called sway) on
a dynamic surface of a sea. For the convenience of the reader and ease of presentation, the
decompositions of a gravitational wind as well as the corresponding terminology introduced
above are shown in Figure right.

In particular, if n = 0, then the slide reaches a maximum (B = C) and consequently, the
active wind is also maximal, ie. G, = G”. Namely, GT = O_x>4 + zﬁ and the dead wind
vanishes. There is a maximal slide (hence, a maximal drift as well) in this caselﬂ After having
paid a little thought, as already mentioned, we can see that this scenario leads directly to the
navigation problem of Zermelo. If n # 0, then the cross wind becomes shorter, since B # C
any more, so that the slide effect on a slope is now smaller. On the other hand, if n = 1, then
B = A and the effect of the active wind is minimal (for a given # and GT), i.e. G, = Guar.
Therefore, there is no sliding (and no drift, either) at all, like in the original Matsumoto’s
setting [106]. One can say that the impact of the gravitational wind G is reduced in the
last case as much as possible, since its cross-component is completely compensated. In other
words, the dead wind becomes maximal (for a given § and GT) then.

Thus, for any n € [0, 1] we can write AB = (1- n)m and since GT = G a7 + fﬁ, by

3A norm of a cross wind, Hzﬁ”h, is the linear measure of a slide on the slippery slope, while a drift (a.k.a.
a drift angle) is the corresponding angular measure of a slide, i.e. the angle [0 — 0| between the self-velocity u
and the resultant velocity v, where 8 = £{X, v, } measured clockwise.
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(7.2) it results that the active wind can be rephrased as follows
G, = nGyar + (1 —n)GL. (7.3)

Because of the slope being slippery, the self-velocity u is actually perturbed by G,,. Hence,
the resulting velocity will be given by the composed vector v, = v+ Gy, 7 € [0,1]. This
general relation defines the equation of motion on a slippery slope.

7.1.2 Main results

Bearing in mind the ones above stated, the navigation problem on a slippery slope can be
formulated as follows:

Suppose a person walks on a horizontal plane at a constant speed, while the gravity
acts orthogonally to this plane. Imagine the person endeavours to walk now on the
slippery mountainside with a given traction coefficient and under the influence of
gravity. How should the person navigate on the slippery slope of a mountain in
order to travel from one point to another in the shortest time?

The main theorem of our work is giving the answer [zf] presented below in the general context
of an n-dimensional Riemannian manifold with GT = —gw?, where wf is the gradient vector
field (7.7) and g is the rescaled gravitational acceleration g.

Theorem 7.1.1. (Slippery slope metric)  Let a slippery slope of a mountain be an n-
dimensional Riemannian manifold (M,h), n > 1, with the gravitational wind GT on M and
the cross-traction coefficient n € [0,1]. The time-minimal paths on (M, h) in the presence of
an active wind Gy, as in (7.3)) are the geodesics of the slippery slope metric Fn which satisfies

o +2(1— )gBF, + (1 - n2lIGTI2E2 = o® + (2 — n)gBEy + (1 - )I|IGTIRE2, (7.4)

with o = a(z,y), B = B(z,y) given by (7.14)), where either n € [0, %] and ||GT||, < 1, or
n e (%, 1] and ||GT||, < % In particular, if n = 1, then the slippery slope metric is reduced
to the Matsumoto metric, and if n = 0, then it is the Randers metric which solves the Zermelo
navigation problem on a Riemannian manifold under a gravitational wind GT.

It is worth noting that the metric £, belongs to the class of the general («, 3)-metrics [155]
and it stands for a natural and actual model of Finsler spaces, as well as for a new application
of this type of Finsler metrics.

In order to solve the problem stated above completely, we hereinafter aim at finding the

corresponding (local) time-minimal paths, which are the geodesics of the slippery slope metric.
With (7.26)) we can determine all such geodesics as follows.

Theorem 7.1.2. (Time geodesics) Let a slippery slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with the gravitational wind GT on M and the cross-
traction coefficient n € [0,1]. The time-minimal paths on (M, h) in the presence of an active
wind Gy, as in (7.3)) are the time-parametrized solutions v(t) = (v'(t)), i = 1,...,n of the ODE
system

(1) + 26, (7(t),4(1)) = 0, (7.5)

“The local solution is given ultimately by a time-minimal trajectory (time geodesic) or, equivalently, by the
corresponding direction of self-velocity (optimal control) as a function of time.
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where
Gl (y(t), 7 = ¢ ' 2 20°R Q2 ()
2(®):7@#) = Ga(v(®#),5(®)) + | O(reo + 2a°Rr) + aflrg "
- i - . alwd
— [ U (roo + 20%Rr) + aﬂro} Y R T aiw ,
g
with
i . im Ohjm, Oh i .
G (1), 4(1)) = Snim (25 — Gk ) 49 (0)3% (1),
To0 = —%wﬂk"Yj(t)"Yk(t)a ro = g%wj\k;yj(t)wka r= _g%wj|kijk7
p_ (1=mg* 5 2 5 _ ga(AB%a?—2D%B) 7 _ g20?(A?B+2D?)
R= 2Ba4 (Ba® + 21), 0 = 2F ’ V= 2F )

2 = GDT((Ba? 4 2m) (g2 B + 2D%|GT|[2) — 4yD(g* BB + A|GT|[3),

I = S22 [4nCDa + (Bo? + 2n)(AB%a® — 2D2p)),

A= {1 -l - -G} - (2-n)?’gh — (2 - n)a’},

B=-2{1-20-nIGTI} - 22-ngs 202},  C=1(Ba®+4p),

D=2A—(2-n)gB, E=gBC%?+ (|GT|}a?—§*B?)(A%B +2D?)

and o = a(v(t),(t)), = B(y(t),~(1)).

We note that the notation wj; means the covariant derivative of GT (written as GT = w
with respect to h.
The main results are proved in the next section.

i 0
Z@)

7.2 Proofs of the main results

In order to prove Theorem we proceed in two steps which include a sequence of lemmas.
We consider the navigation problem on a slippery slope that is the n-dimensional Riemannian
manifold (M, h), n > 1, under the influence of an active wind G, given by (7.3).

Let p: M — R be a C°°-function on M. The image of a differential 1-form w = dp = aafl dx’
by the musical isomorphism { is the gradient vector field

dp 0
0zJ Ozt

Wt = pit 22

(7.7)

and ||w||? = A/t gfi%. Since a gravitational wind GT" acts along the anti-gradient, we set
G = —gw!, where g is the rescaled magnitude of the acceleration of gravity g, i.e. § = \g,
A > 0. Moreover, ||w||;, = %HGTHh.

Let u be the self-velocity with the assumption that ||ul||p, = 1 as it is usually set up in the

theoretical investigations on the Zermelo navigation. This means that the self-speed ||u|p, is
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normalized and thus, it requires the norm of the active wind Gy, to be rescaled accordingly, so
that they correspond to each other. We mention that the walker’s self-speed on a slope and a
gravitational acceleration were not normalized in the original work of Matsumoto [106].

Furthermore, by analogy to other studies on the Zermelo navigation (see e.g. [45] [71], [154]
61]), we set similar classification of types of winds with respect to their force. Namely, if
||Gylln < 1 for any n € [0,1], then Gy, is weak; if ||Gy|[, = 1 for any n € [0,1], then Gy, is
critical, and if ||Gy|[n > 1 for any n € [0, 1], then G, is strong.

Under the effect of the weak active wind G, having the resulting velocity v, = u + G,
n € [0,1], it seems that the metric obtained by the Zermelo navigation method is a Finsler
metric of Randers type like, for example in [45, [71] [78]. However, as it will be shown below, it is
in fact much more complicated because only the gravitational wind G” is known (a priori), and
the vector G s a7 depends on the direction of the self-velocity, being the orthogonal projection
of GT on wu. Therefore, we conveniently split this proof into two main steps including some
cases. First, we deform the background Riemannian metric by the vector field nGas a7, which
is the direction-dependent deformation. In the second step, the resulting Finsler metric F
(obtained in the first step) is deformed by the vector field (1 — 7)G7T, under the condition
F(z,—(1—-n)GT) < 1 which guarantees that the walker on the slippery mountainside can go
forward in any direction.

7.2.1 Step I: direction-dependent deformation

In this step we show that, when n||Gar||n < 1, the direction-dependent deformation of the
background Riemannian metric h by the vector field nGpsar defines a Finsler metric if and
only if ||GT||, < ﬁ, for any n € (0,1]. More precisely, the deformation of the Riemannian
metric h by the vector field 7nGprar invokes the expression of the resulting velocity, i.e.
v = u+ nGrar, for any n € (0,1]. Notice that if n = 0, this turns out v = u. Otherwise,
when 71||Garar||n > 1 at some direction, this deformation cannot provide a Finsler metric.

Let 6 be the angle between GT and u, in other words, it represents the desired direction
of motion. Since Gsar =Proj, G”, the vectors v, u and G a7 are collinear. It follows that
the angle between u and Gjpsar, denoted by 0 is 0 or 7, or it is not determined, if 6 is % or
37” (i.e. v and G” are orthogonal and G 47 = 0 in that event).

Taking into account all possibilities for the force of nGarar, we analyze the following
cases: 1. |[nGarar|ln < 1; 2. |InGarar|ln = 1; and 3. ||[nGarar||n > 1.

Case 1. Due to the condition |[pGasar||n < 1, the angle between G” and v is also 6 (the
vectors u and v point to the same direction). Regarding of #, we study two subcases:

i) First, if = 0 (going downhill), then ¢ € [0,Z) U (3F,27), and the angle between G and
Grar is 0 or 2m — 6. Tt results that ||Gasar||n = ||GT||x cos 6 and also,

h(v, Garar) = |[olnl|Gararlln = [[o]|n]|GT||n cos§ = h(v, GT).

Furthermore, we have n||G”||, cos@ < 1 and h(ﬁq’]ﬁ:) < %, n € (0,1].
ii) Second, if § = 7 (going uphill), then 6 € (7, 37“) This means that the angle between GT
and Gpgar is @ — 7 or m — 0, and it implies that ||Gaar||n = —||GT || cos § and
h(v, Garar) = —[[vllnl|Gararlln = [[v]ln||GT||n cos § = h(v, GT).
It follows that —n||G”||, cosf < 1 and _h(lqui,}ﬁ;:) < %, n € (0,1].

88



Habilitation thesis Codruta Nicoleta Aldea

To sum up, by both above possibilities and noting that v = wu if § € {7, 37”}, we have
obtained
h(v, Grrar) = h(v, GT) = [|v|[n]|GT || cos b, for any 8 € [0, 27), (7.8)
and the condition |[nGarar||n < 1 is equivalent to
h(v,GT)| 1
DG ncos] <1 or MG 1 (7.9)
[[v]|n U

for any n € (0,1] and 0 € [0,27). We note that, due to the condition n||Garar||n < 1, there is
not any direction where the resultant vector v vanishes. Now, taking into account ([7.8]) and
(7.9), the relation 1 = ||ul|p = ||[v — NG rrar||n leads to

10l1i = 2nl[vl[n]|G"[|n cos 8 — (1 —1*||GT[[} cos §) = 0.
This admits only one positive root
[v||p = 1+ n||GT||; cos b, for any 6 € [0,27). (7.10)
Using again (7.8), it can be rewritten as g1 (z,v) = 0, where
g1(z,v) = [[v[[; = [[v][n — nh(v, GT). (7.11)

2
Applying Okubo’s method [106], we obtain the function F(z,v) = % as the so-
lution of the equation gi(x, #) = 0. The extension of F'(z,v) to an arbitrary nonzero vector

y € T, M, for any x € M, is the positive homogeneous C*°-function on 7'M,

yll2
lyl|n + nh(y, GT)’

F(z,y) = for any n € (0,1]. (7.12)
This is because any nonzero y can be expressed as y = cv, ¢ > 0, and F(z,v) = 1.

Actually, we are able to prove that n||Garar||n < 1 is a neccesary and sufficient condition
for F(x,y), obtained in (7.12)), to be positive on all TMy. Indeed, the positivity of on
T My means that

1ylln + nh(y, GT) >0, (7.13)

for all nonzero y and any n € (0, 1]. If the positivity holds on 7'My, we can substitute y with
~GT # 0 into and thus, n||GT||;, < 1. Since ||Garar||n < ||GT||5 in any direction
(|G ararlln = ||GT||n| cos 8], for any @ € [0, 27)) it turns out that 7||G arar||n < 1 on all T Mj.
Conversely, suppose that n||Garar||n < 1 on all TMy (the case Gpar = 0 is also included).
‘Using., it follows that % < % for any nonzero y, which assures (7.13). Thus, F(z,y)
is positive on T Mj.

With the notation

o 1 A
o =|lyllp = hijy'y?  and B= —gh(y, GT) = h(y,w*) = by’ (7.14)

a=afz,y), B = B(z,y) and ||B]|n = ||w||n, the function (7.12)) is of Matsumoto type, namely
o2

F(x,y) = ——, for any n € (0, 1], 7.15

(@)= (0.1) (7.15)
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with the corresponding indicatrix Iy = {(z,y) € TMy | o*(ov —ngB)~" = 1} . Moreover, F(z,y)
can be extended continuously to all TM, i.e. F(x,0) =0 for any € M, because y = 0 does
not lie in the closure in TM of the indicatrix Ip [61].

In order to establish the necessary and sufficient conditions for the function to be a
Finsler metric for any n € (0, 1], let us write F'(z,y) = a¢(s), where ¢(s) = ;=— and s = .

1—ngs
Since the second inequality in can be read as |s| < %, for arbitrary nonzero y € T, M
and z € M, it turns out that ¢ is a positive C°°-function in this case.

Now, we are able to prove some additional properties regarding ¢ and to control the force
of the gravitational wind G’ via the variable s. More precisely, we have

Lemma 7.2.1. For any n € (0,1], fhe following statements are equivalent:
i) §(5) — s¢/(s) + (b* — 5%)¢'"(5) > 0, where b = [[w#]|;

ii) |s| < b < by, where by = ng;

iii) ||GT[n < 55

Proof. i) < ii). Applying the Cauchy-Schwarz inequality |h(y,w®)| < ||yl|n||w?||r, it yields

|s| < ||w¥||5 and thus, |s| < b. Since |s| < %, we have

o a2 a9y 20°G°
(b" —5%)p"(s) = (b _S)WZO

and the minimum value of (b* — s?)¢”(s) is achieved when |s| = b.

Therefore, if ¢(s) — s¢'(s) + (b> — 52)¢"(s) > 0, then for s = b it yields 1 — 2ngb > 0, so
b < %. Thus, |s| <b < %.

Conversely, if |s] < b < ng, then

(1 —ngs)(1 — 2ngs) + 2n?g*(b? — s%)

$(s) — 58'(s) + (b* — s%)¢"(s) =

(1 —ngs)?
o (=ngs)(A—2ngs)  1-2ngs _
N (1 —ngs)? (1 —ngs)?

i) < iii). If [|GT||, < ﬁ and making use of the inequality |s| < |[wf||, and ||wf|]; =

%HGTH;“ it implies that |s| < %HGTH}L < %. The converse implication is immediate from
b= L|GT |1 =

We note that the statement |s| < b < ng, for any n € (0, 1] also implies ¢(s) — s¢/(s) > 0.
Next, applying [71, Lemma 1.1.2] and Proposition we have proved the following
result.

Lemma 7.2.2. For any n € (0,1], the following statements are equivalent:

i) Fx,y) = af;gﬁ is a Finsler metric;

i6) [1G7 |1 < &

In summary, we emphasize that the indicatrix I is strongly convex if and only if ||GT||;, < 2%],
for any n € (0, 1].
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Case 2. Now we assume that |[nGarar||n = 1. We notice that a traverse of a mountain, i.e.
0 € {Z,3} cannot be followed here because it gives n||Garar|| = 0, which contradicts our
assumption.

Due to the fact that ||Garar|[n < ||GT||n, it turns out that ||GT|[, > %, for any n € (0, 1].

Again we have to analyse both possibilities for #:

i) First, if = 0, then 6 € [0,5) U (28,27) and u = nGprar. The vectors u and v have the
same direction and £(GT,Gyrar) € {6,2m — 6}. These lead to ||Garar|[n = ||GT||1, cos®.
Furthermore,

h(v, Garar) = ||vl[al|Garazlln = |[vl[a]| G| cos & = h(v, GT).

Since v = u + NGprar, then v = 2nGprar and thus, [|v||, = 2. Moreover, also it turns out

_ 1
that cosf = G

ii) Second, if § = m, then 6 € (3,2F) and u = —nGprar, so |[v|ln = 1 — |[nGrrar|ln = 0.
Thus, the resultant velocity v vanishes, while attempting to climb up the slope.

Summing up the above findings, when v does not vanish, we have ||v||;, = 2 and among

the directions corresponding to 6 € [0, %) U (28, 27) only such directions for which cosf =

’ 2
1 . h(v,GT) 1 . . .
G e ||7’)||h = 5 can be followed in this case. Let us consider gs(z,v) = 0, where

g2(x,v) = ||[v||s, — 2. By Okubo’s method [106], we get the function

F(z,0) = 3l (716)

as the solution of the equation gs(z, %) = 0.
The extension of F(x,v) to an arbitrary non-zero vector y € A, = AN T, M, for any
x € M, is F(z,y) = 3||yl||n, where A = {(z,y) € TMy | ||ylln — nh(y, GT) = 0} is an open
conic subset of TMy. Since GT' # 0 and ||GT]|;, > % it results that cGT € A, ¢ > 0, if
and only if GT = Gjsar. Indeed, if we substitute y with ¢G” into ||y||» — nh(y, GT) = 0,
we get 71||GT|[, = 1 and thus, the angle 6 can be only 0 and GT' = Gprar = G, for any
€ (0,1]. Concluding, the function can be treated as a conic Finsler metric on A which
is homothetic with the background Riemannian metric h on A [61] 87]. Anyway, this case
does not provide a Finsler metric.

Case 3. The condition |[nGarar|ln > 1 implies that the resultant velocity vector v and
G a7 point to the same (downhill) direction irrespective of 0. It also gives |G|, > % As
above we split our investigation into some subcases:
i) First, under the assumption 6 = 0 it follows that 6 € [0,2) U (2£,27) and £(GT,v) =
L(GT Gprar) € {0,27 — 0}. Accordingly, it follows that ||Garar||n = ||GT]|; cos € and
h(v, Garar) = [[ollnl|Gararlln = [[0||nl|G™[|n cos § = (v, GT).

F T h(szT) 1

urthermore, we have n||G* ||, cosf > 1 and Tl > for any n € (0,1].
ii) Second, if @ = m, then § € (%, 37) and £(GT,v) = £(GT,Gprar) = |§—n|. In consequence,

272
HGMATHh = —||GTHhCOS(9 and
h(v,Garar) = [[0]|nl|Garar|ln = —[[o]|nl|G" ||n cos § = h(v, GT).
Moreover, it yields —n||G”||, cos@ > 1 and hﬁT{)ﬁhT) > %, for any n € (0,1].
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Finally, if 6 € {Z, 27}, then v = u. This yields n||Garar|[n = 0, which is contrary to our

assumption. To sum up, by both of the above subcases and since G ;47 cannot be vanished,
we obtain

h(v, Grrar) = h(v, GT) = ||v||||GT||s| cos 8], for any 6 € [0,27) ~ {7/2,37/2}, (7.17)

and the assumption |[nGarar||n > 1 is equivalent to

1 h(v,GT) 1
|cos O] > ——=— or hv,G7) > —, (7.18)

|G| ol ~ m
for any n € (0,1]. Thus, among the directions corresponding to 6 € [0,27) \ {7/2,37w/2} only
such directions for which |cos | > m can be followed in this case. Also, n||Garar||n > 1

attests that there is not any direction where the resultant vector v vanishes.
Now using (7.17)), (7.18) and 1 = ||u||n = ||v — nGarrar]||n, we are led to
[[o][7, = 2n/v][n||GT||n] cos 8] — (1 —1[| GT|[} cos §) = 0.

This admits two positive roots

[ol]n = %1+ 7l|GT| 4] cos 6] (7.19)
due to the assumed condition |cos | > m, for any 0 € [0,27) \ {n/2,37/2}.

Having (7.17), we can express (7-19) as g3(x,v) = 0, where g3(z,v) = ||v|[2 F||v||n,—nh(v, GT).
Again by Okubo’s method [106], the solutions of the equation g3(x, #) = 0 are the functions

2
Fia(z,v) = W They can be extended to an arbitrary nonzero vector y € A% =
A* NT,.M, for any x € M, because any such nonzero y can be expressed as y = cv, ¢ > 0,
where

A" = {(z,y) € TM | lylln — nh(y, GT) <0}

is an open conic subset of T My, for any n € (0,1]. Note that GT € A% and —cGT ¢ A%, with
¢ > 0. Therefore, we obtain the positive homogeneous functions

1yl
Fiao(z,y) = 7.20
12089 = LT+ wh(y, GT) (720

on A*, with Fjo(z,v) = 1. Following the notation (7.14)), the functions (7.20) are of Mat-
sumoto type, i.e.

042

o) = s
However, F} 5 can give us at most conic Finsler metrics due to their conic domain A*, rewritten
as A* = {(z,y) €e TM | a+ngB < 0}. Applying [87, Corollary 4.15], we obtain that both F} o
are strongly convex on A* and thus, they are conic Finsler metrics on A*, for any n € (0, 1].
Indeed, for F} 5 the strongly convex conditions (o F 2ngB)(a F ngl) > 0 are satisfied for any
(x,y) € A* and n € (0,1].

Consequently, the direction-dependent deformation of the background Riemannian metric
h by the vector field nGprar, restricted to n||Garar||n < 1 for every direction (which is
agnb’ if
and only if ||GT]|, < %, for any n € (0,1]. In dimension 2 this means that the Riemannian
indicatrix which is unit time circle with respect to h is deformed into limagon (the locus of unit
time destinations in windy conditions), instead of being rigidly translated as in the Zermelo
navigation.

(7.21)

equivalent to ||GT|;, < %) provides the Finsler metric of Matsumoto type F(z,y) =
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7.2.2 Step II: rigid translation

Taking into consideration [61], the second step concerns the fact that the addition of the
gravitational wind G only generates a rigid translation to the indicatrix provided by the
equation of motion v = u+nGpsar in the first step. We can discard the case n||Gyrar||n > 1
because this gave us only conic Finsler metrics and thus, going forward in any direction is not
possible. Moreover, the translations of the resulting conic Finsler metrics (from Cases 2 and
3) may not exist for any n € (0, 1].

Proposition forms the basis for our subsequent study. Namely, we consider the
Zermelo navigation on the Finsler manifold (M, F) with the navigation data (F, (1 —n)GT),
for any n € [0, 1] and under the condition

F(z,—(1-n)GT) <1, (7.22)

where F' is the Finsler metric (7.15) if n € (0,1], and F = h if n = 0. The solution of
Zermelo’s navigation problem yields the Finsler slippery slope metric F' which is the unique
positive solution of the equation

F(r,y — (1 —n)F(z,y)G) = F(z,y), (7.23)

. : ~ 2. .
for any (x,y) € TMy. In particular, if n =1, then2F = ;255 le. F from (7.15) with n = 1.
(63
a-ngB’ K
to use it in (7.23) in order to reach the slippery slope metric F. A direct computation gives

Writing the Finsler metric F' as F(z,y) = for any n € [0, 1], our next objective is

o’ (x,y —(1- U)F(x,y)GT> = o®(z,y) +2(1 —n)gB(z, y) F(z,y) + (1 — n)?||GT| [ F*(2,y)

and
B (x,y —(1- n)F(x,y)GT) = B(z,y) + (1 — n);!!GT!%F(w,y),

because B(x, GT) = —%HGTH,%. Thus, (7.23) leads to the irrational equation

Fyfa? 201 )gBF + (1 - n2||GTIRE? = o + (2 - n)gbF + (1 - n)[|GTIRE>, (7.24)

for any 7 € [0, 1], where a, § and F' are evaluated at (z, ).

From we can extract two classic cases that are well known in literature on Finsler
geometry. Namely, first, if n = 1 and g = 1, then yields the standard Matsumoto metric
F(z,y) = aa—jﬁ, with ||GT||,, < % and this solves Matsumoto’s slope-of-a-mountain problem.
Second, if n = 0, then the gravitational wind G is not compensated at all. More precisely,
the dead wind is zeroed or, equivalently, the cross wind is maximal. It has the same nature as
a wind included in the standard navigation data of the Zermelo problem, namely, wind force
is not reduced, although its direction is fixed, i.e. the steepest descent. Therefore, n = 0 in

(7.24) leads to

F\/a2 +2gBF + ||GT |2 F2 = o® + 2gBF + ||GT |2 F2. (7.25)
Since o? 4 2gBF + ||GT|2 F? > 0, (7-25) is reduced to
(1—||GT|3)F? — 2g8F — a* =0,
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~ 2(1— T2 a2R321 5
which admits only the positive root F(z,y) = Va2 (-lIGTI,)+9% 5% +95

, under the weak gravi-

1-[IGTI;
tational wind, ||G”||, < 1. With the notation
po 0GR +%8* 5 98
(1= [IGT][3)? 1-|IGT[I3’

we have F(z,y) = & + 3. This is the Randers metric which solves Zermelo’s navigation
problem under the weak gravitational wind G7.

