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Main objectives

@ To contribute to the development of complex Finsler geometry, addressing
some aspects related to

e complex Landsberg spaces,
e projectivity,

e holomorphic curvature,

o deformation.

© To extend Matsumoto's slope-of-a-mountain problem through a general model
of time-optimal navigation based on Riemann-Finsler geometry, handling

e one-parameter models,
e two-parameter model.
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Plan of presentation
General structure

© Part |. Different aspects of complex Finsler geometry

Chapter 1. Rudiments of complex Finsler geometry
Chapter 2: On complex Landsberg spaces

Chapter 3: Projectivities in complex Finsler geometry
Chapter 4. Projective invariants of a complex Finsler space
Chapter 5. Zermelo's deformation of Hermitian metrics

@ Part Il. Extensions of Matsumoto’s slope-of-a-mountain problem

o Chapter 6: Rudiments of real Finsler geometry
o Chapter 7: Time geodesics on a slippery slope under gravitational wind
o Chapter 8: The slope-of-a-mountain problem in a cross gravitational

wind
o Chapter 9: A general model for time-minimizing navigation on a moun-
tain slope under gravity

© Further research: directions & perspectives
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Part | Different aspects of complex Finsler geometry

General view

Complex Finsler geometry is extremely beautiful (S. S. Chern, 1996)

Aim: to introduce general themes from real Finsler geometry into complex Finsler
geometry.

Approached problems:

@ Detailed study of the complex Landsberg and generalized Berwald spaces;
particular cases of complex Landsberg spaces (Ch. 2);

@ Projectively related complex Finsler metrics; complex versions of Rapcsdk's
theorem; a complex Finsler solution of Hilbert's fourth problem (Ch. 3);

@ Exploration of the projective curvature invariants of Douglas and Weyl type;
complex Finsler spaces of constant holomorphic curvature; complex Douglas
spaces (Ch. 4);

@ Zermelo’s navigation problem on a Hermitian manifold; how some properties
of a Hermitian metric are affected by the Zermelo deformation under action
of some special winds (Ch. 5).

C. N. Aldea Habilitation Thesis



Part | Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

Main refs.. M. Abate & G. Patrizio (1994), G. Munteanu (2004)
@ M - n-dimensional complex manifold;
@ z=(zF) € M, k =T1,n - the complex coordinates in a local chart;

@ TRM ~» TcM =T'M & T" M, where T'M - holomorphic tangent bundle,
m:T'M — M; T" M - antiholomorphic tangent bundle;

@ T'M is a complex manifold ~+ the local coordinates u = (z*,n").

Definition

(M, F) is a complex Finsler space, where F' : T"M — R¥ is a continuous
function satisfying the conditions:

i) L = F2 is smooth on T/M = T'M\{0};

i) F(z,m) > 0, for all F(z,n) € T'M; the equality holds iff n = 0;

i) F(z,A\n) = |A|F(z,n), YA € C, X #0;

iv) the Hermitian matrix (g;7(z,7)) is positive definite, where g;; = % the
fundamental metric tensor.
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Part | Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

o To(T'M) = T'(T'M) & T"(T'M);
o VI'"M =kerm, C T'(T'M) - the vertical bundle; V,,T7"M ~» {%};

@ A complex nonlinear connection (c.n.c.) is a complex subbundle of T"(7" M),
such that T(T"M) = HT'M & VT'M;

o H,T'M ~ {55 = 2 Ng%}; NJ(z,n) - the coefficients of the (c.n.c.);

8zF

o {4 = (;Zik,é'% = a%k} - the adapted frame on T, (T’ M) of the (c.n.c.);

@ By conjugation ~» the adapted frame {0z, 0z} on T/ (T'M);

o {dz",0n" = dn* + Njdz7} and {dz",07"} - the adapted dual frames;

@ A section on T"(T"M), locally expressed as S = n* % — 2G*(z,1)0y, is a
complex spray, where G* denote the spray coefficients;

@ Chern-Finsler (c.n.c.) with the local coefficients

i i Ogim
Nj = g™ s (1)

@ ~> 0y is w.r.t. Chern-Finsler (c.n.c.).
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Part | Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

@ Chern-Finsler connection D: i) of (1,0)-type (i.e. D;xY = JDxY,V X
section on T'(T" M), V'Y vertical vector field) ii) metrical w.r.t. the Hermitian

structure; Locally, CFT = (NZ L;k, C;k,C ), where

N} =Ly, Li.=g"6eg; = 0;Ni, Chy. = g" gy, =5, =0. (2

,

@ Complex Cartan tensors: C;;;, = 3&% and Cj5; = 8kg”,

° R;Ek = —0;Li). — (0;N})Ci, denote the hh - curvatures coefficients of D;