Now coming back to the general case, where n € [0, 1], is equivalent to the polynomial
equation of degree four, that is

(L =m*IGT[; (1 = IGTI[7) F* +2(1 —n) [1 — (2 0) IG"|3] g8 F?
(7.26)
{120 -0 IGTIE] a? - 2 =)’ 3282} P2~ 2(2 — ) ga?BF - o* =0,

which admits four roots if (1 — 7)? (1—[|GT|?) # 0. However, taking into consideration the
condition ([7.22)) (see [61), p. 10 and Proposition 2.14]) it follows that there is a unique positive
root, i.e. the slippery slope metric. Subsequently, it is denoted by Fn and it satisfies , for
each n € [0,1]. We note that along any regular piecewise C'*°-curve ~, parametrized by time
that represents a trajectory in Zermelo’s problem, F(v(t),4(t)) = 1, i.e. the time in which a
craft or a vehicle goes along it. We remark that using a computational software system, e.g.
Wolfram Mathematica one can generate all four roots of the last equation, but their explicit
forms are very complicated.

Now, we pay more attention to the condition , which assures that the indicatrix of
Fn (i.e. the unique positive solution of the equation ([7.23))) is strongly convex.

Lemma 7.2.3. The following statements are equivalent:

i) the indicatriz Iﬁ’n of the slippery slope metric F,, is strongly convex;

ii) the gravitational wind GT' is weak with either ||GT||, <1 andn € [0,3], or ||GT||, < ﬁ
and n € (%, 1];

i) the active wind G, given by is weak with either ||Gylln < 1 and n € [0,3], or
|Gylln < % and n € (3,1].

Proof. i) < ii). Having developed the expression

B |- (- Q7|2 e
Bl (=G = = G, S (= ( = GT.GT) — 1= |G

an elementary calculation shows that (7.22) is equivalent to ||GT||, < 1, for any n € (0, 1).
Since for n = 0, F = h and then the condition (7.22)) also means that ||GT||, < 1.

If we combine the last condition with the strong convexity restriction for the indicatrix
Ir (more precisely, with [|GT||;, < ﬁ), for any n € (0,1], we see that the indicatrix I is
strongly convex if and only if either |G|, <1 and 5 € [0, 3], or [|GT|[, < % and 7 € (3, 1].
Since QL < 1, for any n € (%, 1], we outline that the gravitational wind G” is weak for any
n € [0,1].
ii) & iii). The main key to prove that ii) is equivalent to iii) is the remark that ||G,||, <
|GT|1,, for any 7 € [0, 1] and moreover, the maximum of ||Gy||; coincides with ||GT ||, since
G a7 must vanish for some directions. O
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Therefore, as it is emphasized by Lemma [7.2.3] the situation on the slippery slope under
weak active wind G, can be described in the terms of the weak gravitational wind G instead,
for any n € [0, 1].

Remark that in general the Finslerian geodesics do not minimize time locally, if the related
indicatrix is not strongly convex, since the triangle inequality does not hold in such situation.

Summarizing the results obtained in Steps I and II, we have proved Theorem [7.1.1]

7.2.3 Geodesics of the slippery slope metric

This subsection mainly presents the proof of Theorem which is based on some technical
computations which we split in a few lemmas. It is worth pointing out that even if we have not
an explicit formula for the slippery slope metric an for each n € [0, 1], we can find the time-
minimal paths as the geodesics 7 of F, taking into account the fact that F,(y(t),4(t)) = 1
along them.

First of all, analyzing (7.26), we can conclude that F,, depends on the variables ||GT||;, and
5= g, where 7 being only a parameter. Thus, the slippery slope metric ]3'7, is a general (a, 3)-

metric, Fy(z,y) = agy(||GT|?,s), since g?b* = ||GT|?, where ¢, is a positive C®-function

as well as o and f are given by (7.14]).
Furthermore, ¢, is the unique positive solution of the polynomial equation

(L =nPIGTI} (1 = IGTII7) &* +2(1 =) [L — (2 = n)|G"|}] gs¢® 7om
7.27
+{[1 -2 =IGT|}] — (2= 1)3*s*} > —2(2 — n)gsd — 1 = 0.

The last relation is derived from Eq. (7.26). Since the slippery slope metric Fm for each
n € [0, 1], is a Finsler metric with

~ ~ 1, ne [O l]
T _ 9 1)
[|G*||n < bp, where by = { %’ N e (%’1] , (7.28)

and applying Proposition the function ggn satisfies the following inequalities
Oy =52 >0, Gy — sdy2) + (|GTI[}; = 55" dy22 > 0,

when n > 3 or only 3 3 B
0y — sby2) + ([IGT|I7 — g%5%)dy2z > 0,

r -
when n = 2, for any s such that |s| < w < 3. In order to arrive at the equations of

the geodesics corresponding to the slippery slope metric Fn, for each n € [0,1], we need to
determine the spray coefficients of Fn- A key ingredient for this is Proposition

We now work toward the establishment of some relations between the function ¢5 and its
derivatives.

Lemma 7.2.4. Let M be an n-dimensional manifold, n > 1, with the slippery slope metric
Fy(z,y) = ad,(||GT|2,s). The function ¢, and its derivative with respect to s, i.e. ¢y hold
the following relations

Copa = Ay,  Cldy—sbpa) =B,  Cd, = B+ Asey, (7.29)
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or each 1 € [0, 1], where
A==201—-n)1 - 2= G |]}]36} +2(2 — 1)*g°sd, +2(2 — )3,

B =-2[1-2(1—n)||GT||2]$2 + 4(2 — n)gscn + 4,

(7.30)
C =41 =) [|GT IR (1 = IGT|[})dy +6(1 = n)[1 — (2 — )G |7]gs,
+2{[1 =201 = )[|GT[}] — (2 = m)?*5*s”} &y — 2(2 — n)gs,

A, B, C being evaluated at (||GT||3,s). Moreover,

i) C(|G" I}, ) # 0, dnp = E by, and by — sy = &

ii) BUIGT |2, 5) 0.

Proof. Since (]377 is a root of ([7.27)), it checks this identically, namely

(L =n?NGTIR A = IGT7)éy +2(1 =) [1 — (2 = n)||GTI7] gso}

(7.31)

+{[1 =201 = )IGT|]}] — (2 —m)?5s*} 62 — 2(2 — m)gsdy — 1 = 0.

The derivative of the identity (7.31)) with respect to s leads to the first relation from ((7.29)).
Then, it immediately results the second identity of (7.29). The last one is justified by the
notations ([7.30)) and (7.31]).

Now in order to prove i) we suppose, towards a contradiction, that there exists sg € [—b, b],
T 7 ~

b= @ < %0, with bg given by (7.28)), such that C(||G”]|?, so) = 0. Under this assumption,

the relations (7.29) imply A(||GT]|2,s0) = B(||GT]|7,s0) = 0. If we substitute this outcome

in the identity ([7.31]), we obtain

(=GR~ IGTI})dy + [(2 = m)gsody + 1> =0, (7.32)

which is impossible. Indeed, if n # 1, then (1 — 7)?||GT||2(1 — ||GT||%)¢~>% # 0 because
I|IGT||, < 1 and (Bn > 0, or if n = 1, then gs()d?n +1= 17280 # 0. Thus, C # 0 everywhere
here.

To show the statement ii), we again argue by contradiction. Assume that there is § € [—b, b],
b= HG’& < %0, with by given by (7-28), such that B(||GT|[2,5) = 0. Thus, we are searching
for 5 in the interval [—b,0]. If we take s = 5 in the third formula in (7.29), an immediate
consequence is § # 0, because of ¢, (||GT]|2,5) > 0, C(||GT|]3,3) # 0 and B(HC}THh,Zé) =0.
Moreover, under our assumption, the second formula in turns out that ¢,(||GT|[3,3)
satisfies the polynomial equation

[1—2(1 = )l|GTI[2]] — 2(2 — n)gsd, —2 =0 (7.33)
and ((7.31) is reduced to
2(1—n)?IGT([;(1 ~IG"|[})d5 + [2 = 30— 2(2 =) (1 — ) [|GT|[7] 53¢,
(7.34)
+1=2(1-n)|IGT]; =0,
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for s = § and for any n € [0,1]. Since ||GT|’h < by, with by given by (7:28), 1 — ||GT||? # 0
for any n € [0,1], but may exist some n € [0, ) such that 1 — 2(1 — n)||GT||2 = 0. Thus, two
cases must be distinguished.

a)if 1 —2(1 — )HGTHh # 0, forany n € [0,1], then by ( and we obtain that
[1—4n (1 —n)||GT||2]¢, — 4ngs = 0, which provide a contradlctlon if n = O Thus, n # 0 and
taking into account that  # 0 and ¢, (||GT|?,5) > 0, we get 1 — 47 (1 — ) HGTHh # 0 and

o T2 = _ 477§§

- : T 2 _ [1*477(1*77)HGTH%]2 ~ -
If we substitute (7.35) in (7.33)) it yields §° = 52 =2+ (2| GT] which contradicts

52 € (0,b%], due to the condition ||GT||; < bo, where by is given by ([7.28).
b) if 1 —2(1 — n)||GT|[? = 0 for some 1 € [0, 3), then (7-33) leads to

SiIGT I = — s (7.36)

which together with yields —n3? = 4(;727’)7?2. Obviously, the last relation provides a
contradiction (i.e. §2 < 0) for any 7 € [0, 3).

Summing up, we have B(||GT||2,s) # 0, for any s € [b,b], b = @ < %0, with by

given by (7.28). O

We note that according to Proposition we knew that <;~S77 — sqzng > 0, when n > 3, for
p -
any 1 € [0,1] and s such that |s| < @ < %0. Now by Lemma [7.2.4] we have established
that ¢, — sdy2 # 0 also when n = 2, for any 7 € [0,1] and |s| < H%w < %0.
In addition, the functions A, B, C given in (5.11] are homogenous of degree zero with
respect to y because of the same homogeneity degree of ¢, for any n € [0,1].

Lemma 7.2.5. The derivatives of the function qgn respect to b* = H’” and s, i.e. ¢7717 ¢n12

and qgngg, respectively hold the following relations

¢771 a- 77)9 (B+277¢2)¢777

G2z = &5 (A2B +2D?), (7.37)

~ ) ~ ~ ~ ~
Sz = 0T (B + 2062)(2AB + 2DH + A%s¢yy) — ACDéy | by,

and

sy + (0 = 5% b2 = =5 (Bgs + Al|GT|[26y),

((1;77 - 3&772)&712 - 3¢~>n¢~)n22 = %(ABZ - 2D23¢~57,),
(7.38)

égn - 55’172 +(0° ~ 52)$n22 = gzlcs [g°BC? + (HGTHQ —§*s*)(A’B +2D?)),

~ ~ ~ ~ o~ _oN\=2 ~ ~ ~ ~
(9 — s9u) iz — 56 dypz = LT UnC D + (B + 2m62) (AB? — 2D%56,)]dy,
where D =2A — (2—n)gB, H =2+ (2 — n)gsg?)n, for any n € [0, 1].
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Proof. By derivation with respect to ||GT||?, the identity (7.31)) gives

afi;n _ (1—mn) 72\ 72
qIGTE a0 (P

When substituted in ¢~)771 = fani%nb this yields the first expression in (7.37)). The derivatives
h

of (7.30) with respect to s read

2 AB +2DH
Ap= Z[A2— (2—n)gD], Bs= —[AB—2D], Cp—-2Et2PH a5y
c o

where Ay = aA , By = %E’ Cy = %—f. These, along with

AyC + A% — AC, -

o o2 o

b1z = (A -mg* ByC + 4ng2A + (B + 2nd?2) (24 — Cy) | ¢2

12 50?2 2 Ney ney 2)| Pns
lead to the last two formulas in (7.37). Once we obtain g?)nl, ang, &nlg and qgngg, a technical
computation yields the expressions ([7.38). O
Beyond the force of the gravitational wind GT = —gw®, we can emphasize some specific
features of GT which come from the properties of the gradient vector field w# = h”gpj a‘;; cf.
[20]. Thus, denoting the components of G by w?, these have the expressions w’ = —gh/* 6‘9 fj.

ow; Bwj

With the notation w; = h”w it follows that w; = ga 7, having the property 5 = Z-+.

Lemma 7.2.6. For the gravitational wind G the following relations hold

R = L apd [ N IV = — 1oy avted
Tij = —3Wij, ri = gzwjw’, rt = Syw'u, r=—ggwww, a0
7.39
L o L o . .
T00 = — WYY, ro = Zwijjw’y’, sij = s = 8" =54 =50 =0,
Oh; Ohij .,
where w;|; = g;”j Ik S WE, W | = thwkU and I’fj = %hkm ( Eraly a”" - 6;;17]1)' In addition,

||GT |1, is constant if and only if r; = 0 and, under either of the statements of this equivalence,
rt=r=ry=0.

Proof. Taking into account ((7.14)), it implies that

Qaij = hij7 bz = _Ewi = %, b = hﬂbj = —sz

and moreover, gz; = %, bij; = bj; (i.e. Bis closed) and b;); = —%wﬂj.
Making use of ., the conditions in are fulfilled. A trivial computation shows
that a”G Ab — _2 w;|jw? = 2r;. This clearly forces r; = 0 if and only if ||GT||, is constant. [
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Proposition 7.2.7. Let M be an n-dimensional manifold, n > 1, with the slippery slope
metric Fy), with n € [0,1]. The spray coefficients Q,é of F,, are related to the spray coefficients

; 1 Ohim Oh; ;
G = thim (2% — SUL) iy of a by

QN,I](Q:, y) =G (x,y) + [@(roo +20%Rr) + Oé.Q’I“o] yg — [W(T‘oo +20°Rr) + a]]ro] % — a’Rr,

(7.40)

where

N2 o~ —2 2.2 _oP23F =2 92042 2
R= (123725 (Ba® +2nF)F, 0 =1 Q(AB;;EﬁfD T,y = e (A2g+2D ),

—n)72 ~on ~ ~o ~
0 = U [(Ba? + 20F2) (g B3a® + 2D?||GT |2 F2) — 4nDE3(g* B + A||GT |2 E,)],

—m)a ~ - I E
11 = U9 4y CDaFS + (Ba? + 20F2)(AB2? — 2D2BF))] F,

(7.41)
with

A=—

R

{a=mi—@-nlIGTI}IFE - 2 —n)?*gBF, - (2 - a2},

B =-2{[1-201 - n)||GT|FIFZ — 22 - n)ghF, — 202}, o
7.42

C= (Ba2+AﬁF,7), D=24—(2—1)jB,

E = g?BC?%a? + (||GT||2a? — §28%)(A%B + 2D?)
and the formulae for rog, T, v and v are given in (7.39).

Proof. The proof follows from Proposition and Lemmas and O
Note that if ||GT||? is constant, then the formula (7.40) is simplified considerably, i.e.

Qé(:v,y) = Gi(2,y) +roo <932 - Wl;) ; (7.43)

because 1’ = r = 79 = 0 in this particular case.

Therefore, owing to the system and Proposition with F,(y(t),%(t)) = 1, we
can write the ODE system which yields the shortest time trajectories v(t) = (v!(t)),
i =1,...,n on the slippery slope of a mountain. This ends the proof of Theorem [7.1.2]

Finally, we apply the general theory developed in this chapter by emphasizing a two-
dimensional example, namely Gaussian bell-shaped surface. First, we give a brief overview
of the general model of the hill slope in dimension 2 which is described in [10], 111 12} 13].
Coming back to the particular case with M being a surface, where mp is the tangent plane
to M at O € M, the parametric equations of the indicatrix of the slippery slope metric Fn in
the coordinates (X,Y") with respect to the rectangular basis {e1,e2} are given by

X = (1+n]|G"[ncosf)cosf+ (1 —n)[|GT][x
: (7.44)

Y (1 4+ n||GT||, cos 0) sin 6
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for any traction coefficient n € [0, 1] and the direction of the self-velocity 6 € [0, 27), because
GT and e; point in the same direction. If we eliminate ¢ in (7.44]), it follows the equation of
the indicatrix of F;, namely

\/(X — (1 =lGT[R)* + Y2 = X*+Y? = 2= n)X||G"|[n + (1= )|GT|[;.  (745)

Considering the surface M embedded in R? and parametrized by (z',2%) € M — (z = 2!,y =

22,z = f(x!,2?)) € R3, where f is a smooth function on M, the Riemannian metric induced

1+ f21 ot fa2 L. .
M is (hy(2!, 2?)) = et JelT =1,2. The notat d
on M is ( j(at, )) ( Foafn 14 f§2 , 1,7 , e notations f,1 and f,2 mean
the partial derivatives of f with respect to x' and 2, respectively. Thus, the tangent plane
O ‘Eio M is spanned by the vectors a = (1,0, f,1) and 882 = (0,1, f,2), and the gravitational
wind is

9 0

r B _

with ||GT||, = g qqu, where ¢ = f2 + f2%. Since any tangent vector of mo can be written as

y1% +y2% = Xe1 +Yeg, with e; = _m(fx 1, fa2,q) and eg = q(fx27 — f21,0). Thus,
it turns out the following link between the coordinates (X,Y) and (y!,4?)

= — ¢+1 2 :i 1 2 — 2 1
X=—/— . (Y for + VP fe2), Y \/g(yfz Yo fur) - (7.47)

Furthermore, since y' f,1 + 4% f,2 = —%h(y, GT), we obtain
X2+Y?2= (') + () + 5% = hijy'y = o, y'fo +y7fe =B (7.48)

When substituted in (7.45)) this yields

\/O<2 +2(1=mgB+ (1 —-n?|GT[} = o® + (2 = n)gh + (1 - )G [[3. (7.49)

As a consequence, by Okubo’s method we arrive at the equation - ) that gives the slippery
slope metric F If O is a critical point of M, i.e. a point where ¢(O) = 0, then GT = 0.
Although the above slippery slope metric 157, is described only at regular points O of the
surface M (q(O) # 0), it is well defined everywhere on M including the critical points of M,
where it is just the background Riemannian metric h.

Let & be a surface of revolution described by the two-dimensional Gaussian function
z = %e_(xzﬂﬂ) (i.e. Gaussian bell-shaped surface). Corresponding to & the gravitational

wind (|7.46]) is
3ge— (=" +v)
T 9(a? + y?)e 2T 11

T

(2,9, -3 + y2)e =),

because f(x!,2?) = %e*(ﬁ“ﬂ), where z = z!, y = 22 and ¢ = 9(a?+y?)e 2 +y?) (10 1T, 12].
For simplicity, we choose the following parametrization for the surface of revolution

3
G:(p,p) €G — (x=pcosy, y=psing, z= ie*pQ) € R3,
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where p > 0 and ¢ € [0,27). This leads to
3§pe"’2
Ve 2 +1

Since hi1(p, ) = 9p2e~ 2" 41, haa(p, ) = p? and hia(p, @) = ha1(p, @) = 0, some technical
computation yields

3G e‘”2 0
GT(p,p) = —2 2 where [|G”| =

— hay 7.50
9p2e=2* 41 0p (7.50)

a? = (997" +1)2 + p%¢%,  B=—3pe ), (7.51)
Gh= ot o2 ] @il (7.52)
¢ 2(9p%e % + 1) “op

—p? . . _9,2Y.—20% |
rop = ——2 [(1—2p2)p2—|—p2g02], ro = 9p(1—2p2)e 20 p

9p2e—2r"+1 (9p2e=2,"+1)2
(7.53)
o 21p2(1=2p%)e % oL 9p(1=2p%)e=2 20
T (9pre 1 T (9pPe 2713 T

Figure 7.2: The slippery slope geodesics on & with the boundary cases: n = 0.5 (dashed black), n =1
(Matsumoto, dashed green) and n = 0 (Zermelo-Randers, dashed blue). They are compared to the
Riemannian geodesics (dashed white). The corresponding unit time fronts are shown in solid colours
and the gravitational wind G” (black arrows) “blows” in the steepest downhill direction; g = 0.63,
At = 1, with a step of A = 7/4 (8 paths in each case) and the initial point is positioned on the
parallel of the strongest gravitational wind, i.e. (p(0),¢(0)) = (1/v/2, —7/4).

Lemma 7.2.8. The indicatriz of the slippery slope metric Fn on the surface & is strongly

V29 ~1.27, if nelo,]
convez if and only if g < d2(n), where da(n) = { \/236—4_9 _ 0.64 .f g [175]
Ton Ty if me(3,1]

2 _
Proof. Since ||GT||, = —22£22__  its maximum value is —2Z

,/9p26—2p2+1 2e+9

it is achieved when p = % ~ 0.71. Hence, ||GT||; < \/%, for any p > 0. Thus, g < d2(n)

~ 0.79g, for any p > 0, and

i

is equivalent to the strong convexity condition (|7.28]). O
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It is easily seen that the most restrictive case regarding the convexity among all slippery
slope metrics on & is for n = 1, that is, the solution of the standard Matsumoto problem.

Next, owing to Theorem and Proposition the time geodesics v(t) = (p(t), ¢(t)) on
the slippery slope & are the solutions of the ODE system

0 = j+ gt [90 =207 % 2 = 2| +2{O(rog + 202 Rr) + o } £

2 2
Gpe—* o 2p v 18p(1-2p%)e™2" 2 f
—— T 2a°Rr) + allr }——aR

9p2e—20% 41 { (o0 + )+ 0 (9p2e—20% 41)3 ’

0 = ¢+2pp+2 {é(roo + 202Rr) + afzro} ¢

~ -~ . . ~ o 2
where 6, R, 2, Il and ¥ are given by (7.6), ||GT||;, = \/939#—2;“, g < 02(n), p = p(t),
p2e
o = p(t), with (7.51)) and (7.53).

The outcome is presented in Figure , where the slippery slope geodesics (n = 0.5, dashed
black) are compared with the boundary cases, i.e. the standard Matsumoto geodesics (n = 1,
dashed green) and the Zermelo-Randers (n = 0, dashed blue) under the gravitational wind
GT; 5 = 0.63 < d2(n = 1). Moreover, the corresponding unit time fronts are shown in the
respective solid colours. As expected, the time geodesics and fronts referring to n = 1/2 lie
entirely between the corresponding Matsumoto and Randers paths.
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Chapter 8

The slope-of-a-mountain problem in a
cross gravitational wind

In this chapter, mainly based on the papers [11),12], we describe additional models of slope as a
Riemannian manifold, continuing to explore the influences of both transverse and longitudinal
components of the gravitational wind on time-optimal paths. In contrast to the original
Matsumoto’s exposition, in the first model presented below, the cross-gravity additive is taken
into account in the equations of motion, while the along-gravity effect is entirely compensated.
Exploring the properties of the cross slope metric obtained in this work, which belongs to the
class of general (a,f)-metrics and serves as a main tool, we find the time geodesics on a
mountain slope under the influence of a cross gravitational wind. The feature of the second
model, which generalizes and includes the first, is that the varying along-gravity effect depends
on traction, whereas the cross-gravity additive is taken entirely in the equations of motion,
for any direction and gravity force. The investigation of this also leads to a general («a, f)-
metric called slippery-cross-slope metric which enables us to provide the corresponding time
geodesics as well as to create a direct link between the Zermelo navigation problem and the
slope-of-a-mountain problem under the action of a cross gravitational wind.

8.1 Model of a slope under the cross-gravity effect

Recalling the original Matsumoto’s reasoning [106], one can observe that the slope-of-a-
mountain problem was actually studied only under the influence of the longitudinal component
of a gravitational wind G* , which is collinear with self-velocity vector u (the control vector)
of a walker, whereas the effect of another (transverseﬂ) component was not taken into consid-
eration in the model. Namely, the latter was assumed to be always cancelled and it did not
have therefore any influence on the trajectory, although the orthogonal projection of G* on
ut, denoted by Proj,. G is in general a nonzero vector, because G =Proj, G’ +Proj,. GT.
More precisely, this issue was justified by Matsumoto in a word, saying that "the compo-
nent perpendicular to the wvelocity u is regarded to be cancelled by planting the walker’s legs
on the road determined by u" [106, p. 19]. Consequently, the resulting velocity then reads
v = u+Proj, GT, with ||v||, = ||u||n % ||Proj GT||; (+/- for a downhill/uphill path, respec-

'In short, a gravitational wind is the component G of a gravitational field G = GT 4+ G, which is tangent
to a slope and acts along the steepest downhill direction (see Figure [8.1).
2That is, collinear with u, which is a perpendicular direction to wu.
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tively). However, note that the impactﬂ of the lateral component on the resulting velocity
can be stronger than the longitudinal one, depending on the desired direction of motion on
the hillside. This motivated us to consider and to compare a different scenario on the slope
including the cross-gravity effect, and not the along-gravity additive like in [I06]. The geo-
metric construction of the corresponding Finslerian indicatrix in the new setting will also be
based on a direction-dependent deformation of the background Riemannian metric. However,
the general equations of motion will read now

v = u+ Proj,. GT.

As a consequence, the velocities u and v are not collinear in general, which is in contrast to
Matsumoto’s mode][ﬂ Such set-up refers in reality to a walker on a slope, who endeavors to keep
the effective speed constant’} Namely, ||Proj,v||n is equal to the self-speed ||ul|; continuously
on the slope by compensating the influence of the along-gravity additive Proj, G that pushes
the walker forward (when going downhill) or backward (when going uphill), and at the same
time allowing the walker to be dragged off the direction pointed by w to the side by gravity.
There is a close analogy with the linear transverse vessel’s sliding motion side-to-side called
sway on a dynamic surface of a sea (generated by wind, water waves or the inertia of a ship),
while the linear front-back motion called surge is stabilized (compensated). Moreover, this
can also be compared to the craft’s (e.g. a vessel, an airplane) lateral drift from its course.
In nature such type of motion has some analogy with the animals’ behaviour that can move
sideways, while being influenced by a natural force field, e.g. a sidewinder rattlesnake, or a
hummingbird. Furthermore, this new setting gives rise to the description of some Finslerian
indicatrices as the algebraic (pedal) curves and surfaces; see for instance [64] in this regard.

8.1.1 Cross gravitational wind

Before stating the title problem and formulating the main results we begin by briefly recalling
some basic concepts, which have been introduced in [10, 11}, 12] and setting up terminology
and notation.

In this subsection, (M, h) is a surface embedded in R3, i.e. a 2-dimensional Riemannian
manifold. Let mp be the tangent plane to M at an arbitrary point O € M. Cousidering that
G is a gravitational field in R? that affects a mountain slope M, this can be decomposed into
two orthogonal components, G = GT 4+ G*, where G is normal and G’ tangent to M in
O. The gravitational wind G acts along an anti-gradient, i.e. the steepest descent direction
and its norm with respect to h is ||GT||, = Vh(GT,GT); see Figure In general, GT
depends on the gradient vector field related to slope M and a given acceleration of gravity.
Furthermore, we can decompose the gravitational wind as GT = 0—121 + OA’, where O—z>4 is
the orthogonal projection of GT on the self-velocity u, denoted by G a7, and its active, i.e.

non-compensated part is an effective wind. Moreover, the second component O A’ represents a

3That is, “force” of the gravitational wind component expressed by its norm w.r.t. the background Rieman-
nian metric h.

“Both velocities are collinear only if the steepest route is followed, i.e. the gradient (uphill) or anti-gradient
(downhill) direction. Moreover, v = u, since the cross gravitational wind G+ = 0 in these particular cases.

>The effective (longitudinal) speed of a walker, i.e. ||u||n % ||Proj,G7||s is the same now like the resultant
speed ||v||, when walking on a horizontal plane, where the gravity acts perpendicularly on this plane, i.e.
G* = G. So, GT = 0 and thus, for any direction, ||v]|s = ||u||» in this case. In general, we have ||v||r =
/1 +[Proj,. GT|[3.
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VMmAT

Figure 8.1: A model of a planar slope (an inclined plane of the slope angle €) under gravity G =
GT + G*, which acts perpendicularly on the base of the slope (the horizontal plane), where GT is
the gravitational wind “blowing” tangentially to the slope in the steepest downhill direction X and
G is the component of gravity normal to the slope; OX L OY. The resultant velocity v; (red),
which determines the motion on the slope under the cross wind Gy (dashed red), is compared to the
tangent vectors to the Zermelo-Randers (vzyp, blue) and Matsumoto (vara7, green) geodesics. The
walker’s self-velocity w (in other words, the Riemannian velocity) is marked in dashed black, ||u||, = 1.
The impact of either orthogonal component of gravitational wind can be stronger than the other one,
depending on the direction of motion 6 on the slope; OA L OA’. In the original Matsumoto’s setting
the equation of motion reads v = u 4+ G s a7, where the cross-gravity effect of Gy is cancelled. Now,
in contrast to [106] this yields v = u + G4, where ||Proj,v||, = ||u||#, since the along-gravity effect of
Gsar is compensated entirely.

cross gravitational wind, denoted here by G, Their norms generally depend on the direction
of motion 6 and gravitational wind force ||G”||,. Thus, it is obvious that ||G|[5 € [0, [|G”|5].

In contrast to Matsumoto’s exposition, we do not assume that while the Earth’s gravity
acts on a walker on the slope, the cross wind perpendicular to a desired direction of motion
(represented by a control vector ) is regarded to be cancelled. However, the effective wind,
which pushes a walker downhill, is compensated completely regardless of the direction of
motion, so its actual outcome is reduced to 0. In this new setting the sideways effect caused
by gravity is taken into consideration instead. Thus, the influences of both components of
the gravitational wind are reversed in comparison to [106]. In other words, the proposed
model refers to a slope of a hill or a mountain, admitting the entire cross-track additive while
compensating the along-track changes at the same time.

Moreover, observe that in the new set-up the resultant speed on the slope is always greater
or equal to the self-speed of the walker, for any direction of motion 6. This property also differs
from the situation in the standard Matsumoto problem as well as the Zermelo navigation
problem on the slope, where the resultant speeds can be both higher or lower than unit own
speed, depending on the direction. Only in the special cases, i.e. 6 € {0,7} (the steepest
downhill /uphill paths) it is equal to the self-speed ||u||p, so like walking on a flat area, where
the gravitational wind vanishes (the Riemannian case). Furthermore, after having paid a
little thought, if & € {r/2,37/2}, then we can see that such special case [[| coincides with

5To be precise, O_1>4 is in general the maximum effective wind and ﬁ the maximum cross wind, for given
0 and ||GT||n. A component of the gravitational wind G” is maximal if it is not compensated (reduced)
partially or entirely, e.g. due to traction, drag.

"Such orientation of u resembles traversing a mountain slope along an isohypse, where ||v||n = ||u||s in
Matsumoto’s model in this case.
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the navigation problem of Zermelo in the presence of a weak wind G”. This also yields the
maximum possible speed |[v||, (for a given GT) in the problem presented because Gi = G

in this case. Therefor [o]|n € []ulln, y/I|ull? + [|GT)2].
It follows clearly that the cross gravitational wind can be expressed here as

GT = —GMAT+GT. (8.1)

Because of the cross-gravity effect, the self-velocity u is perturbed by G+. Hence, the resultant
velocity will be given by the composed vector

v = u—i—GT. (8.2)

This general relation defines the equation of motion on the slope under the influence of cross
wind.

For comparison, it is worth pointing out that if the longitudinal component of G was
not compensated at all in the model, then such setting would in general yield a scenario
like in Zermelo’s problem under a weak gravitational wind, i.e. with the navigation data
W = GT, where the solution is given by Finsler metric of Randers type [127, 45, [0, 157].
This case demonstrates the action of the entire gravitational wind, so the full effects of its
both components are then admitted on the slope.

8.1.2 The main results

Bearing in mind the ones above stated, the slope-of-a-mountain problem under the cross-
gravity effect can be formulated as follows:

Suppose a person walks on a horizontal plane at a constant speed, while gravity
acts perpendicularly on this plane. Imagine the person walks now on a slope of a
mountain under the influence of a cross gravitational wind. How should the person
navigate on the slope to get from one point to another in the shortest time?

As the answer in the general context of an n-dimensional Riemannian manifold with GT =
—gw? below we formulate our main theorem, where w® is the gradient vector field and g is the
rescaled gravitational acceleration g.

Theorem 8.1.1. (Cross-slope metric) Let the slope of a mountain be an n-dimensional Rie-
mannian manifold (M,h), n > 1, with the gravitational wind GT. The time-minimal paths
on (M,h) in the presence of the cross gravitational wind Gy as in are the geodesics of
the cross-slope metric F' which satisfies

IGT|2F* + 2g8F> + (o® — §BY)F? — 2§a2BF — o =0,

where o = a(z,y), B = B(z,y) are given by B.13) and [|GT|[; < L.

We emphasize that F' is a Finsler metric of general (o, 3) type [155] and it gives rise to a
natural and actual model of Finsler spaces as well as to a new application of this kind of
Finsler metrics. Furthermore, we find the time geodesics of the cross-slope metric. With
Theorem all such solutions can be determined as follows.

8As it is shown on further reading, ||v||» € [1,V/5/2).
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Theorem 8.1.2. (Time geodesics) Let the slope of a mountain be an n-dimensional Rieman-
nian manifold (M,h), n > 1, with the gravitational wind GT. The time-minimal paths on
(M, h) in the presence of the cross wind Gy are the time-parametrized solutions y(t) = (v'(t)),
1=1,...,n of the ODE system

5(0) + 201 (1), 3(0)) = 0, 53
where
G(0.A0) = G 30) + [Blroo +20%Rr) +astro] T
5 . T wt - P
_ [W(roo + 2a%Rr) + OZH’I“U:| 7 Ruw'); 7
with

=2

i . im Ohjm Oh,; L . ~
Gi (1), 4(1) = dnim (2552 — Fo) 433k, R= 3L

roo = — w3 (A (1), ro = g%wﬂk;yj(t)wk’ r=—gswpw’wt,
~ Gou ~ ~ B ~ _9 ~ o~ ~ ~
0 = Z2(a°AB® - gp), 0 =—L[a*B% + gBB + |G|} (B - A)],

(8.4)
~ 7242 ~o ~ - -3 ~ -~ B ~
v = gQ—E(o/lAQB +1), I = -7 [20*B(a?AB — 1) — gB(a?B + 1)],
A=L(gB+a®-1),  B=2502g8+22-1), C=1(aB+g84),

E = BC?S + (||GT[[j0* — g**)(a* A5 + 1)

and o = a(y(t),%(t)), 8= B(y(t),%(t)).

The proofs of the aforementioned results are presented in the next section.

8.2 Proofs of the main results

Setting the navigation problem on a slope of a mountain represented by an n-dimensional
Riemannian manifold (A, h), n > 1 and influenced by a cross gravitational wind Gy given
by , we provide the cross-slope metric with the necessary and sufficient conditions for its
strong convexity as well as its time geodesics.

8.2.1 The cross-slope metric

The proof of Theorem includes a sequence of lemmas which collect all requirments for
a Finsler metric. The main tool in our approach is the gravitational wind GT = —guwt,
where g is the rescaled magnitude of the acceleration of gravity g (i.e. g = Ag, A > 0), and
wh = hji%azi is the gradient vector field, with p : M — R being a C*°-function on M. For
more details we refer the reader to [10], 20, [12].

Let u be the self-velocity and u' the orthogonal direction on u. By assuming the condition

||u|[n, = 1 as it is usually done in the theoretical investigations on the Zermelo navigation (see
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e.g. [45]), one can observe that the resultant velocity is v = u + Gy, taking into account the
effect of the cross gravitational wind. Within this geometrical framework two distinct ways
can be followed in the proof of Theorem One way is relied on the expression of Gy
as in , where G a7 is the orthogonal projection of GT on u. This allows us to arrive
at the cross-slope metric in two steps, following the same technique as in Chapter 7 or [10].
First, to deform the background Riemannian metric by the vector field —G a7, which is a
direction-dependent deformation. In the second step, the resulting Finsler metric F' (obtained
in the first step) is deformed further by the vector field G, i.e. a rigid translation, under
the condition F(z,—G7T) < 1 which guarantees that the walker on the mountainside can go
forward in any direction; see [127] for more details.

Another way, which we will proceed below, is to use the fact that the cross gravitational
wind Gy coincides with the orthogonal projection of G” on w' in this study and thus, it
depends on the direction of the self-velocity u. Consequently, the indicatrix of the resulting
cross-slope metric is the anisotropic deformation of the indicatrix of the background Rieman-
nian metric by the vector field Gy.

Let 6 be the angle between GT and u. Roughly speaking, it represents the desired direction
of motion and 0 € [0,27). It follows that

1Gi1ln = |G |4 sin ], for any 6 € [0, 2r). (8.5)

This clearly forces |G| < ||GT]|h In particular, if § € {0, 7}, then G} = T and u = v, or
if @ € {3,27}, then Gy = GT.

Moreover, the cross gravitational wind Gy can also be seen as the orthogonal projection
of the resultant velocity v on u because v = u+ G;. Denoting by ¢ the angle between v and

, it follows that ||G+||n = [|v||n cos ¢, with ¢ € (0, 5], and thus
h(v, G) = [[v][n]|G+{|n cos ¢ = [|G+l7.- (8.6)

Note that { = 7 corresponds to the particular case § € {0, 7}. Now, taking into account ({8.5])
and (8.6)), the relation 1 = ||u||s, = [[v — Gi||5 leads to

[olln = /1 + IGT |2 5in20, for any 6 € [0, 2r). (8.7)
Furthermore, it turns out that

GT||,|siné 1
—H [ sin. 0] and sin( = .
[[v]|n

(8.8)

€86 = Tl

Let 0 be the angle between G” and v. Then, h(v,GT) = [|v||n||GT||5 cosf and regarding 6,
two cases are distinguished:

e If 6 €[0,7), then 0=0+(C— 5 and h(v, GT) = ||v||n||GT || sin( + ().
o If 0 € [r,27), then § = Z + 60 — ¢ and h(v,GT) = —||v|[4||GT ||, sin(d — ¢).
Making use of (8.8)), both cases lead to

2
IG ][5 — [1+ (v, GT) — [|v][}]

.2
sin“ 8 =
IGT|13
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This substituted into (8.7)) yields g1 (x,v) = 0, where
g1z, 0) = [[ol[j, = [1+ 2h(v, GN)] [[v][; + h*(v, GT) + 2h(v,GT) — [|GT 3. (8.9)

By applying Okubo’s method [106], we obtain C*°-functions F'(x,v) as the solutions of the
equation gi(x, %) = 0. This can be rewritten explicitly as a polynomial equation of degree
four

IGH[RF* = 2h(v, GT)F? + [|Jv][; — h*(v, GT)] F + 2[vl[3h(v, GT)F — [[vll, = 0, (8.10)

where F'is evaluated at (z,v).
Now we are going to establish some properties of the functions F'(x,v), aiming to select a
strongly convex Finsler metric among the roots of (8.10).

Lemma 8.2.1. The functions F(x,v), which satisfy (8.10)), are homogeneous of degree one with
respect to v.

Proof. On substituting v = v* 821- with cv, ¢ > 0 into (8.10) we obtain

|G| F* (2, cv) — 2¢h(v, GT) F?(x, cv) + (| |v] [}, — h* (v, GT)]F?(x, cv)
(8.11)
+2¢|[v][fh(v, GT) F (2, cv) — o[} = 0.

Differentiating (8.11]) with respect to ¢ and then setting ¢ = 1, we get

oF B
(&ﬂv —F)w-(),

where F is evaluated at (z,v) and @ = [h(v, GT)F — ||v|2] [F? + h(v,GT)F —2||v||?] . If

w # 0, then gﬁ v’ = F,i.e. Fis positive homogeneous of degree one with respect to v. If w = 0,

then F = h(‘:jg%) or F=1 [—h(v, GT) + \/hQ(v, GT) + 8Hv\|}ﬂ . These are homogeneous of
degree one with respect to v, but they do not check (8.10). O

Due to and the fact that any nonzero y € T, M can be expressed as y = cv, ¢ > 0,
the extension of F'(x,v) to arbitrary nonzero vectors y, for any z € M is also homogeneous of
degree one with respect to y and it satisfies the equation

IGTIRF (2, y) — 2h(y, GT)F*(x,y) + [[lyll} — h*(y, GT)] F*(x,y)

(8.12)
+2/yllzh(y, GT)F (2, y) — [lyll, =0,
with F'(z,v) = 1. Considering the notations
i) 1 i
o = |lylli = hijy'y’ and = —-h(y, G") = h(y,o) = biy’, (8.13)

a=a(z,y), B=B,y), b= IB]ln = [[w|l) and [|w[|n = FIG"]n, BI2) is equivalent to
IGT[[RF* +2gBF° + (o — §26°)F? — 2ga”BF — o' = 0, (8.14)
where F' is evaluated at (z,y). Thus, the indicatrix of F' is defined by

Ip = {(z,y) € TM | (a* + gB)” — a® — 298 — [|G" |} = 0}
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Lemma 8.2.2. The equation (8.14) admits a unique positive root.

Proof. Making use of the notation ¢ = w and dividing (8.14) by a?, it can be expressed
in the following form

IGT |20 + 2gs¢® + (1 — §%s%)¢? — 2gsp — 1 = 0, (8.15)

where ¢ = ¢(||GT||?,s) and s = g For the variable s we have |s| < b = %HGTH;L which

results from the Cauchy-Schwarz inequality |h(y, w?)| < |[y||n]|w?||n. Let ¢' = ¢'(||GT||3, s),
i =1,...,4 be the roots of (8.15). Among them there is at least one positive root because by

4

the Viété relations, [[ ¢' < 0, for any s € [—b,b]. Moreover, basing on the Viété relations
i=1

again, we get

4

) 2 ~
> (¢ =- G NIGTI; = 3°s* 2+ IGT(17)] Vs € [-b,],
i=1 h

which is negative for s = 0. Thus, at least for s = 0 there is a conjugate pair of complex
roots among ¢', i = 1,...,4. So, admits at most two positive roots for any s € [—b, b].
Since for s = b, is reduced to (¢? — 1)(¢||GT||, + 1) = 0 and it allows only one
positive root, we can conclude that among the roots ¢’ there is a sole positive root, for any
s € [—b,b]. Consequently, there is also only a positive function F(z,y) = a¢(||GT]|2,s), for
any s € [—b,b], which satisfies as claimed. O

Subsequently, we mean by F(z,y) = a¢(||GT]||2,s) the unique positive root of (8.14),
where ¢(s, ||GT|[2) > 0 is a C°°-function provided by the sole positive root of (8.15)), for any

s € [—b,b]. It is obvious that ¢ = ¢(s, ||GT||?) is homogenous of degree zero with respect to y

T2
and thus, F(x,y) is the general (o, 8)-function with b? = @ as well as « and 3 are given

g
by .

The last part of the proof of Theorem [8.1.I]refers to the necessary and sufficient conditions
for strong convexity of the indicatrix Ir. One can proceed by applying Proposition In
order to make the argument work, however, we need the following lemma concerning some
relations among derivatives of ¢, with respect to s, which are then used to justify the positivity
of some functions.

Lemma 8.2.3. The function ¢ and its derivative with respect to s, i.e. ¢o satisfy the following
relations

Coo = gAp, C(¢p—sps) =B, B-24=¢", C¢= B+ jsAs, (8.16)
where
A=—-¢*+gs¢p+1, B=—¢"+24sp+2,
(8.17)
C =2 ||G"[[;¢° +3gs¢® + (1 — g°5*)¢ — gs.
Moreover, C' # 0 for any s € [—b,b] and
GA B 7 2 4
¢2:?¢7 ¢_S¢2:57 ¢22:§<A B+¢ ) (818)
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Proof. The main tool in the proof is which is checked by ¢, for any s € [—b,b]. Its
derivative with respect to s leads to the first relation in . Then, it immediately leads to
the second identity from (8.16). The last two are justified by the notations (8.17)) and (8.15).

Let us suppose by contradiction that there exists sg € [—b, b] such that C(||GT|2,s0) = 0.
Under this assumption the first two relations in imply that

A(|G"[[7, s0) = B(IGT I3, s0) = 0,

and then, by the third one, we get ¢(||GT]|2,s9) = 0. This contradicts ¢ being nonzero for
any s € [—b,0].

The first two relations in are coming from (B.16). The derivatives of the functions
with respect to s read

(2424 ¢2), BZZQ—C?(AB—F&), Cyp = [~ AB+(2+gs6)6%] + 374, (3.19)

A: =
2 CQZ)

9

C
where f}g = %, By = 8—183 and Cy = %. These, along with (¢ — s¢2)2 = %(320 — B(5) or
P22 = &=

(A2C + gA?% — ACo)¢ lead to the last formula in (8.18)). O

We can easily see that the functions A, B, C' are homogenous of degree zero with respect

to y because of the same homogeneity degree of ¢. Moreover, some additional properties of
these functions are essential for our aim.

Lemma 8.2.4. The following assertions hold:
i) C(||GT [}, 8) > 0, for any s € [, b];
i) B(||GT|[2,s) > 0, for any s € [=b,b] if and only if ||GT ||, < 1.

Proof. i) By Lemma we know that the C*°-function C' cannot be vanished on the interval
[—b,b]. So, C has a constant sign on [—b, b]. Moreover, using (8.15)), one easily proves that in
the cases, where s = £b we have

o([GTII7,+0) =1,  A(IGT[7, £b) = £[|G"[|n,  B(||G"[[7, £b) = 1+ 2||G"||s.
These together with the last formula in (8.16]) imply that
C(IGT[7, £b) = (1 £ [|GT[|»)* > 0

and thus, C(||GT|[3,s) > 0, for any s € [~b,b].

ii) We prove first that B(||GT|?,s) > 0, for any s € [—b,b], under condition ||GT||,, < 3.
Let us assume by contradiction that there exists § € [—b,b] such that B(||GT||2,3) = 0. We
are going to find § € [—b,b]. On the one hand, if we put s = § in (8.15), it is reduced to

2 [|GT|[20%(||GT12. 5) + 3g36(||GT|3,5) + 1 = 0, (8.20)

because ¢(||GT|2,5) > 0 and B(||GT||?,3) = 0. On the other hand, the second formula in

B-17) leads to ¢(||GT|[3,3) = g5 + /252 + 2. If we replace the latter formula in (8.20), it

G ich contradicts § € [—b,b] due to the condition ||GT||, < &
2g4/3+4[|GT]|2” ’ 2
Hence, B(]|GT|[2,s) # 0, for any s € [—b,b] and moreover, it has a constant sign on [—b, b].
The fact that B(||GT||2,£b) = 1 £ 2||GT||;, > 0 implies that B > 0 on [—b,b]. The direct

implication is obvious. O

results s = +
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An immediate consequence of Lemma [8.2.4]is that ¢ — s¢o > 0, for any s € [—b, b] if and
only if [|GT||, < 3. Also, by Lemma [8.2.4] if ||GT||,, < %, then ¢oy > 0, for any s € [—b,b].

Remark 8.2.5. Note that the force of the gravitational wind, restricted here by the inequality
IGT|s < % can also be formulated via the variable s. More precisely, ||GT||; < % if and only
if |s| <b< 2%. Indeed, if ||GT||, < % and making use of the Cauchy-Schwarz inequality, it

follows that |s| < ||wf||, = b= %HGTHh < %. The converse implication is trivial.
Lemma 8.2.6. ¢ — s¢o + (b> — s¥)¢a2 > 0 if and only if |s| < b < 2%7'

Proof. According to the Cauchy-Schwarz inequality, one does have |s| < b. We assume that

the inequality ¢ — s¢o + (b? — s2)pag > 0 is checked, for any s € [~b,b] . Then, for s = —b it

B(IIG™|I7,~b) R T 1 : 1
caleTE ) > 0, which gives |[G™ || < 5. Thus, it results |s| < b < 5 because

of Lemma Conversely, if |s| <b < 2%7, then

is reduced to

1
O—sor+ (VP —s%)dm = 5 [BC?+g* (b - 5*)(A*B + ¢)]
B
> 3 [C? + 3 (1* — sH)A?] > 0,
because of Lemmas and O

Finally, by applying Proposition it results that the unique positive root F(x,y) of
(81d), i.e. the cross-slope metric is a Finsler metric if and only if |G|, < 5. Thus, the
indicatrix I is strongly convex if and only if ||GT||, < % Besides, along any regular piecewise
C°-curve 7 on M one does have F(v(t),(t)) = 1, i.e. the time in which a walker goes along
it, under the influence of the cross gravitational wind Gy. By recalling all the above results,
the direction-dependent deformation of the background Riemannian metric h by G provides
the cross-slope metric which satisfies (8.14), with ||GT||, < § and thus, Theorem is
justified. Furthermore, coming back to (8.7), the possible values of the resultant speed [[v||p,
run through the interval [1,/5/2), since ||G||, < 3.