@ Holomorphic curvature of the complex Finsler space (M, F') in direction 7

2

Kr(z,m) = 7

o (M, F) is strongly Kahler iff T}, = 0;

o (M, F) is Kahler iff T/, 7/ = 0;

@ (M, F) is weakly Kahler iff ¢ llean =0, where T, = L%} — Lj;

o strongly Kahler = Kahler [B. Chen, Y. Shen, Chin. Ann. Math. 2009];

@ weakly Kahler = Kahler for pure Hermitian metrics, i.e. 95 = gﬁ(z);

Rrjkhn 7’ 77 77 where Rfjl_ch = R;’Ehgﬁ' (3)
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Part | Chapter 1: Rudiments of complex Finsler geometry

1.2 Connections on a complex Finsler space

@ Chern-Finsler (c.n.c.) determines a complex spray with the local coefficients

26" = N;nj; (4
® G'induce a (c.n.c) by Ni= d,G' called canonical (c.n.c);

[&
@ 0y is related to canonical (c.n.c.), i.e. 5k— =2 NJ di;
@ W.r.t. the canonical (c.n.c. ) we consider two I|near connections:
i) of Berwald type BT = (Nl G G;.E, 0,0) having the connection form
wi(z,m) = Glpdz* + G pdz", (5)
where Gy = Oy N} = G} and G’ = Op N}

C

ii) of Rund type RT" = (Nl L;k,L -,0,0), where

G Tir & ¢ : - c c
Ly = %gh(iskgﬂ +0;9,7) and L;‘E = %911(5159]-2 — 5Zng).
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Part | Chapter 1: Rudiments of complex Finsler geometry

1.2 Connections on a complex Finsler space

@ RT is only h-metrical and BT is neither h- nor v-metrical;
® 2G' = Njiy = NjnJ = Giyn/n® and §; = §; — (N} — NF)y;

c.oc ¢ ) ¢ )
o If (M, F)is Kéhler = N =N}, 0p= 6k, L~ =0, L}, = Li) = Gi.

J

Lemma [N.A., G. Munteanu, J. Geom. Phys. 2012]

For any complex Finsler space (M, F'), the following statements hold:
N i =k Q.
i) G = 0;
ii + + G™ g1, + G gy = —C :

) gwfh ghfl\sl rhiL ri9h w10
i) 2(0,G")gir = C 5 = Corpo;

) oFh |0 o
iv) C j|51c =0h (g"‘?k) + (8hGék)gg + (ahGﬁ)gimQ
ij

ijh . ) T )
v) Cz’?ﬁBk = 0y (gij}fk) + (OnGl)ais + (OnG5)gim + G :Ci1 — G Cizm,
B

where | is h-covariant derivative with respect to BI'.
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

@ N. Aldea, G. Munteanu, On complex Landsberg and Berwald spaces.
J. Geom. Phys., 62(2) (2012), 368-380.

Definition

Let (M,F) be an n-dimensional complex Finsler space. (M, F) is called
(&

a complex Landsberg space if G;k = L;‘k'

@ Kihler spaces offer an asset family of complex Landsberg spaces.

Let (M, F) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M, F) is a complex Landsberg space;
ii)C 5 =0;
tFh |0 i i
iii) 2(6}1G;k)gif = G%ijh = G?}C}th =C 5 +C 5;
jTh |k kTh|j

@
2 _ mo_ (M.
iv) gﬁ?k = (ij ij).glm-
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

Definition

Let (M,F) be an n-dimensional complex Finsler space. (M, F) is called
a G-Landsberg space if it is Landsberg and the spray coefficients G are holomorphic
with respect to 7, i.e. 9;G* = 0.

Let (M, F) be an n-dimensional complex Finsler space. Then the following asser-

tions are equivalent:
i) (M, F) is a G-Landsberg space;
c

ii) G;k = Lék(z);

i) C 5 =0andC 5 =0;
IFh ] 0 j0h |0

c . ;
iv) g 5 :L?}Cgim and 0;G* = 0.
ij |k
v)C 5 +C 5 =0andC _
JTh |k kTh | j rih
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

Definition
Let (M,F) be an n-dimensional complex Finsler space. (M, F) is called

a strong Landsberg space if C » =0and C 5 =0.
ITh |0 jTh |0

Let (M, F) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M, F) is a strong Landsberg space;
ii) g i (2) and 0;G* = 0;
i) C 5 =0 and 8;G' = 0;
IFh | k
iv)C 5 =0.

Let (M, I) be an n-dimensional complex Finsler space. (M, F') is called a G--Kahler
space if it is Kahler and the spray coefficients G* are holomorphic w.r.t. 7.
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

® (M, F)is complex Berwald iff L, (z) [T. Aikou, Contemp. Math., 196, 1996];

) L;k(z) & leh“g =0« leh\l% =0.

(M, F) is Kahler-Berwald space if and only if it is Kahler and either Cy.;, = 0 or
Cirnj = 0.

Let (M, F) be an n-dimensional complex Finsler space. Then the following asser-

tions are equivalent:

i) (M, F) is a G-Kahler space;

iii) G%, = L% (2);

iv) (M, F) is a Kahler-Berwald space;

v)g 5 =0and Gt = 0.
ij |k
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

Definition
Let (M, F') be an n-dimensional complex Finsler space. (M, F') is called generalized
Berwald if the horizontal coefficients G;k of BT depend only on the position z.

Let (M, F) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:

i) (M, F) is generalized Berwald;

i) G* are holomorphic with respect to n;

iif) BT is of (1,0)-type.

If (M, F) is a complex Berwald space, then the space is generalized Berwald.

@ generalized Berwald = weakly complex Berwald [C. Zhong, Diff. Geom. Appl. 2011].
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Part | Chapter 2: On complex Landsberg spaces

EIES

@ Complex version of the Wrona metric ~ generalized Berwald

_|1PQl _ [nl*

P = iGa) = REmP = | <mn > P ©
with (z,1m) € Q@ ={(2,7) € C" x C" | z # An, A € C}, where P, Q € C",
O is the origin of C", H is the projection of O on the line PQ.

~ G' =0 and L;k # Gy ~ (6) is a generalized Berwald metric which is
neither G-Landsberg nor Berwald; it satisfies L, 7/ = G%.7/.
@ Complex version of the Antonelli-Shimada metric ~ complex Berwald
1
FES = LAS(ZJU;?%G) = 620 (|77‘4 + ‘9|4) : ) with 7750 7é 07 (7)

on a domain D from T'M, dim M = 2, such that its metric tensor is
nondegenerated. The non-zero coefficients:
oh= 12 =227 and 1, = 12, = 229

0z ow

depend only on z and w. Las is not G-Landsberg (L}, # G%,).
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Part | Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

Theorem [N.A, G. Munteanu, Diff. Geom. Appl. 2012]

Let (M, F) be a complex Finsler space that satisfies the weakly Kihler and gener-
alized Berwald conditions. Then (M, F') is a Kahler-Berwald space.

complex Landsberg spaces

Kahlerspaces
Kahler-Berwald
spaces

strong-Landsberg,

spaces

generalized Berwald spaces

Figure 1: Inclusion diagram

C. N. Aldea Habilitation Thesis 16



Part | Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics

D N. Aldea, G. Munteanu, Projectively related complex Finsler metrics.
Nonlinear Anal. Real World Appl. 13(5) (2012), 2178-2187.

In Abate-Patrizio's sense [M. Abate, G. Patrizio 1994], a geodesic curve is provided
by

Dy 7w T" = 0°(T", Th), (8)
where T" is the horizontal lift of the tangent vector along the curve and
0" = g™ gip(L | — L7 )dz' NdZ’ @ 6. (9)

The equations of a geodesic z = z(s) of (M, F'), with s a real parameter, can be
rewritten as 5
d°z' i dz ¥ %

‘ ds? +2G (Z(5)7 %) =40 (Z(S)v d8)7 (10)
where 2%(s), i = 1,n, are the coordinates along of the curve » = z(s) and
0*k = 2g7% 5; L.
@ 0*'=0iff (M, F) is weakly Kahler.

@ 0* are (1,1)-homogeneous w.r.t. 1) and 7 respectively, i.e. (9x0*)n* = 6*
and (9;0*") 7k = 6.
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Part | Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics

Let F' be another complex Finsler metric on the underlying manifold M.

The complex Finsler metrics F and F on manifold M are called projectively related
if they have the same geodesics as point sets.
Let F and F be complex Finsler metrics on M. Then F and F are projectively

related if and only if there is a smooth function P on T'M with complex values,
such that

G'=G' + B' + Py, (11)
where B! = 1(6*" — 6*7), i =T,

S

@ (11) - projective change

Let F and F be complex Finsler metrics on M. F and F are projectively related if
and only if there is a smooth function P on T'M, such that G' = G' + (0 P)n*n',
— (0 P)7*n* and (O P)n* + (8 P)7* = P, for any i =1,n.
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Part | Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ~» Rapcsék’s theorem

Let F and F be two projectively related complex Finsler metrics on M. Then, F
is weakly Kahler if and only if I is also weakly Kahler. In this case, the projective
change is G' = G + Pn', where P is a (1,0)-homogeneous function.