8.2.2 The geodesics of the cross-slope metric

The proof of Theorem is based on some technical computations which we split in two
lemmas. Our goal is to arrive at the spray coefficients that correspond to the cross-slope metric
F, and then the equations of the geodesics will be immediately provided. More specifically,
even if we have only (8.14)), which is satisfied by the cross-slope metric F, it is enough to find
the time-minimal paths as the geodesics v of F' because F(v(t),¥(t)) = 1 along them. The
claim of Theorem is achieved by working with the cross-slope metric, which belongs to
the class of general (o, )-metrics and by employing the technique given by Proposition
We start by establishing some relations.

According to , for the cross-slope metric F' the background Riemannian metric is

hi; and the differential 1-form 3 includes the gravitational wind GT = —gw!, where w! =
Bt op 0

is the gradient vector field. With the notation w; = hijwj , where w' denote the

OzI Oz’
components of G, it immediately results w; = —g gfi and gz}"; = %Z’f Moreover, in Lemma

or [I0, Lemma 4.3] we have proved that § is closed, i.e. s;; = 0 as well as the relations
(7.39).
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Taking into account Proposition and the relations (8.18)), the only thing left to do is
to compute the derivatives ¢; and ¢qo.

T2
Lemma 8.2.7. The derivatives with respect to b*> = u

and ¢12 hold the following relations

and s of the function ¢, i.e. ¢

2 -3
9 4 9 ~ A2 - 21 43
= —=— =———1|2AB A%p— (2 . 8.21
o1 20¢ ;P12 503 [ + gsA*p — (2+ gs¢)p?] & (8.21)
Proof. Differentiating (8.15) with respect to ||GT||?, it results allgﬁ”i = —%gb‘l. When sub-

stituted in ¢ = 528"&2'7%'2, this yields the first expression in (8.21). Moreover, the derivative
h
of ¢1 with respect to s can be written in the form

=2
9 3 4
=9 - .
P12 202( Co p2 — ¢"Co)
Making use of the derivatives ¢o and Cy given by (8.18) and (8.19), the second formula in
(8.21) follows at once from the latter relation. O

Lemma 8.2.8. For the cross-slope metric F the spray coefficients G' are related to the spray
coefficients G, = %him (2% — g:,iff) ¥y of a by

)

gz(z,y) = gg(x,y) + [9(7‘00 + 2@2R7‘) + Oz.QT’O] yg — [LD(TQO + QQQRT) + Ozﬂ’l“o] 5 — OZQR’I“Z’
(8.22)
with
roo = _%’U}i\jyiyju ro = g%wi|jwjyi, r= —g%wiuwiwj, = g%wi|jwj,
R=-510 0= (aSAB? — GBF®), ¥ =92 (a*A2B + F*
= T 2B = 5pr(a gBF?), =55 (a + F?),
(8.23)
=2 172
0 =-L1 0B + gBBF® + ||GT|)3(B — A)FY,
I = — 25 120*B(a?AB — F2) — gBF3(a2B + F2)),
where
A= L(=F?>+ gBF +a?), B=%(—F?+238F +2a?),
(8.24)

C = (®B+gsAF),  B=BC%+(|GT|Ra? - %) (0*A%B + F).
Proof. By Lemma and the relations (8.18]) a technical computation yields the following

expressions

56+ (0° — %) = = (gsB + ||G"|[; A9),
(¢ — s¢2)p2 — sdd22 = F5(AB? — gso®),

(8.25)
¢ — spa + (b2 — 5%) o2 = g5 [BC? + (|G|} — 5°s*)(A?B + ¢*)] ,

(¢ — sha)dra — sbr0bas = —or [2AB2 — (2 + gs§) Bo? — gsd®| ¢°.
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Figure 8.2: Time geodesics in a cross gravitational wind (dashed red) on & compared to the Mat-
sumoto case (dashed green), the Zermelo-Randers case (dashed blue) and the Riemannian case (dashed
white). The corresponding unit time fronts are shown in solid colors and the gravitational wind GT
(black arrows) “blows” in the steepest downhill direction; g = 0.63, At = 1, with a step of Af = 7/4
(8 paths in each case) and the initial point is positioned on the parallel of the strongest gravitational
wind, i.e. (p(0) = 1/v/2,¢(0) = —m/4). It can be seen how the initial Riemannian geodesics and time
front are deformed under the influence of GT, depending on the type of navigation problem.

Now, if we apply Proposition taking into consideration the relations (7.39)) along with
the latter relations, Lemmas and where ¢ = M, it results our claim. O

(67

It should be mentioned that if [|G”|? is constant, then the formula is reduced to a
expresion like in with because 1’ = r = ry = 0 in this particular case.

To end the proof of Theorem owing to the system and Lemma with
F(y(t),¥(t)) = 1, one can write the ODE system which yields the shortest time tra-
jectories v(t) = (7%(t)), i = 1,...,n on the slope of a mountain under the action of a cross
gravitational wind.

For the sake of clarity and comparison with the recent study on the generalization of the
Matsumoto slope-of-a-mountain problem (presented in Chapter 7, [10]), it is preferable to
present the new outcome related to the cross-slope problem with the use of the same two-
dimensional model, namely Gaussian bell-shaped surface & described by the two-dimensional
Gaussian function z = %e_($2+yz). Following Theorem the indicatrix of the cross-slope

metric ' on the surface & is strongly convex if and only if g < V2er9 (.64, being the same

6
condition as in the standard Matsumoto problem.

Therefore, owing to Theorem and Lemma the time geodesics y(t) = (p(t), ¢(t))
in the cross wind on the slope & are the solutions of the ODE system

(0 = i+ WPQF’H [9(1 — 2p%)e= 2" p2 — @2} +2 { O(roo0 + 2% Rr) + af)ro] £

_ 2 . ~ - 2\ —2p2 ~
—_Spe? 2 _ 18p(1=2p%)e”2" 1o
o | oo + 202 r) + adlng| - BO=2C a2 ,

0 = ¢+2pp+2 [é(roo +202Rr) + af)ro} 2
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. - . . . _ _ 2
where O, R, 2, IT and ¥ are given by ®4), ||GT||) = —=2L< p2 , g < ‘2§+9 ~ 0.64,
V9p2e=2r"+1
p=p(t), ¢ = p(t), with (7.51) and (7.53).

The outcome is presented in Figure [8.2] where the cross-slope time geodesics are com-
pared to the unperturbed Riemannian paths, the standard Matsumoto geodesics and the
Zermelo-Randers geodesics under the gravitational wind G with g = 0.63. Moreover, the
corresponding unit time fronts are shown in the respective solid colors. It is worthwhile to
mention that the time front related to the cross-slope metric crosses both the Matsumoto
and Zermelo isochrones. However, it contains the Riemannian one, bearing a similarity to
that of MAT - ZNP correspondence, but the center lines of the limacons (red, green) point in
the opposite directions again. We obtained the Matsumoto and Zermelo paths, based on the
slippery slope theory (Chapter 7 or [10]), where the cross-traction coefficient is equal to 1 or
0 therein, respectively.

8.3 Model of a slippery cross slope under gravitational wind

The previous results [I1} 10] have been encouraging enough to merit further investigation.
Continuing the above line of research naturally led us to the new model of a slippery cross
slope presented below.

8.3.1 Slippery cross slope

In order to gain some intuition, we consider the 2-dimensional model of the slope including the
inclined planes in what follows, while the general purely geometric solution to the time-optimal
navigation problem described is valid for an arbitrary dimension.

Let us observe that actually each of two orthogonal components of gravitational wind,
ie. Proj,GT, Proj,. GT can be reduced partially due to traction, making use of a real
parameter, and not only entirely like in [106] (the lateral one) or [I1] (the longitudinal one).
As described in Chapter 7, this has already been done in the case of the transverse component
in a slippery slope model, where the cross-traction coefficient 1 runs through the interval [0, 1],
linking MAT and ZNP [10]. By analogy to such compensation of G, we aim at considering
a slippery slope model in the current study, however concerning the along-gravity scaling
and introducing another parameter called an along-traction coefficient 7 € [0, 1]. We assume
that, while the Earth’s gravity impacts a walker or a craft on the slope, the cross wind being
perpendicular to a desired direction of motion u is regarded to act always entirely, whereas
the effective wind, which pushes the craft downwards, can be compensated as depending on
traction. In other words, the proposed model refers to a mountain slope, fixing the maximum
cross-track additive continuously, for any direction of motion # and gravity force ||G”||; and
admitting the along-track changes at the same time (longitudinal sliding). Consequently, the
corresponding Finslerian indicatrix in the new setting will be based on the direction-dependent
deformation of the background Riemannian metric h again. However, unlike all the preceding
problems listed above, the equations of motion in the general form will now be

v = u + Proj,. GT + (1 — #)Proj,G”. (8.26)

Thus, we can say that the influences of both components of gravitational wind are now some-
what reversed in comparison to the slippery slope investigated in [10]. To simplify the writing
and to be in agreement with our previous notation, we will write Grar for Proj,G”, and
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G]\LJAT for Proj,. G”. The new model of the mountain slope is called a slippery cross slope
and the related time-minimal navigation generalizes or complements previous investigations.

/ Y Gmar 4

Figure 8.3: Left: A model of a planar slippery cross slope M under gravity G = GT + G, being
analogous to the slippery slope as in Figure Now the resultant velocity is represented by v; (yellow,
7 € [0,1]) including the boundary cases for 7 € {0,1}, i.e. the Zermelo case (vzyp, blue) and the cross
slope case (vy, red), respectively. The longitudinal component A’B’ of the active wind OB’ (denoted
by Gj) w.r.t. v depends in particular on the along-traction coefficient 7. Right: A gravitational wind
and its decompositions on the slippery cross slope ]\{,__v)vhere OA 1L OA’. The gravitational wind GT
is a vector sum of an active wind and a dead wind (B’C’). The former is in turn decomposed into two
orthogonal components: an effective wind A’B’ and a cross wind ﬁ = Gy (which coincides with
Proj, . GT in this case). The along-gravity force in general varies from 0 to |Gy a7||n on the slippery
cross slope, while the cross-gravity effect is always full, i.e. equal to ||Proj,. GT||,. The direction 6
of “unperturbed” motion indicated by the Riemannian velocity u (the control vector, dashed black) is
measured clockwise from OX, where ||u||, = 1.

From (8.26) it follows manifestly that the self-velocity u is perturbed now by Gj. Hence,
the resultant velocity is expressed aﬂ

Vi = u—l—Gﬁ, (8.27)

where the active wind reads Gj = Gf\z ar +(1=7)Garar, where the former component stands
for cross wind and the latter for effective wind. An equivalent formulation of the last relation is
G; =71Gi+(1 —7)GT, since the cross wind is “blowing” with maximum force, so Gy = Gf\-JAT
in this case. Moreover, it follows evidently from the above that

Gj; = —iiGpar + G7, (8.28)

where the component 7G ;a7 represents the dead wind. In particular, it is reasonable to
expect that the edge cases, i.e. 77 = 1 and n = 0, will describe now, respectively, the cross-
slope navigation (the action of maximum cross wind and minimum effective wind m), ie.
Gj; = G14r, and the Zermelo navigation (the action of maximum both cross and effective
winds), i.e. G; = GT. For the sake of clarity, see Figure

Furthermore, it can be seen that the slippery slope problem with the cross-traction coef-
ficient n = 0 from [10] and the current investigation with the new along-traction coefficient

9For brevity, we shall drop the subscript 7} on v; when confusion is unlikely.
OFor clarity’s sake, see Figure , where OA = Proj,G7 is in general the maximum effective wind, and

—
OA’ = Proj,. G* the maximum cross wind, for any given 8 and ||G”||,. A component of the gravitational
wind G” acts in full force if it is not reduced (partially or entirely), e.g. due to traction or drag.
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71 = 0 should coincide. Then this means that the scenario like in Zermelo’s navigation under
weak gravitational wind GT will be located somewhat right in the middle between both ap-
proaches pieced together. It also stand naturally for the boundary and meeting case of the
slippery slope and slippery-cross-slope solutions, where the gravitational wind “blows” in ful]E
on the mountain slope, and the time geodesics come from Finsler metric of Randers type.
Finally, the current model of a slippery slope under cross gravitational wind complements
the preceding investigations on the slope-of-a-mountain problems in a natural way. Namely,
this fills in a missing part regarding the compensation of the along-gravity effect concerning the
direction of motion indicated by the velocity u. As we will see on further reading, the obtained
strong convexity conditions, being the basis for desired optimality of the trajectories on the
slope, differ significantly from all those of the preceding navigation problems discussed above.
In particular, for some 7, it is admitted the norm of gravitational wind ||G”||;, to be greater
than ||u||;, = 1. For comparison, recall that the convexity condition in the Zermelo navigation,
i.e. for a Randers metric is ||GT]|, < 1 [45] and the corresponding conditions in both the
Matsumoto and cross-slope metrics are most restrictive among all others, i.e ||GT||;, < 1/2
[10, II]. Moreover, in contrast to the situation on the slippery slope investigated in Chapter
7 or [10], the behaviour of the Finslerian indicatrix (time front), being now subject to along-
traction expressed by 7], is quite different. For instance, the new indicatrix crosses both edge
cases (ZNP and CROSS) in two fixed points, while the parameter 7 is running through the
interval (0, 1). This is shown in the presented example with an inclined plane in [12].

8.3.2 Statement of the main results

The problem of time-optimal navigation on a slippery slope under the cross-gravity effect
(S-CROSS for short) can be posed as follows

Suppose a craft or a vehicle goes on a horizontal plane at mazimum constant speed,
while gravity acts perpendicularly on this plane. Imagine the craft moves now on
a slippery cross slope of a mountain, with a given along-traction coefficient and
under gravity. What path should be followed by the craft to get from one point to
another in the minimum time?

Our first goal is to provide the Finsler metric which serves as the solving tool for the
S-CROSS problem. More precisely, posing the navigation problem on a slippery slope of a
mountain represented by an n-dimensional Riemannian manifold (M, h), n > 1, under the
action of the active wind Gy given by here, supplies the slippery-cross-slope metrics as
well as the necessary and sufficient conditions for their strong convexity. As in |10} 20, [11],
the gravitational wind GT = —gw! turns out to be the main tool in our study, where g is the
rescaled magnitude of the acceleration of gravity g (i.e. g = Ag, A > 0), and wh = hﬂ%agi
is the gradient vector field, where p: M — R is a C*°-function on M.

Let u be the self-velocity of a moving craft on the slope. We assume ||ull, = 1, as
standard in most theoretical investigations on the Zermelo navigation (see e.g. [45]). Taking
into account the effect of the active wind Gy, the resultant velocity v; = u + Gy allows us
to describe the slippery-cross-slope metric. A crucial role in our study is also played by the
active wind, because it can be expressed as G = —Gaar + GT, 7 € [0,1], where Gprar is
the orthogonal projection of GT on w. It is worth mentioning that in this geometric context

" Both effective and cross winds are maximal in the Zermelo case, for any direction § and wind force ||GT||.
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only the gravitational wind is known, the vector field Gasar depends on direction of the self-
velocity. In order to carry out the slippery-cross-slope metric, we conveniently divided the
study into two steps including a sequence of cases and lemmas [12] Lemmas 3.1-3.3]. The first
step describes deformation of the background Riemannian metric by the vector field —nG s a7,
which is a direction-dependent deformation. The second step is mostly based on the resulting
Finsler metric F' of Matsumoto type, afforded by the first step. This is deformed by the
gravitational vector field G, i.e. a rigid translation, under the condition F(z,—G7T) < 1
which practically ensures that a craft on the mountainside can go forward in any direction
(for more details see [127]). Since the procedure follows more or less the same technique as
in [10], which we already presented in detail in Chapter 7 (Step I and Step II), we omit to
expand it here. Certainly, we have the following results.

Theorem 8.3.1. (Slippery-cross-slope metric) Let a slippery cross slope of a mountain be
an n-dimensional Riemannian manifold (M,h), n > 1, with the along-traction coefficient
7 € [0,1] and the gravitational wind GT on M. The time-minimal paths on (M,h) under the
action of an active wind Gy as in are the geodesics of the slippery-cross-slope metric
Fy which satisfies

Fyyfa? + 2g6F; + ||GTIEE2 = o + (2 — )gBF; + (1 - )|GT I} F2, (8.29)

with o = a(z,y), B = B(x,y) given by (B13), where either 7j € [0,1] and ||GT||, < 1%77, or
1€ (%, 1] and ||GT||, < 2%7 In particular, if 7 = 1, then the slippery-cross-slope metric yields
the cross-slope metric, and if 7 = 0, then it is the Randers metric which solves the Zermelo
navigation problem on a Riemannian manifold under a gravitational wind GT.

The proof of Theorem is based on all results obtaind in the aforementioned steps. For
more detais we refer the reader to [12]. In addition, S-CROSS, which provides the slippery-
cross-slope metric Fﬁ by , leads to a new application and a natural model of Finsler
spaces with general (a, ) metrics [155].

The second goal is to find the time geodesics of the slippery-cross-slope metric. To do this,
we exploit the geometrical and analytical properties, the main key being , and answering
the above stated question this way. Thus, our second main result obtained in [12] is

Theorem 8.3.2. (Time geodesics) Let a slippery cross slope of a mountain be an n-dimensional
Riemannian manifold (M, h), n > 1, with the along-traction coefficient 11 € [0,1] and the grav-
itational wind GT on M. The time-minimal paths on (M,h) under the action of an active
wind Gy as in are the time-parametrized solutions v¥(t) = (v'(t)), i = 1,....,n of the
ODE system

54(1) + 2G5(+(1). (1)) = 0, (8.30)
where
GEY0.A(®) = G 3(0) + [Brun +202r) + athrg] L1
~ - - wh o~ olwd
— | W (roo + 2a%Rr) + aHro] 7 — szlj 7
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with

i . im (00hjm  Ohik\ i/ s = 202 o
ga(y(t)ary(t)) = ih (2 azjk - awjnlzc) 0k (t)’yk(t)v V= 92% (O(4AQB + 772)7
To0 = —%wj|k"7j(t)’7k(t)a ro = g%wﬂﬂj(t)wk, r= —g%wj|kijk,

~ —92 ~ ~ - ~ o ~ ~ o
R=9=[1-9)a’B—1q,  6=22(aAB*-7?gp),

~ -2 - ~ - ~ - - _ ~ ~
0= F={[(1=7) B = 7)(a°B* + 7P||GT[|}) — 7°a*(g8B + ||GT[[; A)},

(8.31)

I = ;2 {[(1 - 7) 0B — 7)(205AB% — i2g8) + 0 B(20° + gB)},
A=—-H{[1-2-7) @ -DIG"F] - (2-7)?g8 - (2—a},
B=—%{[1-201-9)GT|]}] - 2(2 - N)gh — 20},
C=1(a®B+gBA),  E=a’BC?+(|GT|[20% - 8%) (o' A2B + i)

and o = a(y(t),5(t)), B = B(y(t),%(t)), and w' denoting the components of GT .

The proof of Theorem [8.3.2] comprises some technical computations which aim to reach
the spray coefficients related to the slippery-cross-slope metric Fﬁ. Once this is done, we can
immediately supply the equations the time geodesics. Since the proof is similar in the spirit
to that of Theorem [7.1.2] we omit it; for more details see [12} Section 4].

Finally, we deal with an example in dimension 2. For comparison and clarity, we con-
tinue the line of investigation presented presiously in Sections 7.2.3 and 8.2.2, considering
the Gaussian bell-shaped hillside & given by the Gaussian function z = %e_(”:%“yz) (see also
[10L 1T, 12]). First we mention the result.

Lemma 8.3.3. [12] The indicatriz of the slippery-cross-slope metric Fﬁ is strongly conver on
the entire surface & if and only if g < d2(77), where

o YEES i el0,3]
d2(1) =

v2e+9 - ~

o7 if € (31

Lol

Second, we show the F;]—geodesic equations, which are related to . Owing to Theorem
the time geodesics v(t) = (p(t), ¢(t)) on the slippery cross slope of the surface & are
are provided by the solutions of the ODE system

( . —9,2 . . 2 - ~ )
0 = p+ m [9(1 —2p%)e 2" p? — @2} +2 {9(7”00 + 202 Rr) + aQro} L

2 2
__ Gpe=* ¥ 202 P )il }_ 18p(1—2p%)e=2," 9
9p2e—27 11 { (roo + 20 Rr) + allrg (9p2e—27 11) a’R ,

0 = G+ 2pp+2{O(ro0 + 202Rr) + altro £
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Figure 8.4: Left: the unit time fronts (solid colours) and the related time-minimizing geodesics (dashed
colours; drawn with a step of A8 = 7/4) on the slippery cross slope modelled by the rotational
Gaussian bell-shaped surface &, under the action of gravitational wind, for various along-traction
coefficients, i.e. 77 € { 1/3 (yellow), 2/3 (orange), O (blue, the Zermelo case), 1 (red, the cross slope
case)}; § = 0.63. The gravitational wind G? (marked by black arrows) “blows” in the steepest
downhill direction. The initial point is located on the parallel of the strongest gravitational wind,
ie. (p(0) = 1/v2,0(0) = —n/4). Right: the unit time fronts (solid colours) and the related time-
minimizing geodesics (dashed colours) on the slippery cross slope as on the left, compared in addition
to the Matsumoto (green) and Riemannian (white) cases; g = 0.63. In particular, it can be observed
how the initial (unperturbed) Riemannian geodesics and time front are deformed under the action of
gravitational wind (marked by black arrows), depending on the along-traction coefficient 7.

2
where 6, R, 2, II and ¥ are given by (8:31), with GT(p, ) = ﬁ%aﬁp, g < 02(7),
together with and (7.53), p = p(t), ¢ = o(1).

Figure (the left-hand side image) shows the slippery-cross-slope geodesics generated
for various along-traction coefficients, i.e. 17 € {0,1/3,2/3,1}. Also, the corresponding unit
time fronts are presented in solid colours. Moreover, the new solutions are compared to the
Riemannian (white) and classical Matsumoto (green) geodesics as well as their fronts, under
the action of the gravitational wind GT, where g = 0.63 (see Figure , the right-hand side
image).
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Chapter 9

A general model for time-minimizing
navigation on a mountain slope under
gravity

In this chapter, based on the paper [13], we unify and extend all navigation problems, presented
in Chapters 7 and 8, by a most general model of a slippery mountain slope, where both the
transverse and longitudinal gravity-additives with respect to direction of motion are admitted
to vary simultaneously in full ranges. The presented study focuses on finding optimal paths
in the sense of time (time geodesics) in this general model of a slippery mountain slope under
action of gravity.

9.1 Broader meaning of a slippery slope

We start by recalling the slope-of-a-mountain problem of Matsumoto (MAT) where the author
[106] assumed that the slope is not slippery at all in the usual sense. The main objective
was to find the time-minimizing paths on the mountain side under the influence of gravity.
Such setting implied that the self-velocity u of a walker or a moving craft on the slope and
the corresponding resultant velocity v always point in the same directions. In addition, the
related speeds differ from each other by the entire along-gravity additive, being the norm of the
orthogonal projection of the component of gravity, tangent to a slope on w, for any direction
of motion. As is natural, there is higher resultant speed obtained in a downhill motion than
in an uphill climbing, while the self-speed of a walker or a craft on the slope is kept maximum
and constant. Thus, there is no drift (sliding) to any side taken into account. In other words,
the cross component of a gravitational force pushing the walker off the u-track on the slope is
always fully compensated (cancelled) in Matsumoto’s model [106].

A more general approach in the context of time-minimizing solutions has been presented
in Chapter 7 (based on [10]) describing a slippery slope model that admits the side drifts.
This time the velocities u and v are not collinear in general whilst on the move, pointing in
different directions. In that study (SLIPPERY for short) a cross-traction coefficient n € [0, 1]
was introduced in particular by which the transverse effect (i.e. to the left or right side of
the velocity u) of a gravitational force acting on a mountain slope was determined. Thus, in
the boundary cases, the original Matsumoto problem on the non-slippery slope (in the usual
sense) and the Zermelo navigation problem [I57, 45] under a gravitational wind G” are linked
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and generalized. Both become the particluar cases in the new setting, i.e. with n = 1 (no
lateral drift, MAT) and n =0 (maximumﬂ lateral drift, ZNP), respectively.

Furthermore, to complement the exposition including the sliding effect, analogous model to
the aforementioned has been presented in Section 8.3 (for details [L0]), where the longitudinal
drift with respect to a direction of motion indicated by the velocity u was taken into account
in the equations of motion (S-CROSS for short). In this case, in turn, an along-traction
coefficient 11 € [0,1] describes the range of another type of sliding, while the cross-gravity
increment is always taken in full, i.e. n = 0, for any direction and gravity force. In this way
it was possible to create a direct connection between the cross slope problem (CROSS for
short, 7 = 1), presented in Chapter 8, and the classic Zermelo’s navigation (77 = 0) again.
It is worth noting that ZNP is positioned somewhat right in the middle between both above
approaches to modeling the slippery slopes pieced together, namely, SLIPPERY with scaling
the lateral drift [10] and S-CROSS with the longitudinal compensation of the gravity impact
on time-optimal motion on the mountain slope [12].

Both introduced parameters settle the type and range of compensation of the gravitational
wind, however, varying individually, i.e. 7 cross the u-direction as considered in [10] and 7
along the u-direction as studied in [12]. Those compensations determine next the transverse
and longitudinal gravity-additives (slides) to own motion.

In the current investigation, we aim at analyzing the general case, admitting arbitrary
type of a slide during the least time navigation on the slippery slope. This means that both
traction coefficients 7, 77 will be included together in the general equations of motion. As
a consequence, this study will generalize and collect the preceding results on time-optimal
navigation under the action of gravity, which were obtained with a purely geometric approach
by means of Finsler geometry, in particular in [10, 11, 12]. Moreover, the slippery slope will
gain now a much broader meaning in the context of modeling time-minimizing motion on the
hill side, as explained in the next subsection. The essential part of the study will refer to the
strong convexity conditions, which correspond to the geometrically expressed conditions for
optimality in the sense of time.

9.1.1 Navigation problems on a mountain slope with traction coefficients

Let us observe that by a pair of the traction coefficients it is possible to define in fact each
navigation problem P in the slope model under action of gravity above mentioned, namely,
Pn.i = (n,7), where both parameters are ﬁxedﬂ. Thus, we have Pyrar = (1,0), Pznp = (0,0),
Pcross = (0,1) and also Prrear = (1, 1) which yields the Riemannian case, where the impact
of gravity on motion is completely cancelled, i.e. v = u.

Furthermore, our objective is to present the general solution including all scenarios with
the full ranges of both traction coefficients taken into account together, i.e. n,7 € [0, 1], and
not just the boundary values (n,7 € {0,1}) as has been studied so far [106], 157, [45] [1T].
This will lead to the new concrete problems on the slope like, for instance, P = (1/2,1/3) or
P’ = (n/5,+/0.7), which in general have not been considered before. Consequently, any such
setting will yield different type of motion on the slope, determined by given tractions. Then
for any P, 5 the specific study leading to the time-optimal paths can be developed effectively,

!For any given direction of motion indicated by u and gravitational wind force ||GT||y..
’In general, the notation with both lower indices, i.e. P,; = (1,7) will be used especially for the slope
problems that have not been specifically named like, e.g. MAT or ZNP.
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Figure 9.1: Left: The comparative presentation of the specific slope problems defined with the use
of the traction coefficients 7,7 on the problem diagram which have been studied in Riemann-Finsler
geometry thus far. Right: The complete problem square diagram S = [0, 1] x [0, 1] including all slippery
slope problems under gravity with fixed (i.e. specific P) and varying (i.e. transitions 7737’,) cross- and
along-traction coefficients, where P = (1,7), P’ = (/,7) € S.

creating the corresponding model for a potential application based on the arbitrary (n,7)-
navigation under the influence of gravity.

Moreover, in case at least one of the traction coefficients is varying (this means that the
cross- or along-gravity additive is variable) as in SLIPPERY or S-CROSS so far we denote

by 7'7;77/ (interchangeably 7;;7;7’77/) a transition T between two specific slippery slope problems
P = (n,7) and P’ = (1, 7/). Hence, T,y now describes SLIPPERY linking MAT and ZNP,

with 7 € [0,1] and 77 = 0, as well as Ty} represents S-CROSS linking CROSS and ZNP, with
n =0 and 7 € [0,1] [10, 12]. In such a way we can collect, compare and present all the above
mentioned scenarios graphically in a clear and unified manner with the bird’s eye view on the
problem diagram in Figure Actually, the figure also shows the state of the art in modeling
time-optimal navigation on a slope of mountain under the action of gravity studied thus far
(the left-hand side). More general, we aim at covering the cases in our solution, where the
traction coefficients are running through the arbitrary intervals I, I7 C [0,1] as well as the

transitions 7;73, that also connect the new type of problems P, 7 as above mentione e.g.
7—7r/5,\/(ﬁ
1/2,1/3

It is worth pointing out the meaning of “slippery” and “non-slippery” slope in the current
context. As already emphasized, the initial Matsumoto’s setting [106] was treated naturally
as the non-slippery model in a usual sense. Roughly speaking, it is often adopted in the
interpretations of various real world applications that the cross gravity effect is treated as
somewhat “unwanted” or disturbing own (forward) motion indicated by the velocity u, while
the along one is fully accepted. However, there are the situations in nature so that the
approach can be exact opposite. It seems appropriate to mention the animals that move
sideways, e.g. a sidewinder rattlesnake on a desert slope as well as the linear transverse ship’s
sliding motion side-to-side called sway on a dynamic surface of the sea in marine engineering

3Bach fixed pair (n,7) yields a specific type of motion related to P, 7. In turn, the equation of motion
are changing during transition. There is a certain analogy to a flight of a variable-sweep wing aircraft (a
swing-wing design), modifying its geometry while flying.
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or the description of the algebraic pedal curves and surfaces in geometry; see e.g. [11, [12], 64]
in this regard. In our study, both types of gravity effects will be treated like having the same
essence, without distingusihing which non-compensated gravity-additive (called a slide in our
model) is “better” or “worse”. This means that we can be dragged off forward-backward and
sideways equally well on the slippery slope in the general model proposed.

Summarizing, the hitherto notion of a slippery slope (problem) is taking much broader
meaning in comparison to the preceding studies [10, 12]. From now on, each P = (n,7),
n,7 € [0,1], defines in fact a different and specific navigation problem, where at least one
type of gravity-increment (sliding) occurs. From such point of view only the Riemannian case,
where the impact of gravitational wind is cancelled completely, i.e. n = 7 = 1 represents
the non-slippery slope in the presence of gravity. Moreover, the current approach yields that
even the slope in the classic Matsumoto model is considered as being slippery because of
the longitudinal “slide” (i.e. the along-gravity gain) admitted, although it is construed as
non-slippery at all in the usual sense.

Remark that in order to avoid any confusion with the first slippery slope model linking
MAT and ZNP (i.e. n € [0,1] and 7 = 0) which was introduced as a “slippery slope” in
[10] and in Chapter 7 (called SLIPPERY herein) and its natural generalization in the current
study, we slightly rename this particular case now as a standard slippery slope, referring to its
meaning in the usual sense and to be in agreement with our previous terminology.

9.1.2 Problem formulation and main theorems

We can now formulate the main task to which the rest of this chapter is dedicated. Namely,
the problem of time-minimizing navigation on a slippery mountain slope under the action of
gravity is posed in the following way:

Suppose a walker, craft or a vehicle has a certain constant maximum speed as mea-
sured on a horizontal plane, while gravity acts perpendicular to this plane. Imagine
now that the craft endeavours to move on a slippery slope of a mountain under
gravity, admitting a traction-dependent sliding in arbitrary (downward) direction.
What path should be followed by the craft to get from one point to another in the
least time?

In the general context of an n-dimensional Riemannian manifold with GT = —gw?, where
w! is the gradient vector field and § is the rescaled gravitational acceleration g (see Section
and [10} 20, 11], 12]), we consider the active wind G5, which represents the impact of gravity
which is not compensated due to traction on the slippery slope, and defined by , with
(n,7) € S, where S = [0,1] x [0,1]. Mention that it vanishes only when n = 7 = 1, i.e. the
Riemannian case (RIEM for short). Let us also fix S = S~ {(1,1)}.

The set S represents a complete problem square diagram for our exposition (see Figure
right-hand side). The solution to the posed problem is given by the new slippery slope
metric in the general case, which is called (n,7)-slope metric, as well as the corresponding
time geodesics. Our main results are represented by the following two theorems.

Theorem 9.1.1. ((n,7)-slope metric) Let a slippery slope of a mountain be an n-dimensional

Riemannian manifold (M,h), n > 1, with a cross-traction coefficient n € [0,1], an along-
traction coefficient i) € [0,1] and a gravitational wind GT on M. The time-minimal paths on
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(M, h) under the action of an active wind Gy as in (9.11) are the geodesics of an (n,17)-slope
metric I,5, which satisfies

Frm\/o‘ +2(1 - )gﬂFrer (1—n)? ||GTH}LF2” =a’+ (2-n— n)gﬂanzJF(l —n)(1— )HGTHh 0

(9.1)
with o = a(x, y) B = B(x,y) given by -, where either ||GT ||, < _~ and (n,7) € D1UDa,
or ||GT |, < 2|n_~| and (n,7) € D3 U Dy, where

Dy={(i) €S [n=i>2-1},  Dy={mies| Tt <y<i},

Dy={mieS|nzt a<m-1}, Di={mnes|iz} n<},

4
S = D;and DinNDj; =0, forany i # j, i,j = 1,...,4. No restriction should be imposed on
i=1
I|GT||n if n =7 = 1. In particular, a slope metric of type (0,0), (1,0), (0,1), (1,1) is reduced
to a Randers metric, a Matsumoto metric, a cross slope metric and a Riemannian metric h,
respectively.

Moreover, an (1, 0)-slope metric is a (standard) slippery slope metric Fn and a (0,7)-
slope metric is a slippery-cross-slope metric Fj, both presented in the Chapters 7 and 8 (|10,
Theorem 1.1| and [12] Theorem 1.1], respectively).

For clarity’s sake, the partition of S into the mutually disjoint subsets D;, i = 1,...,4 is
illustrated in Figure It is also worth mentioning that the above theorem now implies as
the particular cases the solutions to: the original Matsumoto’s slope-of-a-mountain problem
(MAT), Zermelo’s navigation problem (ZNP) on a Riemannian manifold under a gravitational
wind GT as well as CROSS. Furthermore, F,; provides a new Finsler metric of general (o, 3)
type.

The second theorem enables us to find time geodesics that correspond to an (7, 7)-slope
metric, giving an answer to the research question posed above. Namely, we have obtained

Theorem 9.1.2. (Time geodesics) Let a slippery slope of a mountain be an n-dimensional
Riemannian manifold (M,h), n > 1, with a cross-traction coefficient n € [0,1], an along-
traction coefficient i) € [0,1] and a gravitational wind GT on M. The time-minimal paths on
(M, h) under the action of an active wind Gy as in are the time-parametrized solutions
v(t) = (v'(t)), i = 1,...,n of the ODE system

F1(t) + 2G5 (v (1), 4(1)) = 0, 52)
where
G040 = Galo(t) (0) + [Slrvo + 202r) + aftr] L1
- w' o Oézw]
— [P (roo + 2oz2R7“) + aHro} ; — R’ i g2
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with
Gi(v(D),5(1) = Jhim (255 — G ) 3 (0540, = L0t A2 + (7 - n)?),
oo = —zwji Y ()" (1), ro = g%wj|kW7(t)wk7 r —gﬁwj\kij .
R=0F 0 -a*B—(i-n), 6 =1a'AB — (- n)g)
2 =502 1((1 - ) a®B — (i — )] B® + (7 — n2||GT|2] — (7 — n)**(@8B + |G |3 A)},

=19 (1~ ) 0B — (i — n))[2a5AB? — (77 —0)?g6) + (7 — n)*aB[2a” + (1 - n)gB)},
A=—{0-n[1-C-n-D)A-DGTZ] = 2-n—0)g6 - (2-n—0a’},
B=-%{1-201 - -GTIZ] - 2(2—n—)gs — 222},

C=1(a*B+gpd),  E=aBC+(|GT|Ra? - 3°B) [0 A2B + (7 — )
9.3)
and o = a(y(t),%(t)), B = B(y(t),%(t)), and w' denoting the components of GT .

The chapter is structured in the following way. Our concern in Section 9.2 is focused
on the general model of a slippery mountain slope under gravity, starting with some special
navigation problems (so called the reduced ZNP, the reduced MAT and the reduced CROSS)
which are achieved by the transition from the initial Riemannian background to the Zermelo’s
navigation problem (ZNP) under a weak gravitational wind G”, the Matsumoto’s slope-of-
a-mountain problem (MAT) and the cross slope problem (CROSS), respectively. Then, in
Section 9.3.1 we perform the proof of Theorem dividing it into two steps including a
sequence of cases and lemmas. In Section 9.3.2 we prove Theorem which is based on
some technical results.

9.2 New models of a slippery mountain slope

Let (M, h) be an n-dimensional Riemannian manifold, n > 1, which represents a model for
a slippery slope of a mountain. Let w? = hji% aii be the gradient vector field of p, where
p: M — Ris a C®-function on M. Making use of w, we have defined the gravitational wind
GT = —guw*, where g is the rescaled magnitude of the acceleration of gravity g (i.e. § = \g,
A > 0) [10, 20] 111, 12].

Based on scaling, we assume throughout this section that we work with the self-velocity u
of a moving craft on the slope and ||u||;, = \/h(u,u) = 1. Along this section we also refer to
a 2-dimensional model for the slope, more precisely, to the inclined plane for a better view of
the study, although the time-optimal navigation problems described in this work are valid for
an arbitrary dimension.

Looking at the known cases visualized graphically in Figure left-hand side, we first
propose some new scenarios. Namely, we are going to consider three special transitions with
varying traction, linking the Riemannian set-up with the Matsumoto, Zermelo and cross slope
cases. As we can observe right below, it is possible to obtain the explicit form of the Finsler
metrics in the first two problems, which are respectively of the Randers and Matsumoto type,
including the parameter 7 or 7 in their formulas in addition.
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9.2.1 Some special cases

We begin by referring to the Zermelo navigation problem, where the purely geometric solution
is given by a Finsler metric of Randers type, under the action of space-dependent weak vector
field W on a Riemannian manifold (M, h) [127, [71], 45| 157].

Reduced ZINP

Let us take into account the setting 7 = 7 € [0, 1]. In the sequel, this scenario is called the
reduced Zermelo navigation problem (R-ZNP for short) and it is marked illustratively by the
dashed blue diagonal in Figure [0.I] the right-hand side. Since the traction parameters run
through the full range, we can connect the Riemannian and Zermelo cases directly by the
transition 7'10’10 along the diagonal n = 7. More precisely, the resultant velocity in this case is
defined as follows

Vp_gnp = U+ (1 - n)GT7 (9.4)

for any n € [0, 1]. In other words, both cross and effective winds are compensated respectively
by the cross- and along-traction coeflicients at the same time and equally, i.e. P € OC in
Figure [9.2] the right-hand side.

Now we are in position to apply the Zermelo’s navigation technique as in 71}, [45], with
the navigation data (h, W), i.e. deforming the Riemannian metric h by a weak vector field
W =(1-nGT, ie [[W]|, =(1-n)||GT||, < 1. Thus, using the condition on the self-speed
HUHh =1land 7 we get H/UR7ZNP|‘}21_2(1_77)h(/UR7ZNP7 GT)_l"’_(l_n)QHGTHi% = 0. This
leads to the Finsler metric of Randers type F,
as a parameter. The result is

_,~p including either of the traction coefficients

FR7ZNP('$’ y) = \/[(1 - n)h(y’)(\iT)]z . )\nHyH% — (1- n)f:y’ GT)

, (9-5)

with A, = 1 — (1 — )?||GT||2, for any (z,y) € TM. In particular, if n = 0, i.e. P =C in
Figure then the last equation yields the standard Randers metric, which represents the
solution to ZNP under the action of a full gravitational wind G’. On the other hand, for
n =1 we get the non-slippery Riemannian case, i.e. P = O in Figure[9.2]

We notice that for every n € [0,1] (along the diagonal n = 7), the indicatrices of the
Randers type metrics F »_snp are the "cloned” ellipsoids because by Zermelo’s navigation, the
Riemannian h-circle (ellipsoid) is only rigidly translated by (1 — )G, under the restriction
(1 —n)|IGT||n < 1; see e.g. [71]. In particular, there is not any anisotropic deformation of
the indicatrices and only rigid translation is applied, while transiting between two arbitrary

problems in R-ZNP.

Reduced MAT

Now we set n = 1 and 77 € [0,1], calling this scenario the reduced Matsumoto slope-of-a-
mountain problem (R-MAT for short). The along-traction coefficient 7 runs through the
entire range, so RIEM and MAT can be linked directly by the transition 7’11’710 which is also
included in the slippery slope model. This situation is indicated by the dashed green segment
in Figure the right-hand side. Thus, the equation of motion for this case reads

Vpppar = U+ (1 =0)Gyar, (9.6)
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for any 7 € [0, 1], where G a7 is the orthogonal projection of G on u. Moreover, it follows
immediately that P € OA in Figure the right-hand side, so the cross wind is vanished,
whilst the effective wind is scaled by the along-traction coefficient 7. Since the velocities
Vp_ uar and w are always collinear in this case, R-MAT is based on a direction-dependent
deformation of the background Riemannian metric h by the vector field (1 — 7)Gasar. By
applying the navigation technique as in [71, 45|, where ||v,_,,.rlln = 1 £ |[(1 — 7)Garar||n
(“+” for downhill and “” for uphill motion), as well as [12, Step I|, the resultant Finsler metric
is obtained explicitly. More precisely, it is the (a, 8)-metric of Matsumoto type including the
along-traction coefficient 7 € [0, 1] as a parameter, and denoted by F,_,, .. We thus get

5 oIl

R 7] P ey IR <)

(9.7)

for any (z,y) € T Mo, under the strong convexity restriction (1—7)||G”|[, < 3. In particular,
if 7 = 0, then the last equation leads to the standard Matsumoto metric [106] 131], which
stands for the solution to MAT, i.e. P = A in Figure [0.2] the right-hand side. On the other
edge, for 7 = 1 we get the Riemannian case, i.e. P = O in Figure [9.2] the right-hand side,
because the impact of the gravitational wind is then compensated completely during such
kind of motion on the slope. In contrast to R-ZNP, there is not any rigid translation of the
indicatrix of F » auap and only anisotropic deformation is applied, while transiting between

two arbitrary problems included in R-MAT.

Reduced CROSS

As the last special problem mentioned in this subsection we consider the setting 77 = 1 and
n € [0,1]. By analogy to the cases described above, this scenario is named the reduced cross
slope problem (R-CROSS for short) and indicated by the dashed red segment in Figure
the right-hand side. As the cross-traction coefficient 7 runs through the full range, RIEM and
CROSS can be linked now by the transition 7'1(?’11, becoming the particular and edge cases in
the current set-up. It follows from the above that the related equation of motion if]

Vp_cross =+ (1= U)G*/[A% (9.8)

for any n € [0,1]. Hence, this yields P € OA’ in Figure , the right-hand side and the
effective wind is zeroed while the cross wind is varying, depending on cross-traction on the
slippery mountain slope. In particular, if n = 0, i.e. P = A’ in Figure the right-hand
side, then the solution is given by a cross slope metric (Chapter 7 or [11]). On the other end,
if n=1, 1.e. P =0, then we are led to the Riemannian metric h.

Having solved two previous problems explicitly, one may expect that the similar ease of
investigation will be in the third analogous scenario. Unfortunately, the solution is much
more complicated now. In contrast to R-MAT and R-ZNP, this time we do not get a “simple”
explicit form of the Finsler metric. As shown on further reading, it is signficantly nontrivial
and could be studied individually{ﬂ7 however the corresponding solution can be extracted as the

YGiar is Proj, . GT, Girar = —Grrar+GT (ie. (ﬂ? in and recall that G asar stands for Proj, G*
(ie. OA in[p.2).

5We remark that the main proof concerning R-CROSS studied individually would follow the analogous way
as in [IT], however with the scaling factor (1 — n) for the vector field G3; 47, included from the beginning
in the related equations of motion. Similarly, the corresponding scaling factor in R-MAT is (1 — 77), however
referring to the vector field Garar, as well as (1 — n) with reference to the gravitational wind G7 in R-ZNP.
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particular case from the general result in Section 9.3.1, having the strong convexity condition
IGT]s < (1 w1 E [0,1), in this case. Actually, the computational difficulty could have
been expected in advance, since the detailed solution to CROSS has already been analyzed in
[11] (here in Chapter 8) and it stands for the edge case in the current setting. We decided,
however, to mention this new type of slope problem here so that the problem diagram form a
square clearly after including the last missing side as shown in Figure[9.1], the right-hand side.

Unlike R-ZNP and R-MAT, the evolution of the indicatrix is based on both anisotropic
deformation and rigid translation combined together, while transiting between two arbitrary
problems included in R-CROSS.

To complete, all three cases described above start (or end) at the Riemannian vertex
(1,1), including the transition along the diagonal of the problem square diagram One can
also consider another transition along the second diagonal of S, i.e. TO linking MAT and
CROSS. In this case, we have the relation 7 =1 —n, n € [0, 1], and so Pe AA (Figure [9.2),
where one traction coefficient is a non—identityﬁ (linear) function of another. As in R-CROSS,
the corresponding resultant metric cannot be explicitly obtained in a simple form.

9.2.2 (General case

Following the above presented reasoning in a more general context one can ask whether the
Riemannan case can also be linked with a problem P defined by a pair (n,7), indicating
the interior of the square diagram S, and not just its boundary S (R-CROSS, SLIPPERY,
R-MAT, R-CROSS) or one diagonal, i.e. 77 = n (R-ZNP) as untill now. Moreover, we can
actually look at the model even more generally, connecting two arbitrary problems P = (n,7)
and P’ = (1, 7') of the whole diagram, where n, 7', 77,7’ € [0,1]. Thus, we are going to enter the
interior of S created by four cornered cases, i.e. RIEM, MAT, ZNP and CROSS (respectively,
0O, A, C and A’ in Figure , the right-hand side, and ultimately to cover its whole area.
From such point of view each P with the traction coefficients being fixed uniquely defines
different and specific navigation problem on the slope, in which the corresponding equations
of motion depend on both traction coefficients. Therefore, a pair (7,7) determines the range
of compensation of the gravity effects (transverse and longitudinal) during motion on the
slippery slope, in particular, the behaviour of the time-optimal trajectories. In consequence,
we can state that there exist in fact infinitely many slippery slope problems, where the classic
Matsumoto’s slope-of-a-mountain and Zermelo’s navigation under gravitational wind stand
for natural but also very particular cases now, among many others.

Furthermore, it will be possible to create the direct links between two arbitrary problems
via the general solution, i.e. the transitions 7;]7/, where the traction coefficients are not fixed
but varying as in SLIPPERY and S-CROSS thus far. In other words, one can set up the
ranges of the parameters, i.e. n € [n,n]] C [0,1], 7 € [71,7;] C [0,1] and fix the relation
n=fm),eg 1= 0-—m)@ —m)/(my —m)-+m. This is visualized graphically by a straight
line segment (black) along which P is moving smoothly, connecting two specific problems
Pr=(m, i), P = (n},7) €S in Figure[9.1]

Taking into account , and , the general equation of motion is formulated as
follows

Uy =t + G, (9.9)

SUnlike R-ZNP, where 7j = 1.
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Figure 9.2: Left: A model of a slippery (7, 7)-slope as an inclined plane M of the slope angle ¢ in R3,
under the gravity field G = G” + G, acting perpendicularly to the horizontal plane (the base of the
slope). The gravitational wind G7 “blows” tangentially to M in the steepest downhill direction X, and
G is the component of gravity normal to the slope M; OX L OY, O € M. The resultant velocity
is represented by v,; (black) and its particular (cornered) cases are: vzyp (blue), varar (green), vy
(CROSS, red) and vgrrpnm = u (dashed black). For comparison, v, (purple) and v; (yellow) refer to
the exemplary SLIPPERY and S-CROSS, respectively. Right: The decompositions of a gravitational
wind GT = OC (blue) on the slippery slope M, where OA L OA’. GT is a vector sum of an active
wind G5 = oP (black) and a dead wind PC (dashed grey). The lateral (G = zﬁ, a cross wind, red)
and longitudinal (A’B’, an effective wind, yellow) components of the active wind G,; = O? w.r.t. u
depend in particular on the cross-traction (n) and along-traction (77) coefficients, respectively, where
ﬁ € ﬁ . The direction 6 of motion not influenced by gravity and indicated by the Riemannian
self-velocity w (the control vector, dashed black) is measured clockwise from OX, where ||ul|p, = 1.

where active wind G5 on the (n,7)-slope is defined by the following linear combination

Gy = (1= 0)Gipar + (1 = 0)Gyar, (7)) €S (9.10)

which is equivalent to
Gy = (n — 7)Garar + (1 - n)GT. (9.11)

The formula implies in particular the equations of motion from the preceding studies of
time-optimal navigation on the mountain slopes under gravity, namely:

e v, =u+ Gy =u+nGyar+ (1 —n)GT as in [I0] (SLIPPERY), Chapter 7;
o vi =vo1 = u+ Gt =u— Gpar + GT as in [I1] (CROSS), Chapter 8;

o v;=u+ Gj=u—7Gpyar + GT as in [12] (S-CROSS), Section 8.3;

e vprar = v1p = U+ Garar as in [106] (MAT),

e vznp =voo = u+ GT as in 71, 45] (ZNP) and obviously,

o v11 = u (RIEM).