Let L and L be complex Finsler metrics on M. The spray coefficients G’ and G'
of the metrics L and L satisfy

G =a"+ lg“ [af(aki)n’“ + 2(3;@1)(3@] ,i=1,n. (12)

|

Let L and L be complex Finsler metrics on M. Then, L and L are projectively
related if and only if

% [6;(5@)77’“ + 2(8,:@1)(8@] = P(8:-L) + Bigir, r = I,m, (13)

with P = S [(8, L)n* + %1 (; L))
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Part | Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ~» Rapcsék’s theorem

Let L and L be complex Finsler metrics on M. Then, L and L are projectively related if
and only if

. ) N ..
Or (8 L)n™ + 2(0-G")(O,L) = f(‘skL)nk(BFL)’ (14)
1 ..

BT:_EQ*Z(BIL)nrv 7’:1,71/,
1 5 .

P =—[(6,L)n* + 60 (8;L)].
2L[( kL) (0;L)]

Moreover, the projective change is G' = G* + 3= 6k L)n*n’.

Let L be a weakly Kahler complex Finsler metric and L be another complex Finsler metric,
both on M. Then, L and L are projectively related if and only if L is weakly Kihler and
8= (81, LY)n® + 2(8-GY) (8, L) = 2P(d=L), r =1, n, (15)

P= SpL)n.

1
ol

Moreover, the projective change is G* = G + Pn' and P is (1,0)-homogeneous.
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Part | Chapter 3: Projec: in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ~» Rapcsék’s theorem

Let I' be a generalized Berwald metric and F be another complex Finsler metric, both
on M. Then, F and F are projectively related if and only if

. 1 1 .
Or (6, F)n* = f(5kF)77k(3fF)a B" = —59*1(3JF)77T, (16)
1 . L
P= F[(&cF)ﬂk + 07 (9, F)],

for any r = 1, n. Moreover, the projective change is G* = G* + %(Jkﬁ’)nkni and F is
also generalized Berwald.

Let F' be a Kahler-Berwald metric and F be another complex Finsler metric, both on M.
Then, F and F' are projectively related if and only if F' is weakly Kahler and

8r(6xEY* = P(3:F), r=T,m and P — %(5@)77’“. 1)

Moreover, the projective change is G' = G* + Pn' and F is Kihler-Berwald.
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Part | Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ~ Hilbert's fourth problem

Let L be the complex Euclidean metric on a domain D from C™ and L be another
complex Finsler metric on D. Then, L and L are projectively related if and only if

L is weakly Kahler and

G'= —=—n"n, i=Tn (18)

Moreover, L is Kihler-Berwald.

o (18) = G' = L 4hnky', i = Ton.
@ Examples of complex Finsler metrics which are projectively related to the
complex Euclidean metric:

) nf? + ¢ (1212l = |< 2,n >I?)

F? = 0 19
defined on the disk A" = {z eC, |zl <r, r= \/1/|€|} ccn.
~ (= ez i 1 9F k.

Trele2"T = FozF"T""
~> the metrics (19) are Kahler, pure Hermitian with Kz = 4e;

~» for e = —1, (19) provides the Bergman metric on the unit disk A™ = AT
C. N. Aldea Habilitation Thesis 22



Part | Chapter 4: Projective invariants of a complex Finsler space

4.2 Projective curvature invariants

@ N. Aldea, G. Munteanu, On projective invariants of the complex Finsler spaces.
Diff. Geom. Appl., 30(6) (2012), 562-575.

@ N. Aldea, G. Munteanu, On complex Douglas spaces.
J. Geom. Phys., 66 (2013), 80-93.

@ Key tool: Berwald type connection BT' ~ the canonical (c.n.c.);
@ Connection form of BT: wi(z,n) = ledz +G1 dz*;

@ The structure equation: dw! — wk A wj, = Q} with the curvature form:
Q= —7K’khdz Adzl — 7K’——dz Adzh 4 K'x Ldz28 A dz"
. . c
— Glyppdz® A o — G;E}—ldz AP — G;ﬁkdzk Aot + G;.mén’“ Adzl;

@ hh-, hh- and hh- curvature tensors:

Ky = 6th’k - 5kG§'h + Gé‘kth - Gé’thk:
C i C i I i I i
K;EE = (SEG;E — 5EG;'E + GjI}G; G le,
i _ £ C i I i 1
Kip, = 0nGip—05G, +GLGl, - GLGl
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.2.1 Curvature forms and Bianchi identities

@ huv-, ho- and hi- curvature tensors:
Gl = Gy, Gy = BpGie, Gig, = 8,61y

@ Bianchi identities: ‘ S
0nGign = OGligyr 0,Glpy = G | 8,G = Gl
OrGign = Gy DGy = 5 G, 0rGip = 0,Gly.
o 9*1 hOld: 9*1‘ k _— 0 e*i _ 9*2 9*1 —k _ 0*7, efz; ko 0
g*nﬂ 937’ 922; = 0’ 07,7 7’“ = 9?37 055n" =0,
9]:}1 9*17 ehgrmn = _29hgr’ _oh%r = ehi"r}?’
*J P A *J *J *J * —
Oy tr 1 =0 047 0™ = =05, 045 n™ =0, 0" n; =0.
@ Let F be a complex Finsler metric on M; F ~ G and 6*.