Moreover, for instance, the relation v,5 = u + G5, where

Gy = (1 = 0)Gipar + 1Guar = (20 — 1)Garar + (1 — n)G”
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linking MAT and CROSS has not been covered so far. However, now the corresponding time-
minimizing solution will come as the particular case of the general result presented in the
sequel.

9.3 Proofs of the main results

The goal of this section is to prove Theorems and[9.1.2] Some preparations are necessary.
Let us consider the n-dimensional Riemannian manifold (M, h), n > 1, which represents here a
model for a slippery slope of a mountain. Let GT = —gw! = —ghjiii:’; 8% be the gravitational
wind and let u be the self-velocity of a moving craft on the slope, assuming throughout this
section that ||u|[, = 1. For now, let us consider the active wind Gy; expressed by (9.10), with

(n,7) € S, where S = [0,1] x [0, 1], which vanishes only when 5 = 7j = 1.

9.3.1 (n,7n)-slope metric

We pose the navigation problem P, 5 on (M,h) under the action of the active wind Gy,
where the resultant velocity is vy; = v + Gy, for any (n,7) € S. Apparently, it looks like
a standard Zermelo navigation problem, where the solution is given by a Finsler metric of
Randers type if the wind is weak [45] [71} 154, 61]. In reality, our navigation problem is quite
complicated due to the active wind G,3. The key observation is that our ingredient Gy,
written as Gy; = (1 —7)Gapar + (1 —1)GT, for any (n,7) € S, is not a priori known because
only the gravitational wind G is given, and the vector G ;47 being the orthogonal projection
of GT onto the self-velocity u, depends on the direction of u. Moreover, using , it follows
immediately that ||Gz|ln < [|GT||n, for any (n,7) € S, where S = S~ {(1,1)}.

As in Chapters 7 and 8 or [10} [12], it is appropriate for us to split the proof of Theorem
into two steps including a sequence of cases and lemmas, which enable us to describe the
(n,7)-slope metrics besides the necessary and sufficient conditions for their strong convexity,
expressed exclusively with respect to the force of the gravitational wind G, for any (n,7) € S.

The first step describes a direction-dependent deformation, more precisely, the deformation
of the background Riemannian metric h by the vector field (n — 7)Garar. The second step
develops the classic Zermelo navigation, where the indicatrix of the resulting Finsler metric F'
of Matsumoto type, provided by the first step, is rigidly translated by the gravitational vector
field (1 —7)GT, under the condition F(x, —(1 — n)GT) < 1 which practically secures that a
craft on the slippery mountainside can go forward in any direction (see [127, [61]).

Step I. We state that under the assumption that |n — 7| ||Garar||n < 1, the direction-
dependent deformation of the Riemannian metric h by (n—7)Garar leads to a Finsler metric
if and only if ||GT||, < ﬁ, for any (1,7) € S~ L, where £ = {(77,17) eS| 17:77}.
Moreover, when |n — 7| ||Garar||ln > 1 at some directions, this deformation cannot afford a
Finsler metric.

To this end, we describe the deformation of h by the vector field (n — 7)Gprar in terms of
the resultant velocity v = u + (9 — 7)Garar, for any (n,7) € S ~ L. Evidently, if n = 7, then
v = u. Furthermore, we need to study the cases:

Lo |n—=a |Gmar|ln <1, 2. [n—1]||Gymar|ln=1 and 3. |n—7q| |[|Gpar|ln > 1,

separately.
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Let us fix a few notations. The desired direction of own motion, denoted by 6, is the angle
between GT and w. Since Garar :ProjuGT7 the vectors v, u and Gpsa7 are collinear and
once we have denoted by @ the angle between v and Gjrar, it results that it can only be 0
or m. We notice that when 6 is 5 or 37”, the angle # is not determined, i.e. u and G” are

orthogonal, and Gps 47 vanishes.

Case 1. |n—1| ||Gaparl||ln <1. Since we have assumed that |n— 7| ||Gaar||n <1, it is
certainly true that the angle between G” and v is also # (the vectors v and v point in the
same direction). It is worthwhile to emphasize that due to the assertion |n — 7| ||Garar||n < 1
there is not any direction where the resultant vector v vanishes. Now we focus on #, namely:

i) When 6 = 0 (going downhill), we have 6 € [0,2) U (3], 27) and the angle between G” and
G a7 is either § or 27 — #. Then, we clearly obtain that ||Gasar||n = ||G”]|x cos @ and

h(v, Garar) = |vlIal|Gararlln = |v]|al|GT || cos 0 = h(v, GT).

h(v,GT)
[[o]]n

Also, for any (n,7) € S \ L it follows that | — 7| ||GT ||, cosf < 1 and < Tiﬂ

ii) When 6 = 7 (going uphill), it turns out that 6 € (3, 2F) and the angle between G and
G At is |7 — ). Thus, one easily obtains that ||Garar||n = —||G”||; cos§ and
h(v, Garar) = —|[vllal|Garar |l = |[0l|n|GT||n cos 8 = h(v, GT).
Moreover, for any (1,7) € S\ £ we have —|n — 7| ||GT||; cosf < 1 and —h(ﬁl’)ﬁf) < Iniﬁl
To sum up, by both of the above sub-cases and noting that v = u when 0 € {7, 37” , We
get
h(v, Gryar) = h(v, GT) = ||v]|]|GT || cos 6, for any @ € [0, 27). (9.12)
In addition, we can write the inequality |n — 7| ||Garar||n < 1 as follows
h(v, GT 1
=7 |G alcos <1 or PG 1 (9.13)
[|v][n In — 1]

for any 6 € [0,27) and (n,7) € S~ L. Now, using (9.12), we proceed by straightforward
computation starting with 1 = ||u||n, = ||v — (n — 7)Garar||n. This leads to the equation

10l1 = 2(n = D)[ol[n]|G||n cos 8 = [1 = (n = 7)?||GT[}, cos® 6] = 0,
which, due to the first inequality in (9.13)), admits the unique positive root

[o][n = 1+ (7 = D)[|G"||n cos b, (9.14)

for any 6 € [0,27) and (n,7) € S\ L.

If we introduce the notation g1(z,v) = [|[v||? — ||v||n — (n — 7)h(v, GT) and we use (9.12),
the equation (9.14) can be written into its equivalent form g;(z,v) = 0. Thus, based on
Okubo’s method [106], we can get the function

o113
[lvlln + (n = )h(v, GT)

F(z,v) =
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as the solution of the equation g1(z, %) = 0. Moreover, we can extend F(z,v) to an arbitrary
nonzero vector y € T, M, for any x € M because any nonzero y can be expressed as y = cv,
¢ > 0, and F(z,v) = 1. Namely, it turns out the following positive homogeneous C*°-function
on TMO

yll3
llylln + (n —7)h(y, GT)

There is still a certain amount of properties which is arising regarding function F(x,y)
obtained in (9.15). Before all else, we claim that our assertion |n— 7| ||Gaprar|ln <1 is a
necessary and sufficient condition for F'(x,y) to be positive on all T M. In order to prove this
let us observe that the positivity of on T'My means that

F(z,y) = for any (n,7) € S~ L. (9.15)

lylln + (n — Ah(y, GT) > 0, (9.16)

for all nonzero y and any (n,7) € S ~ L. If the positivity is achieved on T My, we can replace

y with £GT #£ 0 in and thus, it follows that | — 7| ||GT||, < 1. Having the inequality

|Gprarlln < ||GT]|n in any direction (note that ||Garar||n = ||GT||n|cos|, for any 0 €

[0,27)), it yields that |n — 7| ||Garar||n < 1 on all T M. Conversely, if |n — 7| HGMATHh <1

on all T My (the posibility that Gprar = 0 is also included), we have ‘h(ﬁ/?ﬁ;)' < |77 i for any

nonzero y, which gives (9.16)). Thus, the claim that F(z,y) is positive on TM, is proved.
From now on, we use the notations as in Chapters 7 and 8 or |10} 11, 12], that is

o = |ly|l7 = hijy'y’  and 5——fM%Gﬁ h(y,w?) = by, (9.17)

a=afz,y), = B(z,y) and ||B||n = ||wk||r. We notice that the differential 1-form 3 is closed,
i.e. s;; = 0, because it includes the gravitational wind G” which is a scaled gradient vector

field, i.e. GT = —guwt = —ghﬂda; dal, for more details, see [1() Lemma 4.3].

With the notations (9.17), we can express the function as

Ck2 ~

F(I’,y) = m, fOI' any (7’],77]) € S AN E, (918)

which shows that it is of Matsumoto type having the explicit indicatrix
Ir = {(z,y) € TMo | o*[a— (n—7)gp| ™' = 1} C TM.

Since y = 0 does not lie in the closure of the indicatrix I, we can extend F'(x,y) continuously
to all TM, i.e. F(x,0) =0 for any z € M (see [61]).

The function (9.18)) seems to be a promising Finsler metric. In order to make sure of this,
we are going to establish the necessary and suflicient conditions for the strong convexity of the
indicatrix I, for any (n,7) € S \ L. We can write F(z,y) = a¢(s ) where ¢(s) = W
with s = *8 , and the second inequality in is actually |s| < ~| , for arbitrary nonzero
ye .M and x € M. Thus, for every (7, n) € S~ L it follows that gZ) is a positive C*°-function
on the open interval Z = (—(|n —7lg) ", (j]n — 7|g)~*).

In the sequel, we collect the desired properties for ¢(s), with |s| < m, and we control

force of the gravitational wind G” via the variable s.
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Lemma 9.3.1. Let ¢ be the function given by ¢(s) = m with s € Z. For any (n,n) €

S~ L, the following statements are equivalent:

1) 9(s) = s¢/(s) + (b° — 5%)¢"(s) > 0, where b = ||w||y;
i) |s] < b < by, whereb(): 1

i) ||GT| | <

KQ |

2In—nlg’
2|77 0l

Proof. By using the Cauchy-Schwarz inequality  |h(y,w®)| < ||yl|n]lw?||n it follows that
|s| < ||wt||n = b for any nonzero y € T, M and z € M. Let us now focus on (b — s2)¢"(s).

Due to [s| < = 77\ , one has (b* — s2)¢"(s) = (b — 82)% > 0. Thus, the minimum

value of (b% — s2)¢"(s) is 0 and it is achieved when |s| = b, for any (1,7) € S ~ £. Moreover,
a simple computation leads to

[1— (n—0)gs][1 — 2(n — 7)gs] + 2(b* — s?)(n — 7)*F?

d(s)—s¢' (s)+ (b2 —s%)d"(s) = —— . (9.19
(s) =59 (s)+( )" () 0= (7= 7)55F (9.19)
To prove i) = ii), we assume that ¢(s) — s¢'(s) + (b* )qﬁ”( ) > 0. Let us take s = £b in
(9.19). It follows that 1 F 2(n — 77)gb > 0, and then b < TG ~|_ Therefore, |s| < b < m
which is precisely the required ii). Conversely, let us assume that |s| < b < 7T 77—71\57' Due to
(9.19), we get
1—(n—)gs|[l - 2(n—7)g 1—2(n— )3
¢(S) o S(bI(S) 4 (b2 o 82)¢//(8) > [ (77 77)95][ (77 77)95] _ (77 77).98 > 07

[1—(n—7n)gs)? 1= (n—mn)gs]?

for any (n,7) € S\ L.
Now, we prove the implication iii) = ii). Since ||GT||, < m and |s| < ||wf|[n = b =
3/IG™In, it turns out |s| < b < gto=. The implication ii) = iii) is trivial. O

It is worth mentioning that the statement |s| < b < also implies that for any

1
N 2[n—ilg
(n,m) € S\ L, ¢(s) — s¢/(s) > 0. By the above findings and applying [71, Lemma 1.1.2] and
Proposition [6.2.1] we have stated the following result.

Lemma 9.3. 2 For any (n,7) € S\ L, F(z,y) =
G In <

a—(a?jﬁ)g,ﬁ 1s a Finsler metric if and only if

2|n nl-

Therefore, once we have Lemma 9.3.2, we conclude that the indicatrix Ip is strongly convex

if and omly if ||GT||, < an 77, for any (n,m) € S\ L.

Case 2. |n—1| [|Guar|ln=1. We start by assuming that |n — 7| HGMATHh =1, for any
(n,7) € S\ L. Observe that a traverse of the mountain, i.e. when 6 € {Z,3T}, cannot be
followed here. Indeed, when 0 € {2, o T}, Garar vanishes which contradlcts our assumption.

Moreover, since ||Garar||n < ||GT]|n, it follows that ||GT|[, > _~‘, for any (1,7) € S~ L.
In the sequel, we have to analyze the aforementioned possibilities for :

i) when 6 = 0, we clearly have 6 € [0, 2)U(3F, 27) and ||Garar||n = ||GT||, cos 6. In addition,
our assumption implies that u = |n — 7|Garar, and thus

—0)Guar, ifn>n

N N 2
UZ(TI—U+\77—77|)GMAT={ (n 0 if ) < 7
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Based on this, we next get
(a) if n > 7, then [[v[|n, = 2(n = 7)[|Grpar|[n = 2 and

h(v, Garar) = ||vllal|Gararlln = |[vl[al| G| cos & = h(v, GT);

(b) if n < 7, the resultant velocity v vanishes, while attempting to go down the slope.

ii) when 6 = 7, then 6 € (%, 27) and thus u = —|n—7j|Garar and ||Garar||n = —||GT||5 cos .
It turns out that

0, ifn>n

v=(n-1- \nnI)GMATz{ 20— )G ifn < i

Also, this must be splitted into
(a) if n > 7, the resultant velocity v vanishes, while attempting to go up the slope;
(b) if » <7, then [|v[|n = —=2(n — 9)||Grrar|[n = 2 and

h(v,Garar) = =0l |nl|Garar|ln = [[0]|nl|G" ||n cos § = h(v, GT).

Summing up the above findings, when v does not vanish, we have ||v||;, = 2 and among

the directions corresponding to 6, only such directions for which cosf = m (
h(‘Tq’)ﬁ;T) = niﬁ)’ for any (1, 7) € S\L, can be followed in this case. Let us consider ga(z,v) = 0,
where ga(z,v) = [|[v]|, — 2. By Okubo’s method [106], we get the function

l.e.

1
F(z,v) = gllvlla, (9.20)

as the solution of the equation gs(z, %) = 0.

The extension of F(z,v) to an arbitrary nonzero vector y € A, = AN T, M, for any
x € M, is F(z,y) = 3llylln, where A = {(z,y) € TMo | [[ylln — (n —7)h(y,G") = 0}. Since
I|GT |, > \niﬁ\ it follows that G € A, if and only if GT = G a7 and 1 > 7j (here the angle
6 can only be 0) and —GT € A, if and only if GT = Gjra7r and 1 < 7 (here the angle 6 can
only be 7). Anyway, this case does not povide a proper Finsler metric.

Case 3. |n—1|||Garar]ln > 1. The remaining case is |n — 7| ||Garar||n > 1. On one

hand, it implies that ||GT||, > ITflﬁl’ as well as the fact that 6 cannot be  or 2T, Indeed,

if 0 € {3, 37”}, then v = w and thus, Gaar vanishes, which contradicts our assumption.
On the other hand, it follows that for any (n,7) € S ~ £, the resultant velocity v and
(n — 7)Gprar point in the same direction (downhill when 7 > 7 and uphill when n < 77) and

h(v, Garar) = Z=2[v|]|Garar[n. Moreover, |n— il ||Garar|ln > 1 states that there is not
any direction where the resultant vector v vanishes. Again, we have to take into consideration

both possibilities for §. Namely,

i) when 6 = 0, then 6 € [0,%) U (38, 2n). In particular, we have ||Garar||n = ||GT||), cos@
and due to the required assumption, it follows that |n —7j| ||GT]|; cos§ > 1. Two possibilities
must still be analyzed:

(a) if n > 7, then £(GT,v) € {6,27 — 6}. Thus, we get

h(v,Garar) = [|v]|al|Garar!ln = [|v]|al|GT[|n cos§ = h(v, GT)
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h(v,GT) 1 .
[[vlln n—n’
(b) if n < 7, then £(GT,v) € {m + 6,0 — 7} as well as

and

h(v, Garar) = —|[v|[nl|Garar|ln = ~[[l[a]|G" [l cos § = h(v, GT)
_h(eGT) 1
and =TR= > 7
ii) when 6 = 7, one gets 0 € (%, 3%). In particular, we have ||Garar||n = —||GT||5 cosd and

In — 7| [|GT || cos® < —1 since |n — 7| ||Garar||n > 1. Moreover,
(a) if n > 7, then £(GT,v) = |6 — 7|. Thus,

h(v, Garar) = [0l |nl|Gararlln = —[[0l|n]|G" |1 cos § = h(v, GT)
h(v,GT) 1

> S
I n—m’
(b) if < 7, then the angle between GT and v is also #. In consequence, it turns out that

and

h(v, Garar) = ~[[vllnl|Garar|ln = [[o]Inl|GT||n cos § = h(v, GT)

__ h(v,GT) 1
and —Zpr = > 75

By combining the above possibilities and since G ;a7 cannot be vanished, we get

h(v, Garar) = hv, GT) = ’Z:Z'HUHMIGTW cosd], for any 0 € [0,27) ~ {r/2,3m/2},

(9.21)
and the condition |n — 7| ||Garar||n > 1 is equivalent to
h(v,GT) 1 : =~ T
1 > == ifn> h(v,G
|cos O] > —————7— or i‘z‘(fl;H(th) KN 7 7 , or (n—n) (v ) > 1,
In—al [|G|]n —HEEL > S i <) [[v]|n
(9.22)

for any (n,7) € S~ L.
Therefore, among the directions corresponding to 8 € [0,27) \ {n/2,37/2} only such
directions for which |cos@| > m can be followed in this case. By using (9.21)), a

simple computation, starting with 1 = ||ul|p, = ||[v — (1 — 7)Garar||n, leads to the equation
117 = 2l = | [[o][|GT ||n cos 8 — [1 — (7 = 7)*|GT[} cos? 6] = 0.

Since |cosf| > m, for any (n,7) € S~ £ and 8 € [0,27) ~ {n/2,37/2}, it follows

that the last equation admits two positive roots
[olln = £1+ | — | |GT ]| cos]. (9.23)
Based on the property (9.21), we can write as g3(z,v) = 0, where
g3(x,v) = |l F [[olln — (1 = D)h(v, GT).

If we apply Okubo’s method again [106], we get the following positive functions

2
Fio(z,v) = i||v||h+(‘7|71ﬂ|7?)h(v Gry 8 the solutions of the equation g3(z, %

F1 2(z,v) to an arbitrary nonzero vector y € A% = A* N T, M, for any x € M, where

) = 0. Next, we extend

A" ={(z,y) e TM | |lylln — (n — 2)h(y, G") < 0} (9.24)
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is an open conic subset of T' My, for any (n,7) € S~ L. Thus, we obtain the positive homoge-
neous C'*°-functions

_ lyl1?
Fia(w,y) (9.25)

~ EHylln + (= DAy, GT)
on A*, with Fyo(z,v) = 1. We notice that GT € A% iff n > 7 and —GT € A% iff n < 7.
Moreover, due to (9.22), our initial assumption |n — 7| ||Garar||n > 1 is a necessary and
sufficient condition for F o(x,y) to be positive on A*.
By the notations (9.17), the functions Fj 2(z,y) are of Matsumoto type, namely

Oé2

+a —(n—1)gp

on conic domain A*, rewritten as A* = {(z,y) € TM | a+ (n—1n)gp < 0}. However, F} 5 can
be at most conic Finsler metrics. By applying [87, Corollary 4.15], it turns out that both F} o
are strongly convex on A* and thus, they are conic Finsler metrics on A*, for any (n,7) € S\.L.
Indeed, for F} 5 the strongly convex conditions [aF 2(n—7)gf][aF (n—7)gs] > 0 are satisfied
for any (z,y) € A* and (n,7) € S\ L.

Fia(w,y) = (9.26)

Summarizing the results from this step, beyond their intrinsic interest, it turns out that
the direction-dependent deformation of the background Riemannian metric h by the vector
field (n — 7)Garar, with |n — 7| ||Garar||n < 1 performed for every direction (note that the
converse inequality |7 — 7| ||Garar||n = 1 one may carry out only at some directions), for any

(n,7) € S\ L provides the Finsler metric F(z,y) ’ =5 if and only if I|GT|; < ﬁ

_ o
a—(n—m)

Step II. In attempting to use Proposition we consider the following navigation data

(F,(1— q)GT) on the Finsler manifold (M, F'), where F is either the Finsler metric (9.18]) if

(n,m) € S\ L or the background Riemannian metric h if (n,7) € L, assuming that

F(z,—(1-n)GT) < 1. (9.27)

Exploring the Zermelo navigation on (M, F) with the aforementioned navigation data
(F,(1—-n)GT), we supply new Finsler metrics, which we call the (1, ij)-slope metrics, together
with the necessary and sufficient conditions for the strong convexity of their indicatrices. More
precisely, applying Proposition , for each (1,7) € S, the (n,7)-slope metric has to arise
as the unique positive solution F' of the equation

F(J;’,y - (1 - U)F($7Q)GT) = F(l’,y), (9'28)

for any (z,y) € T Mp.

Before doing this, a few details must be outlined. On one hand, the meaning of our second
step is that the addition of the scaled gravitational wind (1—7)G” generates a rigid translation
to the strongly convex indicatrix provided by v = u — (9 — 77)G a7 in the first step, for any
(n,7) € S~ L (see [61]). We have already got rid of the possibility that [ — 7|||Gazar||n > 1
since it only supplied conic Finsler metrics and thus, going forward in any direction is not
enabled. On the other hand, the condition plays an essential role for the resulting
indicatrix, obtained by translation, to be strongly convex and to determine a new Finsler
metric as the unique solution of (see [61, p. 10 and Proposition 2.14]). In other words,
the condition (9.27) secures that for any x € M, y = 0 belongs to the region bounded by the

137



Habilitation thesis Codruta Nicoleta Aldea

new translated indicatrix I;. Moreover, some additional computations can show that if we
replace the conic Finsler metrics from Cases 2 or 3 in the inequality (9.27), it may exist only
for some (n,7) € S~ L, which is contrary to what we aimed for from the beginning in order
to cover the whole square S.

In the sequel, we expand the left-hand side of . Let us observe that the Finsler

metric F' can be written as F(z,y) = for any (n,7) € S. In particular, if n = 1, it

Oé2
a—(n—m)gp’

is obvious that F(z,y) = for any 7 € [0, 1], (i.e. the so-called reduced Matsumoto

2
(1 mgs’
metric). For arbitrary n € [0, 1], by taking y — (1 — n)F(z,y)G” instead of y in (9.17)), some
standard computations give that

o? (2, = (1 =) F(,9)GT) = a*(,9) +2(1 — mghle,y) F(a,9) + (1~ n)|GTIRF ()

and
8 (2.0 — (1= 0Pla)G") = B(o.y) + ~—IGT I} F(a.).

where we used the relation 3(z, GT) = —%HGTH%L. Therefore, it turns out that the left-hand

side of (9.28) is
0? +2(1 - )g8F + (1 - )?||GT| B P2
Vo2 +20 = m)gBF + (L= 2| GHEE? — (n—1)gh — (n— (1 —n) |G| BF

where a, 3 and F are evaluated at (z,y). Now, if we substitute this into (9.28), we get the
irrational equation

Byfa? + 201 - )gBF + (1 - n)2(|GTIRE? = o> + (2 —n— gBE + (1 - n)(1 - DIIGTIRE?,
(9.29)
which is equivalent to the following polynomial equation

(L= GTIRL = (1 =) IGTFIF* +2(L —n) [1 = 2 —n—7) (1 - ) [|G"|[}] gBE?

HA-20-n) A=) GT|}]a® = (2—n—7)? B F? = 2(2—n—17) ga?BF —a* =0,
(9.30)
for any (n,7) € S.

In the special case where n = 77 = 1, we obviously have F = h. Moreover, we note that
if (1—n)21—(1-7)? |GT|2] # 0, the last equation admits four roots, and thanks to the
condition , we know precisely that among all roots there is only one positive. For any
(n,7) € S, it should be the (1, ij)-slope metric.