@ F and F are projectively related iff 3 P smooth on 7" M, such that
G'=G"+Vy and 0" =0 +Qn', i=1,n, (20)
= (O, P)n" is (1,0)-homogeneous, Q = —2(9; P)77"* is (0, 1)-homogeneous
and P=V — fQ
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.2 2 Projective curvature invariants of Douglas type

Sketch of proof
@ Differentiating in (20) w.r.t. n7, we get

o R (e o 1 & € 1 = N
G'=G'+ (07 -0 1)+m(Nll—N})n“—%(ell —0tYn', i=T,n.  (21)

@ Successive differentiations of (21) w.r.t. n and 7 yield

i 1 .
Gipn = G]kh F T[(ahD ik — Bhng)W + > (Djn — Djn)dil
(k.3,h)
i 1o sa S oxl o\ i Sl sl N i
P (9th :i;ﬂ - %[(ahgljk - 8h9ljk)n’ A Z (Gl*_jh - Gljh)(s;g]v
(4,k,h)
. ) 1 . . o )
Gign = et 710 Dra — 9 DER)n’ + (DiR = Dga)djl
L 5% i L xl Xl 5
+5(9ji;3 = 05kR) — %[(859“; — 950 Lk;)" + (055 — 0% %5,
; 1. . S o )
Gign = Gint 3 [(OnDg; — 9nDg;)n" + (Dg; — Dg;)85 + (Dgp — Dgp)ésl

G*i i Loa g5l _ 5 gl i gxl 51 ! st
+5 G5k = O5kn) = - [Bnbik; — n0fi;)n’ + (Bl - 07430k + (Biin — 631550,
(22)

where Dy, = Gikh' Dyr, = G;M and Dz = G:::I_ch are respectively, hv-, ho- and ho-
Ricci tensors.

C. N. Aldea Habilitation Thesis




Part | Chapter 4: Projective invariants of a complex Finsler space

4.2 2 Projective curvature invariants of Douglas type ~ complex Douglas space

jective curvature invariants of glas type

) ] . ) ) ) . 0 s 0

D;kh = G;’kh - %Jrl[(ahDjle + E(k,j,h) Djh‘sllc] - %{gﬁh - %[(ahgl*jk)nl + E(j,k,h) ez*jh%]}v
i i 1 S i i 1 i 1104 U y,i l_si

Digh = Gipn — a1 05 Drp)n® + Drgdjl — 5 {0735 — w[(OR07%,)n" + 0755 651%,

Dipn = Gipn = 731 (BnDr)n’ + Dy ;8% + Dy, 851 — 54674, — L1@n0))n' + 63,57, + 67, 8513
(23)
Definition
A complex Finsler space (M, F) is called a complex Douglas space if all of the
invariants (23) are vanishing.

If F'is Kahler-Berwald, then the projective curvature invariants of Douglas type
are vanishing = any Kihler-Berwald space is a complex Douglas space.

C. N. Aldea Habilitation Thesis 26



Chapter 4: Projective invariants of a complex Finsler space

Part |

4.2 2 Projective curvature invariants of Douglas type ~ complex Douglas space

Let F and F be projectively related complex Finsler metrics on M. F is a Douglas metric

if and only if F is a Douglas metric.

Let (M, F) be a complex Finsler space. (M, F) is a complex Douglas space if and only

if it is generalized Berwald with

By 1 A * 7 * 03
Ojkn = ;Kahazjlk)’? + Z 077101, (24)
(4,k,h)
9*1’ _ 1 8,9*l Q) e*l 61
kR = - LORIE)N" + 655731,
*14 1 Y. p*l Q) *l o1 *l o1

Okn = [OnO5p)n" + 615305 + 67, 551
@ We call generalized Kahler the complex Finsler spaces which satisfy (24).
@ Notation K* = "' — Lgriy'.

27
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.2 2 Projective curvature invariants of Douglas type ~ complex Douglas space

Let (M, F') be a complex Finsler space. (M, F') is a generalized K&hler space if and only
if the functions K* are homogeneous polynomials in nj and in 7] of first degree. Moreover,
the functions K* vanish identically if and only if the space is weakly Kahler.

Let (M, F) be a complex Finsler space. If * are homogeneous polynomials in 7 and 7
of first degree, then (M, F) is a generalized Kahler space.

o Examples Of generalized Kahler metrics are provided by the pure Hermitian metrics.
i 1 5 ; Og1m 14 i ni Ogim 99

- = qg.—- C——— 1 ZJrm J *1 __ mi lk -k

955 g”(z) = G72g Zjnn and 0™ = —g (‘Zk T ) .

@ The pure Hermitian metrics are complex Douglas metrics.

Let (M, F') be a complex Finsler space. (M, F) is a complex Douglas space if and only
if it is a generalized Berwald space and K* = p5,71"n°, where ¢y, are smooth functions
that depend only on z and Z.

C. N. Aldea Habilitation Thesis 28



Part | Chapter 4: Projective invariants of a complex Finsler space

4.2 3 Weakly Kihler projective changes ~ proj. curvature invariant of Weyl type

Let F' be a weakly Kahler Finsler metric. Then, the projective changes is
G =G+ Py, (25)
where P is a (1,0)-homogeneous and the weakly Kéhler property is preserved.
Assuming that F' is generalized Berwald =
@ F and F are Kihler-Berwald metrics;

Q@ Kij; =0, Ky, = —0; L%, and BRI, = K

1
jkh + Km

;;hnmcjz'ﬁ
© Ry = Kpjpn + K, 0" Cim and Kp(z,m) = Z2 K0’ 70"
© P is holomorphic with respect to 7, i.e. P; =0.
Consequently,
K = Kjgn = Pinjen’ = Pyjidh — Pajed;, (26)
0= Pjppin’ + Pinjpdr + Pj0h + Py
= the projective curvature invariant of the Weyl type,

Wign = Kjpn — m(KEj(Sh + K5 05), (27)

_ _ 1 . 7 . .
where Kj;, = K}, is hh-Ricci tensor.
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.3 Locally projectively flat complex Finsler metrics

Let (M, F) be a connected n-dimensional Kidhler-Berwald spaces, n > 2. Then, W;Eh =0 ifand

only if K ixn = %(gjkghm + gni9jm)- In this case, Kp = ¢, where c is a constant on M and

the space is either pure Hermitian with Ky ; = C(”'H)gjk or non-pure Hermitian with ¢ = 0 and
1
ngh 0.

@ Let F be a locally Minkowski complex Finsler metric on M, (i.e. V z € M, 3 local charts
such that the fundamental metric tensor §,; depends only on 1) = G* = 6** = 0.

@ A complex Finsler metrics F' on M is called locally projectively flat iff it is projectively
related to the locally Minkowski metric F'.

Let (M, F) be a connected n-dimensional complex Finsler space, n > 2. If F is locally projectively
flat then it has constant holomorphic curvature. Moreover, if the constant value of the holomorphic
curvature is non-zero, then (M, F') is a pure Hermitian space.

Theorem [N.A, P. Kopacz, Diff. Geom. Appl. 2017]

Let F' be a complex Finsler metnc on domain D from C". F is locally projectively flat if and only
if it is Kdhler-Berwald and G* = f OF pkpi,
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.5 Complex Douglas spaces with Randers metrics

@ Consider @ = a,j(z)dz' ®dz’ a pure Hermitian metric and b = b;(z)dz" a differential
(1,0)-form ~» the complex Randers metric

F(ZJ?)=06+|5|7 (28)

a(z,m) = y/a;7°77 and B(z,1) = bin® [N.A., G. Munteanu, J. Kor. Math. Soc. 2009];

a —
P i 1 _ob" 5 by abr
® G'=G'+ 5 (r 35 — G asT )¢l + 4IB\ kTS5

a
i il = days darr
@ 0" = —Tyrma™n'q", Tipm = e — S

0 0% = —a(Tirm 7" + %Qm)(hmi - gbmni),

_ _ 2 _ . a_ _ 32
where Bt = g™t — %bmbl and Qm = N5 bs — 5925’;, 7" — 7|g‘2 88;},1 nt.

Theorem [N.A., G. Munteanu, J. Geom. Phys. 2012]

Let (M, F) be a connected complex Randers space. Then, (M, F) is a generalized Berwald

space if and only if (Bl-22 + B[ ) = 0. Moreover, given any of them, G* =G .

T 927
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.5 Complex Douglas spaces with Randers metrics

Let (M, F') be a connected complex Randers space. Then, (M, F) is a complex Douglas

space if and only if (Bl-2% + BLeq" )y’ =0 and K' =K*. Given any of them, Qs =

T 827

—%Fl;mblﬁ’". Moreover, if a is Kahler, then (M, F) is a Kahler-Berwald space.