From now on, we denote by F,; the (1, 7)-slope metric, outlining that an satisfies (9.29))
and moreover, along any regular piecewise C°°-curve v, parametrized by time that represents
a trajectory in Zermelo’s problem, we have Fy7(v(t),4(t)) = 1. This is the time in which a
craft or a vehicle goes along ~.

Now, it remains to provide explicitly the necessary and sufficient conditions for the indica-
trix of Fnﬁ to be strongly convex, and thus we will outline the argument that the Fnﬁ—geodesics
locally minimize time. In order to handle this issue, we need to characterize the inequality
which is equivalent to

1 -1 -)IG"]|n
1—(n=IGT|n

> 0. (9.31)
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Indeed, since F(z,y) = a_(najn)g HZ/|‘h+(T|]‘yl7|§Lh(y a1y it turns out that, for any (n,7) € S,

the left-hand side of (9.27) is

. . - (- a2 e
Flo = =mC) = 0 =@+ (= (- = )&, GT) — 1— (- m)I&7]ls

which together with (9.27) conclude the claim (9.31). Namely, we prove the result

Lemma 9.3.3. The following statements are equivalent:
i) for any (n,7) € S, the indicatriz I o of the (n,n)-slope metric Fy; is strongly convex;

it) the gmmtatwnal wind GT is restricted to either ||GT||;, < _~ and (n,7n) € Dy U Dy, or
IGT||n < 2|77—77| and (n,7) € D3 U Dy, where

Di={(ni) €S n=i>m-1},  Dy={mies| %t <y<i},

4
S=UD;and D;NDj =@, for any i # j, i,j = 1,...,4. No restriction should be imposed on
i=1

IG [ ifn=1n=1

. . . . . . 1 ~
i) the active wind Gy gwen by (9.11) is restricted to either ||Gyg||n < 7 ond (n,7m) €
D1 UDsy, or ||Gyilln < 2|77 a1 and (n,7m) € D3 UDy.

Proof. To prove the equivalence i) < ii) one has to take into account (9.31)), for any (n,7) € S,
(see Figure . Because of this, the following cases must be analyzed separately:

a) i
If we combine these with the strong convexity condition for the indicatrix Ir, more precisely
|IGT Hh<2 )for1>77>17>0 we obtain:

o |IG"||n < 135 if either (1,7) € Ry or (1,7) € Rs, where

Ri={miesiosi<n<yb Ra={ompesine |j1) ae@-1n}.

It is obvious that Rq and R3 are subsets of D1 and D1 = Ry UR3 U Ly, where Ly
denotes £\ {(1,1)}. Thus, [|GT]|, < 5 7 if (n,7) € R1UR3 = D1\ Lo.

o ||GT] < 3 :) if 1 >n >3 and 2p—1> 7 > 0. Hence, we have ||GT||;, < if

(1, n)eszﬁl,whereﬁl—{(m eSS |n=1}.

(n )

b) if n = 77 and n # 1, then F = h and the resultant metric is a Randers one in this case.
Moreover, for every (n,7) € Lo, the inequality (9.31) is equivalent to ||GT||;, < ﬁ

¢)ifn <17 and 7 # 1, then (9.31)) i

convexity condition for the indicatrix Ir, i.e. ||GT]|; < 2(~ ) for 0 <n <7 <1, we get:
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e |GT||) < 1iﬁ if either (n,7) € Ro or (n,7) € R4, where

3 1 3 1 35—1 _
R2={(77,77)€S|0§77<77<3}7 R4:{(n,n)6$n€[3,1),n6<n2 n)}

It is clear that Ro and R4 are subsets of Dy and Dy = Ro U Ry4.
if (777 ﬁ) € D2-

if

o IGT]|n < gy 1 3 <71 < 1and 0 < n < ¥=L Tt follows that ||GT]|, < 57im

(n,Mm) € Dy \ Lo, where Lo={(n,n)eS|n=1}.

nn)

d)ifn #mnandn =1, then 1 > 7 and is fulﬁlled. Thus, in this case we have (1, 7)-slope
metric which is the Matsumoto type metric F ((9.18) with n = 1), and the strong convexity
of its indicatrix yields ||GT||, < 2(1 7y~ Consequently, I|GT||n < 2(1 = if (n,m) € L.

e)if n # 7 and 7 = 1, then n < 1 and the inequality - ) holds. It turns out that the strong
convexity corresponding to the metric ' ((9.18))), certified by Lemma ensures the strong
convexity which corresponds to the (1, 1)-slope metric, namely ||GT||, < ﬁ So, we have
IGT|ln < g if (1.7) € La.
f) if n = 7 = 1, then there is not any deformation for h since G5 = 0 and thus, there is no
restriction on ||GT|j.

Summing up the above findings, we obtain that the inequality (9.27)) is equivalent to either
IGT || < %5 and (n,7) € D1 UDy, or ||G" |4 < g5 and (1,7) € D3 UDs.

The argument which proves the equivalence ii) < iii) is that ||Gyglln < ||GT]|n, for any
(n,7) € S and, furthermore, the maximum of ||Gy;||, coincides with ||GT||,, for n = 0 (which
is possible both in Dy UDs and in D3 U Dy), since G a7 must vanish for some directions. [

Based on the results stated in Steps I and II, we have performed the proof of Theorem

We remark that, according to Lemma [9.3.3] the force of the active wind Gy can be
accounted for in terms of the force of the grav1tat10nal wind GT, i.e. ||GT||n < by, in the
problem P, 5, for any (,7) € S (see Figure where

B_{lg,ﬁ()emum
0=

s i (0.7) € D3UD, (9.33)

It is worthwhile to mention a few observations regarding the range of bo. For example,
when (n,7) € Ry, it follows that by € [1,2) or when (1,7) € Rq, we obtain by € (1,3).
Moreover, for (n,7) € R3 U Ry, bo — oo as 7 7 1. Similarly, for (n,7) € D3 U Dy, by — 0o
as |np — ij| — 0. In fact, once we are closer and closer to the point (0,0) € S, the admitted
force of the gravitational wind is weaker because by —» 1 as 77 \, 0. On the other hand, the
closer we approach to the point (1,1) € S, the stronger the allowed force of G’ becomes.
However, there is (,7) € S such that |G|, > 1 and the indicatrix Iﬁm_] of the (n,n)-slope
metric an] is still strongly convex, unlike the classic navigation problems, i.e. ZNP where
IGT||5 < 1 or MAT where ||GT||), < 3.

The allowable gravitational wind force ||GT|;, < by for the general slippery slope model

determined by the strong convexity conditions, including the influence of both traction coef-
ficients, is illustrated in Figure right-hand side.
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Figure 9.3: Left: The partition of the problem square diagram S = SU {(1,1)} as in (9.32), where
D1 = R1UR3 ULy, D2 = Ry URy, where Lo = L~ {(1,1)}, and £ = {(n,ﬁ) eS|y —? Right:
The allowable gravitational wind force ||GT||; in the general slippery slope model determined by the
strong convexity conditions given by 7 including the influence of both traction coefficients (7,
i), ie. ||GT||n < by. For clarity of presentation, we limited the range ||GT||, < 5 (the upper gray
plane), remarking that ||GT||;, — oo in the neighbourhood of the Riemannian corner, i.e. when
(n,7) — (1,1). The lower plane (gray) represents ||GT||;, = 0.5 which refers to MAT, i.e. (1,0) as
well as CROSS, i.e. (0,1). The colors of the related parts in both subfigures correspond to each other.

Finally, we briefly discuss a kind of classification of the navigation problems P, 5, for any
(n,7) € S, (Figure [9.3). Taking into account the decompositions of the active wind G5, we
can give the following classification.

Corollary 9.3.4. Let P, 5 be a navigation problem under the action of an active wind G5
given in , on a slippery slope of a mountain (M,h), with a cross-traction coefficient
n € [0,1], an along-traction coefficient 7j € [0,1] and a gravitational wind GT on M. The
following statements hold:

i) For any (n,7) € S with n > 7, Py comes from SLIPPERY with a certain form for the
cross-traction coefficient, namely ¢y = ?:Z € (0,1];

i) For any (n,1) € S with n < 7, Py comes from S-CROSS with a certain form for the
along-traction coefficient, namely co = % € (0,1].

Proof. i) Making use of GT = Gprar + Gipap, it yieds Gy = (77— 7)Gapap + (1 — 7)GT.
Since (n,7) € S and n > 7, then 77 # 1. So, we can find out that

N M= .
Gy = (1= 7)== Giiar + GT] = (1 - )Gy,

where G, = c1Gpar + (1 — ¢1)GT is the active wind from SLIPPERY with a particular

cross-traction coefficient ¢; = 71’:2 € (0,1], for any (n,7) € S, where n > 7. According to

Theorem or [10, Theorem 1.1], the slippery slope metric F‘cl corresponding to the active
wind G, satisfies the equation

F, \/a2 +2(1 = e1)gBEe, + (1 — c1)?||GTIFF2 = o® + (2 — ¢1)gBFe, + (1 - c)|GT|[RFL.
(9.34)
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Now, if we substitute (1—7)G7 for GT everywhere in (9.34) including also F.,, and ¢; = 717:2,

it turns out that the new I*:'cl verifies identically (9.29). Thus, we have proved the claim i).
ii) Since (n,7) € S and n < 7, then 1 # 1. To prove ii) we consider S-CROSS with the active
wind G, = —CQGMAT+G where ¢y = " 7’ € (0, 1] is a certain along-traction coefficient. By

using Theorem or [12] Theorem 1.1], the slippery-cross-slope metric E,, corresponding
to G, verifies the equation

F,, \/a +2gB8F., + [|GT|PF2 = o® + (2 — ¢2)gBF., + (1 — c2)||GT| R F2. (9.35)

It is immediate to verify that G,; = (1 — n)GCQ, since Gy = (1 — 7)Gupar —|— (1 —n)GT. By

substituting (1 — 7)G” for GT everywhere in 5) including F,,, and cz = =, we get that
the new FCZ satisfies (9.29)). Hence, it follows the requlred claim. O

We notice that, for any (n,7) € S, where nn = 7, P, 5 comes from the Zermelo navigation
with G,; = (1 —n)GT, i.e. R-ZNP.

9.3.2 The geodesics of the (7,7)-slope metric

Following the strategy presented in recent research [10, [IT], 12] (here, Chapters 7 and 8) and
basing on some technical computations as well as applying Proposition we achieve the
spray coefficients related to the (), 7)-slope metric ﬁ},ﬁ. By (6.2), it is immediate to supply
the equations of time geodesics of F;5. Moreover, the argument that any such time geodesic
is unitary with respect to Fnﬁ because before all else, it is a trajectory in Zermelo’s navigation
developed in Step II, will help us perform the proof of Theorem

We start by outlining an essential property regarding the (n, 77) slope metric an Namely,
since Fyy is the root of (9:30), for any (n,7) € S, it seems to be a promising general (o, 3)-
metric. To prove the claim that an is indeed a general («, §)-metric, let us make the notations:

¢ = 5 and s = g Now, if we divide (9.30) by a*, we get the equation,
(L =m2IGT([R[L = (1= [IGT|}]6" +2(1 —n) [1 = (2 —n — 7)) (1 = 7) [|GT|}] gs®

=201 (=) IGTI2 — (2 = 7 — ) §%52)32 = 2(2 =1 — ) §sd — 1 = 0.
(9.36)
This is obviously equivalent to . Furthermore, since an is the sole positive root of (9.30) -7
it follows that ( also admlts a unlque positive root, denoted by d)m,, for any (n,7) € S.
Pointing out that n and 77 are only parameters, it turns out that ¢nn depends on the variables
HGTH2 = §°b% and s = 2 where a and § are given by (9.17), i.e. ¢y7 = ¢yi(||GT|[7,5) and
also, d’nn is a positive C’OO functlon because Fy;(z,y) = aqﬁ,m(HGTHh, s). Thus, the requested
claim is proved.
There are still some emerging properties regarding the function qZN)nﬁ as well as its deriva-
tives. An essential role in our study is played by the following identity

(L =m2NGT L — (1 =D IGTI[71op; + 201 —n) [1 = (2 =0 —7) (1 - D) [IG"|I}] 3565,

H[1 =201 =) (1 =) [|GT|I}] 0* = (2 —n — ) 52} 62, — 2(2 = — ) Gsdhyg — 1 = 0,
(9.37)
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which follows from the fact that qgnf] checks identically (9.36)), for any (1,7) € S. Having the
inequality ||GT||, < bo, with by defined in (9.33)), which secures the strong convexity of the
indicatrix P according to Theorem we can apply the dlrec‘E implication of Proposition
bo
g )

6.2.1, Hence, for any (n,7) € S and s satisfying |s| < @ <
validity of the following inequalities

Gy — 5byiz > 0, G by — 5byiz) + (|IGT [}, — 5°5) iz > 0,

when n > 3, or only the right-hand side inequality, when n = 2.

we have guaranteed the

Lemma 9.3.5. Let M be an n-dimensional manifold, n > 1, with the (n,7)-slope metric
Fui = agni(||GT|2,5). For any (n,7) € S, the function ¢y and its derivative with respect to
s, 1.e. ¢pp2 hold the following relations:

Coniz = GAbyi,  Cloyi — sbyiz) = B, Copy = B+ gsAdyz,  (2—n—1i) B—24 = (71 —n)d2s.

(9.38)
where

A=—(1-n)[1—=@=n-9) Q- IGTI3] 62; + (2 —n—i)" gsbn; +2—n— i),
B=—[1-2(1—n) 1 -GT|3] 62; +2(2—n— 1) sy + 2,

C =201 = IGTI} 1= (1= IGTI}] &% + 30 =) [L = @ —n— ) (1 = D) IGT}] 962
{1 =200 = m) Q=D IGTIR] = 2= n— ) §**}bns — (2 — 1 — 7)) g5
(9.39)
and A, B, C are evaluated at (||GT||2, s).

Proof. By differentiating the identity @ with respect to s, it follows the first relation in
. The proof of the second identity in @ is based on the first one and on some simple
computations. Finally, by using the notations and , it turns out the last two
relations in ((9.38)). O

Lemma 9.3.6. Let M be an n-dimensional manifold, n > 1, with the (n,n)-slope metric
Eyi = adyi(||GT3,5). For any (n,7) € S and s such that |s| < @ < %‘), the following
statements hold:

i) C(||GT|2,5) # 0, dniz = E byn, and by — sbyza = 2.

i) B(||GT|%,s) # 0.

Proof. i) Clearly, if n = 77 = 1, then C = ¢,7 > 0. Now we prove that C(||GT|[?,s) # 0, for
any (n,7) € S. We assume by contradiction that there exists sg € [=b,b], b = @ < %",

with by defined by (9.33), such that C(||GT|2,s0) = 0. With this assumption, due to (9.38),
we get 3
A(IG 1%, 50) = BUIGT [}, 50) = (1 — ) p7(||GT I3, 50) = 0. (9.40)

Since ¢,7(]|GT||7,50) > 0 for any (n,7) € S, the last equality in (9.40) turns out that the
only possibility is that n =7 # 1, i.e. (n,7) € Lo. By using this fact and (9.40)), the identity
(5.4) is reduced to

(1= G = (1 =G [7)on; + [2(1 — m)gsodns + 1] = 0, (9.41)
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where gb,m is evaluated at (||GT|2,s0) and it is with n =7 # 1. As ||GT||), < 1= 5 for (n,7) €
Lo, (9 contradicts the fact that (1 —n)?||GT|[Z[1 — (1 — n)?||GT|3] 4~(|]GT|\h,so) > 0.
Thus7 we have shown that C' # 0 everywhere. Moreover, making use of (9.38)), the claims i)
are fulfilled.

ii) If n =7 =1, then B = g52~ = 1. However, it remains to prove that B(||GT||2,s) # 0, for

- R
any (n,7) € S. We assume, towards a contradiction, that there is § € [—b,b], b = @ <

with by defined by (9.33), such that B(||G*|?,5) = 0. So, we are searching now for such an
S.

On one hand, since ¢, (||G”||?,3) > 0, C(||GT||?,5) # 0 and B(||G”||?,3) = 0, the third
formula in (9.38) with s = 5, implies that § # 0. On the other hand, due to our assumption, by
the second formula in (9.39), it follows that ¢,;(||GT||2, 3) satisfies the polynomial equation

1 =21 =) = DIGT ] dn; — 2(2 =1 — 7)g8dy; — 2 = 0. (9.42)

Moreover, for s = § and for any (n,7) € S, (9.37)) is reduced to

2(1 = 0)||GT|[3dps + [2 =30+ 71 =22 —n—7) (1L —n) (1= 7) IG"|I2] 36us (9.43)
9.43
+1-2(1-n)(1-9)[|G"||z =0,

where ¢ denotes the term 1 — (1 — 7)? IIGT)2.

Since ||GT|;, < by, with by defined by (9:33), it turns out that ¢ = 1— (1 —7)*[|GT|? # 0
for any (n,7) € S. Nevertheless, there may exist some (1,7) € S~ (£1 U L2) such that
1—2(1—n)(1—7)||GT||? = 0. Thus, we have to analyze two cases.

Casea. If1—-2(1-—n)(1- )||GT|]h # 0, for any (n,7) € S, then due to and ([9.43),
we get
(1441 =) (7 = ) [|G" [} éns + 4 (7 = n) 55 = 0. (9.44)

The last equation provides a contradiction when (n,m) € Lo. Thus, n # 7 and moreover, since
5+ 0 and ¢,;(||GT1|2,5) > 0 it turns out that 1+ 4(1 —n) (7 —n) [|GT||? # 0 and

i 5o 4(n—n)gs
Sni(IIGT[7,3) = 11 4(1—1) G- [GIE (9.45)

Once we have (9.45) for any (n,7) € S \ Ly, we can go with it in (9.42) and the result is

4(7 —n) §?8°[2 = 3 + 7+ 40 —n)(L = m?IGT[F] = [L+4(1 — ) (7 — ) IGT|[7)*.

Since the right-hand side of this is positive, it follows that

([—n)[2=3n+7+4(7—n)(1—n)?|G"|}] >

2 _ [1+4(1—n) (G—n)|IGT|I;]? : i 22 2
and thus, we obtain 3 = R G- (=P GTTE) which contradicts §° € (0, b°], for

any (n,7) € S\ Lo, due to the condition HGTHh < bo, where by is defined by (9-33). Indeed,
since we must have 32 < b2, this implies ||GT||;, > Tl for any (n,7) € S~ Ly, noticing that

2|77177 (77 n)EDlLJDQ\ﬁo
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Case b. If1—2(1—n)(1—7)||GT||2 =0, for some (n,7) € S\ (L1 U Ls), then, by (9.42),
it follows that

. 1
Gni(IGT17,3) = —5———=—. 9.46
7777(H Hh ) (2—’/]—77)98 ( )
The last equation together with (9.43)) lead to § which satisfies the relation
2~ 1—2n+17
§(i—n) = (9.47)

A1 =M 2-n—-Mg>

Obviously, when 1 = 7, (9.47)) provides a contradiction. Therefore, it remains to study (9.47)
2

when (n,7) € S~ (U L;). Since § # 0 and n # 7, it follows that 1 — 2n+ 7 # 0. Now, making

T2 ~ 2
%7 it turns out that there exist (n,7) € D C S ~ (U £;) such that

1=0

use of §2 < v? =

1—2(1—n)(1 - 7)||GT||? = 0, where D = D3 U D4 and
Dy={(nm)eS|5<n<l, q<2n—1}CD;,
Dy={(n7) €S |n<2j-1, 5 <7<1}CDy

However, the fact that ||GT|[, < 5 3h—7 on D is contradicted.
Summing up the above ﬁndlngs, we have proved that B(||GT||2,s) # 0, for any s € [—b,b],
T 7 o~
b= 1S 1k <o with by defined by (9:33). 0

We remark that basing on Proposition it is known that qu, sémﬂ > 0, when n > 3,
for any (n,7n) 6 S and s such that |s| < HG H" < bo Now, according to Lemma [9.3.5] since

(b S(Z)nng = C we have proved that qﬁm, sqb,mg 7é 0 also when n = 2, for any (1,7) € S and
Is| < IGT]ln b
= 3 g

Lemma 9.3.7. Let M be an n-dimensional manifold, n > 1, with the (n,7)- slope metric

aqﬁm(HGTHh, s). For any (n,7) € S, the first order derwatwe of the function (;S,m with

2
respect to b = @

following relations:

, i.e. quﬂ and the second order derivatives <;5m~,12 and <;5m~,22 hold the

i = USHE (1 — i) B — (i1 — m)d2:) 02,

Dz = U307 {AB + Chum)[(1 = ) B = (1= &) + (7= )*[2+ (1= m)gsduldy } dus

iz = Za[A2B + (77 — 0)*3y).
(9.48)

Proof. By differentiating the identity (9.37) with respect to ||GT||?, we get

Obpi _ 1—n - i— )62 6
al!c;%% = S [(L=0)B = (i1 = n)z)00;-
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Now, if we substitute this into ¢,71 = g2 aﬁg"THQ, the first relation in ) follows. Dif-

ferentiating the functions (9.39) with respect to s, together with (9.38) yleld the following
identities

A = LpA oo B= SIAB+ (- ).
Gy = = (7= M2+ (2= 1~ 1)gsdui)dhs} + 354,

¢7777

where Ay = a—A By = %—f and Cy = %—f. All these, along with

itz = ST L(1 — ) BoC + 2gA[(1 — i) B — 201 — n)2,) — [(1 — 1) B — (7 — )$2,1Ca} 62,

(5771722 = %(z‘bc + gA? — AC2)(/31777;

give the last two formulas in ((9.48)). O

Now we are in position to provide the spray coefficients corresponding to the general
(o, B)-metric Fyj.

Lemma 9.3.8. Let M be an n-dimensional manifold, n > 1, with the (n,7)-slope metric
F,5, having a cross-traction coefficient n € [0,1] and an along traction coefficient 1 € [0, 1].
Then, the relationship between the spray coefficients g 7 of F7777 and the spray coefficients

i Ohim oh
Gi, = 1him ( SR — dmi,’f) yyk of a, is given by

7

977,7(3:, y) =G (x,y) + [@(roo +20*Rr) + 04(27’0] yg — [Lp(roo + 20*Rr) + aﬂro] % o’ Rr?,

(9.49)
1 =1,...,n, where
roo = —%wi‘jyiyj, ro = g%w”jwjy", r= —g%wﬂjwiwj, rt = g%wib.wj,
R= B2 (01— 7) B — (7 — ) AL,
0= 257?%[@61432 (17— 77) QBF%]; V= %[0‘4‘423 + (77— 77)2 Féﬁ]a
2= 92 {100-7) 0B — (7 — ) FZ]1°B + (- n)*||GT | FY) (9.50)

— (i1 = n)* 0*E5,(g8B + |GT| 3 AFy) }

—n)g3 - ~ ~ ~ _
11 = G30% {11 = ) B — (7 — ) FZ,][2a5AB2 — (5 — n)’ §8F3,)

+ (=) a*BEL 202 + (1 = ) g8F ]} o,
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with

A=l =) 1= 2=n—0) Q=D IGTI}] Ey; — (2 —n—01)gBE; — (2 —n—i)a’},
B=-L{[1-201—n)(1 - )|GTI}IEZ — 2(2 — n — #)gBFy; — 202},

C= ( 2B 4 g/BAFm>

E = aBC? + (||G"|[o” — 9°8%)[a* A*B + (n — i)*Fy).
(9.51)

Proof. Having the derivatives anm, ‘;5777727 q~5m~,12 and énﬁzg given by Lemma, i) and (9.48)),
a simple computation shows that

sy + (07 = 8%)dyiz = 56(§s B + [|GT ([} Adys),
(ngﬁ - Sénﬁz)dgnﬁz - Sénﬁénmz = %[ABQ - (77 - U)zgséf),ﬁ],

Gnip — sOyia + (7 — %) yizz = Za{BC? + (|IGT[|} — g2*)[A2B + (71 — 1)*d)1},

(bni — 5Guiz2) Sz — sy dyipz = GEEA(L —77) B — (7 — 0)@%:|[2AB? — (ij — )Gt

+ (7= )22+ (1 = 0)gséng Bép: } dya-

(9. 52)
Denoting by w' the components of GT = —gh/? aa fj a?cz and using the notation w; = h;;w’, it
follows that w; = —g 87’- and 8“” = gﬁf. Moreover, accordlng to [10, Lemma 4.3], we have
Sij = sZ =sl=s=35 =0 as Well as the the relations Collecting the findings (9
and , one can apply Proposition | and thus, our clalm yields at once. D

We notice that a simplified form of the spray coefficients Qm(x y) occurs when ||GT|;,

. d||G 2 j
is constant. Indeed, making use of |10, Lemma 4.3| again, since % = g—QwiUuﬂ = 2ry,

we clearly have that r; = 0 if and only if ||GT||; is constant and furthermore, the statement
r; = 0 implies r* = r = rg = 0. All these particularities reduce the formula to
with .

It remains only to catch the ODE system which provides the shortest time trajectories
v(t) = (7%(t)), i = 1,...,n on the slippery slope, under the influence of the active wind Gy;.
Namely, if we substitute the spray coefficients Qzﬁ(y(t),ﬁ(t)) from into (6.2), with
Epa(y(t),4(t)) = 1, it turns out the system (9.2). This ends the proof of Theorem

Finally, we provide two examples which support the applicability of the above obtained
results by highlighting the two-dimensional case.

Example 1. We start with an inclined plane (a ramp) because this example allows us
to show clearly the behaviour of the indicatrix of the (7, 7)-slope metrics Fnﬁa for any pair
(n,7) € S. We consider the planar slope given by z = /2 (i.e. f(z!,22) = x/2, where z = 2,
y = 22) having the slope angle 26.6° and taking the regular point O = (0,0) as the center
of the indicatrix. In this setting, it turns out that h = /hsy’y? has hi1 = 5/4, hoy = 1,
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hia = ho1 =0 as well as ¢ = 1/4, GT = —%% and ||GT||, = %. Moreover, it follows that

y' = —2X/v/5 and y? = —Y and the equation of motions are given by [L3]

_éyl — [1+(n—ﬁ)%cosa]c039+(1—77)%
, (9.53)
—y?2 = [14+(n— ﬁ)% cos 0] sin 0

for any direction 6 € [0,27) of the velocity u. By applying the general theory presented in
the previous sections, the strong convexity condition ||GT||;, < bg, with by defined in (9.33)),
which corresponds to the inclined plane, is equivalent to g < d1(n,7), where

1T\/§ﬁ7 if (77»77) €D1UDy
d1(n, 1) = : (9.54)

VB if (7)) € D3 UDy

------ (0.25,0.75) — (0.2,0.5) ----- (0.5, 0.2) memem (0.25,0.75) — (0.2,0.5) ----- (0.5,0.2)

Figure 9.4: Left: The comparison of all specific types of the Finslerian indicatrices (the colour-coded
limacons) centered at the origin of the coordinate system y'Oy? on the planar (n,7)-slope given by
z = x/2, under the action of GT (indicated by black arrows) of constant force ||GT||;, = 0.49; t = 1.
The steepest downhill direction is indicated by the negative axis y'. Right: All (n,7)-indicatrices
(black) are located between the boundaries consisting of MAT (the lower part, green) and CROSS
(the upper part, red), i.e. the maximum range, as well as ZNP (the upper part, blue) and RIEM
(the lower part, white), i.e. the minimum range. The MAT and CROSS indicatrices intersect each
other in the points @Q; and @}, which correspond to the directions of the self-velocity u: Opar €
{77.2°,282.8°} and Ocross € {102.8°,257.2°} or, equivalently, the directions of the resultant velocity
vyi: 0 € {77.2°,282.8°}, respectively, and ||vy;|[n ~ 1.108, where ||ul|, = 1. The ZNP and RIEM
indicatrices intersect each other in the points Q2 and @Y%, which correspond to the directions of the
self-velocity u: Orrpn € {75.8°,284.2°} and 0z np € {104.2°,255.8°} or, equivalently, the directions
of the resultant velocity v;: 6 ¢ {75.8°,284.2°}, respectively, and ||v,;||, = 1.
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We compare all specific types of the Finslerian indicatrices considered in our study in Figure
(left), i.e. ZNP, MAT, CROSS, RIEM, SLIPPERY, S-CROSS and three new cases coming
from the interior of the problem square diagram S, i.e. (0.25,0.75),(0.2,0.5) and (0.5,0.2).
The force of the gravitational wind blowing on the planar slope under consideration equals
0.49, which is due to the conditions for strong convexity in the most stringent cases, i.e. MAT
and CROSS, where ||GT||;, < 0.5. Therefore, g < v/5/2 ~ 1.118, since ||GT||, = g/v/5 for
the ramp z = /2. Interestingly, the maximum range of an arbitrary (7, 7)-indicatrix in any
direction is created by MAT and CROSS as well as the minimum range by ZNP and RIEM.
Namely, all (n, 7)-indicatrices are located in between those boundaries; for the sake of clarity,
see Figure (right) in this regard.

Example 2. We consider a triple Gaussian bell-shaped hill &3 given by the function

z = ZEl,fL’Q

NH

> 1 3
Z (k+1)e P = ie_pl + Ze_m +e P,
k=1
where for simplicity, we used 21 and x5 instead of ! and 22, respectively, and px = pr (1, 72),
k=1,2,3, with
pr=(r1 =1+ (22 + 1%, po= (21 +1)>+ (22+1)* ps=af+ (x2—1)%

According to [13], the gravitational wind acting on &3 is now

a — .
GT = q+ — (fm t oy - > IIGT | :g\/z, with (9.55)

3
1 3
ZZ k+1 ) pre 2pk+2(pl+p2 4e (p1+pz)_|_3(p2_|_p3 )e_(”2+”3)+2(p1+p3—5)e_(p1+p3).
k=1
Let us denote the maximum value of the function A(z1,x2) = 7 5 by m, considering, for
example, z1,72 € [-3,3] (m =  max ]A(iL’l,ZCQ)). Making use of a mathematical soft,
r1,22€[—3,3

an approximate value for m is 0.653 which is achieved at (z1,z2) ~ (0.652,1.272). Thus,
for x1,20 € [-3,3], [|GT||r, < max ]HGTHh ~ 0.653g. The rescaled magnitude of the
3

x1,22€[-3,
acceleration of gravity g needs handling with greater care to ensure that the geodesics will be

indeed optimal in the sense of time. According to Theorem , the indicatrix of the (1, 7)-
slope metric an on the entire triple Gaussian bell- shaped hillside &3, with x1, x5 € [—3, 3], is
strongly convex for any (n,7) € S if and only if 9 < 5063 ~0 653 ~ 0.766. Nevertheless, by using
the general condition ||GT||;, < by, where by is defined in ([9.33), it is immediate to verify the
following results.

Lemma 9.3.9. The indicatriz of the (n,n)-slope metric Fnﬁ 1s strongly convex on the entire

surface B3, with r1,x9 € [—3,3] and m = 1rna[x3 3]A(x1,x2), if and only if g < d2(n, M),
T1,L2€|—3,
m(ll,f)y lf (777 ﬁ) S Dl U DQ

where 62(n,7) =

ma Zf (777 77) € D3 U Dy
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Figure 9.5: Left: On &3 the time fronts centered at (0,0) for the cases: MAT (green), ZNP (blue),
RIEM (white), SLIPPERY (with n = 0.7, magenta), S-CROSS (with 7; = 0.8, yellow), CROSS (red)
and (0.7,0.8)-slope (black), as well as the related time geodesics (dashed colours, respectively), where
t = 1 (top left) and ¢t = 2 (bottom left; in addition, (0.7,0.8)-case for ¢ = 1); § = 0.76. The time
geodesics are drawn with a step of Af = 7/8 (16 time geodesics) for ¢ = 1 and Af = 7/4 (8 time
geodesics) for ¢ = 2. The action of the gravitational wind is indicated by black arrows. Right: The
evolution of the unit time front on the slippery slope of the surface &3 with respect to variable force
of gravitational wind (due to changing the rescaled acceleration of gravity g), where g € {0.76 (black),
3 (magenta), 5 (orange), 7.65 (yellow)}. The initial point is (1,0) and the traction coefficients are
fixed, i.e. n = 0.7 and 7 = 0.8. The corresponding time geodesics in the initial setting (g = 0.76) are
presented in dashed black and drawn with a step of Af = /8 (16 paths).

Now, we can write the ﬁ'n;,—geodesic equations which correspond to 3. According to

Theorem and Lemma [9.3.8 the time geodesics v(t) = (x1(t), z2(t)) on the (n,n)-slippery
slope of the surface &3 are provided by the solutions of the ODE system

20; T ~ ~ ~ 2f. T ~ ~ . _.
i+ fa,r00 + i [Q(TOO + 2a2Rr) + a!)ro} + —fll [W(rog + 2a2Rr) + aHTO] —2a°Rrt = 0,
« q
(9.56)

i=1,2, where O, R, 2, Il and ¥ are given by , q by , r’, 7, ro and rog by
with z1 and z instead of z' and 22, respectively, and everywhere in , x1 = x1(t),
T9 = X9 (t)

In order to compare all types of the slippery slopes on &3 with z1,29 € [—3,3], the
strong convexity conditions for the most restrictive cases, i.e. CROSS and MAT require that
g < 0.766. For example, we consider time geodesics and time fronts for ¢ € {1,2} for the case
n = 0.7 and 7j = 0.8 on the surface &3, where g = 0.76 which corresponds to ||G”|;, < 0.5. The
graphical outcome is presented in Figure[9.5] left-hand side. Nevertheless, the strong convexity
condition implies ||GT|;, < 5 for the (0.7, 0.8)-slope. Thus, the maximum value of the rescaled
gravitational acceleration can be relaxed, that is, g < ﬁ ~ 7.658. Furthermore, the effect
of a variable gravitational wind force by changing the rescaled acceleration of gravity g on
behaviour of the unit time front, is pointed out on the slippery slope of & in Figure [9.5], right-
hand side, where the initial point is located now on the hillside, i.e. (1,0) and both traction
coefficients are fixed, i.e. n = 0.7 and 77 = 0.8. The related unit time fronts are presented for
g €{0.76 (black), 3 (magenta), 5 (orange), 7.65 (yellow)}.
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(B-ii) The evolution and development
plans for career development

Based on the results presented in (B-i) and also the ones obtained so far by the author, in
this chapter we attempt to outline a few future research directions and career perspectives
which we aim to develop.

(B-ii).1 Future research directions in complex Finsler geometry

We compile a list of the main problems we plan to focus on in the near future in the complex
Finsler topic.

The study of the complex Landsberg spaces is yet to be exhausted. Lots of characteriza-
tions for both generalized Berwald and complex Landsberg spaces were presented in Chapter
2. However, some of the theoretical results are not sufficiently supported by examples. So far,
it is known that every Kéhler or Kahler-Berwald metric is necessarily a complex Landsberg
metric, but whether there exists a complex Landsberg metric (non-pure Hermitian), which is
neither generalized Berwald nor Kéahler, is an open problem which can be called by analogy
with the real case a unicorn problem. To the best of our knowledge, although a few geometers
[81 82 10T, 134, [145] [146] mentioned our results from [26], a solution for this complex version
of the unicorn problem has not yet been found.

In the context of Chapter 2, as we already pointed out at the end of Section 2.2, it makes
sense to also define and investigate a new class of complex spaces, for example weak Landsberg
spaces, which hold the following relation between the horizontal coefficients of Rund and
Berwald connections

C
Lip = Gy

This new class of complex Finsler spaces generalizes the complex Landsberg spaces and more-
over, it can be exemplified by the Wrona metric, given explicitly in (2.3)), which is neither
complex Berwald nor G-Landsberg.

The study of the projectively related complex Finsler metrics presented in Chapters 3
and 4 can be further extended in at least two directions: complex Finsler metrizability and
projective metrizability, drawing on ideas from the real topics [59] 60, [57].

Let us consider a complex spray S (i.e. S = nk% — 2G¥(z, n)%, with the coefficients
G*(z,n)) which does not depend on the fundamental function of a complex Finsler space
(M, F). A regular curve c: [0,1] — M, c(t) = ('(t)), i = 1,n, is called geodesic for S, if it is
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a solution of the system of second order ordinary differential equations (SODE),

d?z . dz .
W+2GZ(Z,E) :0, z:l,n,
with %i = 1" (see [I16]). Notions of Finsler metrizabitity can also be introduced in the

complex Finsler topic. Namely,

Definition The complex spray S is complex Finsler metrizable if there exists a complex

Finsler function F which satisfies S (7)) = 0, where 7y = g—# Moreover, S is weakly Kdhler
Finsler metrizable if it is Finsler metrizable and S (n) = gTL,C

We note that the condition S (n) = % is equivalent to the weakly Kéhler condition for F (i.e.

0% = ngic')%L =0, F2 = L ). Also, it is worth mentioning that if the spray S is weakly Kihler
Finsler metrizable its geodesics are solutions of the Euler-Lagrange equations with respect to
L (see [125, [116]) and thus, it is the corresponding spray of the weakly Kahler Finsler metric
F'. Moreover, the weakly Kéhler Finsler metrizability problem can also be viewed as an inverse
problem of the calculus of variation on complex manifolds restricted to weakly Kéhler Finsler
metrics L. More precisely, this is to find the necessary and sufficient conditions (of Helmholtz
type) for the existence of two multiplier matrices (g,;(2, %)) and (gi;(z, %)) such that

257 - 2,9 )
gij(z dz)<d z 426Gz dz)> gz dz)<d z +2G](z,dz)> _i(@L) OL

v’ \ de? " dt Tdt’ \ dt? oni) 8z
i = 1,n, for some complex Finsler functions F.

The notion of projective metrizability appears naturally in the context of Chapters 3-4
and the above discussion. Under assumption that the coefficients G* of the complex spray
S are (2,0)-homogeneous and by an orientation preserving reparametrization of (SODE) (i.e.
t = t(s) with % > 0) such that ¢(s) = ¢(t(s)) is a geodesic for another (2,0)-homogeneous
complex spray S with the coefficients G¥, we say that the homogeneous complex sprays S and
S are projectively related. This is equivalent to the existence of a (1,0)-homogeneous function
P(z,m) on T"M such that

GF = GF + P (z,n)n*.

Therefore, a more general geometry of the projectively related complex Finsler sprays can
be developed. In particular, we say that a complex homogeneus spray is projective Finsler
metrizable if it is projectively related to a weakly K&hler Finsler metrizable spray.

Inspired by a question of Z. Shen in [128, p. 184|, another problem related to Chapter 4
that still can be extended is whether it is possible for two projectively related complex Finsler
metrics to have the same hh-curvature tensor. As we proved in Theorem for Kéahler-
Berwald spaces (non-pure Hermitian) with vanishing holomorphic curvature, the answer is
positive. Thus, it is natural to find an answer for non Kéhler-Berwald spaces.

The Zermelo navigation problem, presented in Chapter 5, on the imaginary "sea" given
by a pure Hermitian manifold (M, h) under action of a vector field (weak wind) W (i.e.
W = Wj% and [[W||n < 1) is not even close to being finished. It could be interesting to
consider W-Zermelo deformation when W is a gradient vector field (i.e. W = h™ a‘é‘ﬁn %,

where w : M — R is a smooth real valued function on M) and to study the behaviour of
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some properties of a Hermitian metric h, e.g. Kéhler property and the holomorphic sectional
curvature, by the proposed Zermelo deformation. Also, bearing in mind Matsumoto’s slope-
of-a-mountain problem, a Hermitian approach could be tried here. For example, we set a
pure Hermitian manifold (M, h) as an imaginary slope of a mountain with a gradient vector
field W = hmiaaz%:’n%. Let the vector field u € T,M be the self-velocity, under assumption
that ||u|[, = 1 as it is usually set up in the standard formulation of the Zermelo navigation
[45]. Under the effect of the active wind Proj, W, the resultant velocity is v = u+Proj, W
and the background pure Hermitian metric h is deformed into an R-complex Finsler metric of
Matsumoto type because of its real homogeneity. This is F(z,7n) = aa—fﬁ, where o = hl-jniﬁj

and 8 = —Re h(n, W).

(B-ii).2 Future research directions related to navigation prob-
lems

The general model presented in Chapter 9, which led to the navigation problems P, 7, covering
the whole square S (Figure and making close links between Matsumoto’s slope-of-a-
mountain problem and Zermelo’s navigation problem under a gravitational wind, is currently
handled. This is only the foundation for the powerful tool represented by (7, 7)-slope metrics
that provide a big family of general («,()-metrics for which the study of their geometric
properties is of particular interest (the flag curvature, Ricci curvature, the projective flatness,
Einstein conditions, Douglas conditions, etc.). It seems reasonable to pursue several lines of
investigation:

e Since the gravitational wind G” is a gradient vector field, the differential 1-form 2,
defined in (7.14), is closed and thus each (7, 7)-slope metric becomes a candidate to be
a Douglas metric on an n-dimensional manifold with n > 3 (see [140, Lemma 4.1]).

e Taking into consideration the paper [124] Theorem 2|, an interesting study of the
geodesics of the Finsler spaces with (7, 7)-slope metrics can be developed when the
gravitational wind G’ is an infinitesimal homothety, this is Lgqrh = oh, where o is a
constant. Also, in this case it could be interesting to see if it is possible to obtain a
classification of (n,77)-slope metrics of constant flag curvature.

e In the more general case when Lgrh = o(x)h (i.e. GT is conformal to h or 3 is conformal
with respect to «), an interesting problem is to study if (7, 77)-slope metrics exist that
are projectively flat or projectively related to a [155].

e We remark that the study of the navigation problems P, s, described separately and
particularly in Chapters 7 and 8, and then unified in Chapter 9, can still be expanded by
assuming that the slippery slope is non-uniform. This means that either only one or both
traction coefficients (cross-traction coefficient n € [0, 1] and along-traction coefficient
n € [0,1]) could depend on the position x € M, namely n = n(x), 7 = 7(z) € [0,1]. By
varying one or both traction coefficients, the resultant metrics will be more extensive
than the general (o, 3)-metrics, namely Fyi(x,y) = adni(||GT|[7,5,1(x)) or Fyi(z,y) =
adyi([|GT|[7, 5,7(x)) or Fyi(z,y) = adyq(||GT|7, s, n(x), 7(2)), because of the fact that
5),777 depends in addition on a third variable or on two more variables.
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e Another potential extension of the navigation problems P, 5 may occur if we consider a
varying self-speed ||u||;, of a craft on a slippery slope (M, h), this is ||u||;, = f(x), where
f is a smooth function on M and f(x) € (0, 1], for any = € M (see [93]).

An interesting generalization of Matsumoto’s slope-of-a-mountain problem, which we plan
to develop in the future, is Matsumoto’s slope-of-a-mountain problem with wind, mentioning
that the Matsumoto metric has also been applied to a geometric description of the wildfire
spread structure [105, 88]. In [88], a model for wildfire propagation with wind and slope is
approached. However, we subsequently try to point out our idea for a perspective study of
Matsumoto’s slope-of-a-mountain problem with wind and also to answer the question formu-

(6]

lated in [44] p. 202| regarding the Matsumoto metric F' = fzﬁ in dimension two. Namely,

(e}

Our discussion also raises a tantalising question: if the wind were blowing on the
slope of a mountain, would the indicatriz of the resulting F be a rigid translate of
the limacon?

We consider the navigation data (F, W) on the Finsler manifold (M, F'), where F' = oﬁjﬁ
is restricted to |G|, < 3 (see our notations ) and the vector field W, which represents
the wind in the sense of Zermelo’s navigation. If we apply Proposition [6.1.1], we can provide a
new Finsler metric, as well as the necessary and sufficient conditions for the strong convexity

of its indicatrix, as the unique positive solution F' of the equation

for any (x,y) € T My, because of F(x,—W) < 1.

According to [61, p. 10 and Proposition 2.14|, we note that the addition of the wind W,
blowing in arbitrary directions, generates a rigid translation to the strongly convex indicatrix
Ir provided by v = u + Gpsar (see the first step in Section 7.2.1 with n = 1). Thus, also
in dimension two, the convex limacon (i.e. it holds ||GT||, < ) is only rigidly translated.
Moreover, the condition F'(z, —W') < 1 assures that for any x € M, y = 0 belongs to the region
bounded by the obtained indicatrix I; and is essential for the uniqueness of the solution of
the equation (B.1) (see [61, p. 10 and Proposition 2.14|). Further on, the investigation of the
restriction F(z,—W) < 1, for F = oﬁQgﬁ with ||GT||, < 1, leads to the following necessary
and sufficient conditions:

1
MW, GT) < [[W]n(1 = [[W]l) and [|GT]ln <5 (B2)

for the strong convexity of the indicatrix I;. Following (B.1), the deformation of the Mat-

sumoto metric F' = ﬁ by the wind W restricted to (B.2) is the Finsler metric F which
satisfies

F (V ylIZ — 2h(y, W)E + [[W[[2F2 + h(y, GT) — h(W, GT>F) — [yllZ — 2h(y, W)F + |W|2F2,

where F' is evaluated at (z,y). The last relation is the main ingredient to arrive at the spray
coefficients corresponding to the Finsler metric F and then to write the ODE system 1}
which provides F-geodesics. Since along any regular piecewise C'®-curve v, parametrized by
time (i.e. the time in which a craft or a vehicle goes along ) that represents a trajectory in
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Zermelo’s problem, it is satisfied the equality F(vy(t),%(t)) = 1, by F-geodesics one can get
the time-minimizing paths when the wind is blowing on the slope of a mountain. Beyond the
above meaning of the Finsler metric F provided by the last equation, an important direction
is also the study of different geometric properties of F (the flag curvature, Ricci curvature,
the projective flatness, Einstein conditions, Douglas conditions, etc.).

Bearing in mind the aforementioned perspective that Matsumoto’s slope-of-a-mountain
problem with wind is solvable, a natural question that arises is how to navigate on a slippery
slope of a mountain in the presence of a wind in order to come from one point to another point
in the shortest time? The answer of this problem represents a significant future direction of
study that has to include the solution of the Matsumoto’s slope-of-a-mountain problem with
wind. More precisely, let us consider for example the slippery slope of a mountain represented
by the n-dimensional Riemannian manifold (M,h), n > 1, with the gravitational wind GT
and the cross-traction coefficient n € [0, 1]. The time-minimal paths on (M, h) in the presence
of an active wind G, defined by and under the influence of a arbitrary wind W (i.e. with
the equation of motion v = u + G, + W) are the geodesics of the Finsler metric F; which
satisfies

Fo {UIWIR + Qu)F2 = 2y, W) + (1 — )hly, GTFy + |lyl2}
— (W13 + Q) F2 = [2h(y, W) + (2 = n)h(y, GT)Fy + lyllz,  (B.3)

where F,, is evaluated at (z,y), under the restrictions

IWIIE + Q1 < /W7 + Q2 and [|GT || < bo, (B4)

with Oy = (1= n)[2h(W,GT) + (1 = n)|G[[F], Q2 = (2—n)h(W,GT) + (1 —n)[|G[}
and either by = 1 if n € [O, %] or bg = % ifne (%, 1]. In particular, if n = 1 in (B.3) and
(B.4), one can extract the Finsler metric F' which solves the Matsumoto’s slope-of-a-mountain
problem with wind.

(B-ii).3 Further perspectives

A Dbrief list of the author’s background is presented below:

Research publications. After obtaining a Ph.D. degree in Mathematics (2005), among the
research papers that have been published or accepted for publication, worth mentioning are:

e §8 published in the QllZ] journals (such as: 2 in Nonlinear Analysis - Theory Methods
and Applications |10}, 1], 2 in Nonlinear Analysis - Real World Applications [12| 23],
1 in Journal of the Franklin Institute-Engineering and Applied Mathematics [17], 1 in
Journal of Optimization Theory and Applications [16], 1 in Annual Reviews in Control
[19], 1 in The Journal of Navigation [I§]),

e 10 in the Q2 journals (such as: 3 in Journal of Geometry and Physics [23, 26], B1], 3
in Results in Mathematics [9] [I5, 2], 2 in Differential Geometry and its Applications
[14, 24], 1 in Periodica Mathematica Hungarica [20], 1 in Acta Mathematica Scientia

[28]),

"According to the ranking AIS lists, the last five editions (2020-2024); Ql-red area, Q2-yellow area;
https://uefiscdi.gov.ro/scientometrie-reviste
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e 1 accepted for publication in The Journal of Geometric Analysis (Q1 journal), [13].

Financial support. The research was supported by: the grant 2013/09/N/ST10,/02537
financed by the Polish National Science Center, Jagiellonian University in Krakow (2016-
2017), the postdoctoral program POSDRU/89/1.5/S/59323 financed by the European Social
Fund of the Romanian Goverment (2010-2013), Transilvania University of Bragov grant (2012)
and the grant CNCSIS A 424/2006.

Didactic activities. During the last 10 years - advisor for 34 bachelor or master theses in
Differential geometry and Linear algebra.

The overall aim is to extend and enhance the research significantly in the aforementioned
directions as well as to explore new avenues that may contribute to confering a higher academic
position to the author of this thesis. The results outlined above provide supporting evidence
that this objective is both realistic and achievable.
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