Let (M, F) be a connected complex Randers space. If (M, F) is a generalized Berwald
space, then K* =K" if and only if 0** =0*".

Let (M, F) be a connected complex Randers space. Then, (M, F) is a complex Douglas
space if and only if (Bl;% + 8227 )y =0 and 6" =6*" .

Theorem [N.A., G. Munteanu, Nonlinear Anal. Real World Appl. 2012]

Let (M, F) be a connected complex Randers space. Then, a and F are projectively
related if and only if F is generalized Berwald and B* = —Pn*, for any i = 1,n, where

mol=r
P = — g lirmb™ 'y
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.5 Complex Douglas spaces with Randers metrics

Let (M, F) be a connected complex Randers space. Then, (M, F) is a complex Douglas
space if and only if « and F are projectively related.

Any complex Randers Douglas space of dimension two is a Kadhler-Berwald space.

Example 1. Let A = {(z,w) € C?, |w| < |z| < 1} be the Hartogs triangle with the pure
Kahler-Hermitian metric

0? 1
= geioa "E Ty (e — ey B = L) (29)

Y7 = bzioz
and b = T 2= e 2 Kahler-Berwald metric F = o+ |3] ~ «a and
F' are projectively related.

Example 2. On M = C? we set: the pure Hermitian metric

a? = ez1+51 ‘711‘2 +622+22 {7]2|2 +621+21+23+23 |T]3}2 (30)

and the (1, 0)-differential form j given by g = ez2n2 = a complex Douglas-Randers
metric F' = a + || ~ « and F are projectively related.
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Part | Chapter 4: Projective invariants of a complex Finsler space

4.5 Complex Douglas spaces with Randers metrics

Example 3. On Hartogs triangle A, we set b1 =

— w f— _72
Fror and b2 =~ and

o —L - +bib; bibs
the pure Hermitian metric o® = a;z0'7’, with (a;;) = ( ]*‘2‘52; o ;;b; )

= a generalized Berwald-Randers metric F' = a:+ |3] which is not Douglas.

complex generalized
generalized Kahler-Berwald Douglas Berwald spaces
Kahler weakly spaces spaces
Kahler
spaces

spaces

locally
projectively flat

Figure 2: Inclusion diagram
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Part | Chapter 5: Zermelo’s deformation of Hermitian metrics

5.2 Rudiments of R-complex Finsler geometry

@ N. Aldea, Zermelo deformation of Hermitian metrics by holomorphic vector fields.
Results in Math., 75(4) (2020), 140.

@ N. Aldea, P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds under mild

wind. Diff. Geom. Appl., 54(A) (2017), 325-343.

Definition

An R-complex Finsler space is a pair (M, F'), where F' is a continuous function F :
T'M — R satisfying the conditions:

i) L = F? is smooth on M = T'M\{0};

i) F(z,m) >0 for all (2,m) € T'M; the equality holds if and only if n = 0;

i) F(z,A\n, 2, \j) = AF(2,n, z,7), for all A > 0.

@ The Hessian and the Levi matrices of L induce the tensors
%L %L %L
“onioni” 9 T apian 9T opions
(&)’ + (0:L)* = 2L, gin" + gja7" = 0;L, L =Re{gin'n’} + gm0,
@igar)n’ + (O59:)F =0, (Djg;:)0° + (859:5)7 = 0.
= two general classes of R-complex Finsler spaces:
© R-complex Hermitian Finsler spaces, i.e. (g;5) is positive definite
@ R-complex non-Hermitian Finsler spaces, i.e. (gi;) is positive definite

(31)

9ij
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Part | Chapter 5: Zermelo’s deformation of Hermitian metrics

5.2 Rudiments of R-complex Finsler geometry

Let (M, F') be a R-complex Hermitian Finsler space.
Chern-Finsler (c.n.c) with N} = g™ 0°L_ _ g™ [(Okgrm)T” + (Okgsm)n®].

azkomm
@ Chern-Finsler connection D : F(T']T/f) — F(TEM@T'M) locally given by
3&« = gm((sjgkm) C;k = gmi(éjgkﬁz) Jk = Czk =0, (32)

with L}, = 9;Nj, and Nj = Lin’ + (0-Ni)7" and T ie — L
@ Kr(z,n) = %gilehkn FhnFE™ is the holomorphlc curvature of F in direction 7,

where R;Ek = —07L% — (67NL)CY and L = gimn™ 7™
@ (M, F)is called strongly Kahler or Kahler iff 7}, = 0 or T}’ = 0, respectively.
@ o’ =Re{ayn'n’} + a;n'n’, with a = a5 (2) dz’ ® dz’ a Hermitian metric on M.
@ 3 =Re{bin'}, with b= b;(z)dz" a differential (1,0)-form, = a’'b;b;.

Let F = a+ 3 be an R-complex Randers function with a;; = 1b;b;. Then, F is positive

on M if and only if ||6]|?> < 2. Moreover, any of these assertions implies o> — 3% > 0.

@ ||b]|* < 2 also assures that g,; is positive definite ~» F = a + 3 with a;; = 2b;b;
is an R-complex Hermitian Randers metric (briefly R-complex Randers metric).
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Part | Chapter 5: Zermelo’s deformation of Hermitian metrics

5.3 Generalized Zermelo navigation under weak wind

@ (M, h) is an n-dimensional Hermitian manifold (h = h;;d2" ® dz’ is a Hermitian
metric, h;z(2) = h(azJ , ai )) ~ the imaginary sea;

@ ~a perturblng vector fleld W =WJ2 |[W]||n <1~ aweak wind;
= f(2) € (IW][n, 1], where

f: M — (||[W||n, 1] is smooth ~ the ship's speed ||u||n is space-dependent;

923!

@ (h, f(z),W) ~ the generalized navigation data

= the ship’s resultant velocity v = u + W = h is deformed into the R-complex Randers
metric F'(z,m) = o + ( (called W-Zermelo deformation) with

Reh(n, W)]2 + 2 — — Reh(n, W P
= \/[ (n 22 LlUAL = \/Re{aijnl”lj} +agn'nl, B= —% = Re{b;n"},
ais a Hermltlanhmetrlc Reh(n, W) ;é 0 [16])* € (0,2) because the wind W is weak,
g W,
__ g J o VaiWWg " _ 2 _ “r2
a;5 = " + 2¢2 sy Q5 = 21[}2 , b= ¥ , v=1f H H}L' (33)

Theorem

An R-complex Hermitian Finsler metric F' is of Randers type, i.e. F = a+ 8 with (33), if
and only if it solves the generalized Zermelo navigation problem on a Hermitian manifold
(M, h), with space-dependent ship’s speed ||u(z)||n < 1 and under action of weak wind
W. Moreover F is a pure Hermitian metric conformal to h, with the conformal factor
e , if and only if W = 0.

h
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Part | Chapter 5: Zermelo’s deformation of Hermitian metrics

5.4 W-Zermelo metric ~ 5.4.2 Holomorphic Zermelo deformation

@ W is called f-holomorphic if 2

=0 and le = alogf W*, where

az’"
k m M'n T
Wi = 90 4 hE e Wk =T1,n.
@ W is f-holomorphic iff (Sjﬁ =0, with b; = —%.

Let (M, h) be an n-dimensional Kdhler manifold, n > 2, and (h, f(z), W) be the gener-
alized navigation data, with W an f-holomorphic vector field. Then, f is a constant if
and only if W-Zermelo deformation F is strongly Kahler.

Let (M, h) be an n-dimensional Hermitian manifold and (h, f(z), W) be the generalized
navigation data, with W an f-holomorphic vector field. Then, the holomorphic curvature
in direction n, corresponding to W -Zermelo deformation F is

2 8% log f2

h4
Keen) = s (K )+§azjazmnn), (34)

where c € (0,1). If mggjf is a holomorphic function, then Kr(z,n) = (1 C)f2 Kn(z,m).
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Part 1l Extensions of Matsumoto's slope-of-a-mountain problem

Genesis of Matsumoto's slope-of-a-mountain problem

Finsler's answer to Matsumoto's letter about "models of Finsler spaces':

(...) on a slope of the earth surface we sometimes measure the distance in a time {(...)
The shortest line along which we can reach the goal, for instance, the top of a mountain
as soon as possible will be a complicated curve. (P. Finsler, 1969)

@ M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time
measure. J. Math. Kyoto Univ., 29 (1989), 17-25.

Matsumoto’s slope-of-a-mountain problem:

Suppose a person walking on a horizontal plane with velocity ¢, while the gravitational
force is acting perpendicularly on this plane. The person is almost ignorant of the action
of this force. Imagine the person walks now with same velocity on the inclined plane of
angle e to the horizontal sea level.

Under the influence of gravitational forces, what is the trajectory the person should walk
in the centre to reach a given destination in the shortest time?

~+ an exact formulation of the model of a Finsler surface
~ the most efficient (time-minimizing) paths are the geodesics of the slope metric.
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Part 1l Extensions of Matsumoto's slope-of-a-mountain problem

General view

Aim: to present a general time-optimal navigation problem on a slippery moun-
tain slope under the action of gravity which unifies all extensions of Matsumoto's
slope-of-a-mountain problem (MAT) and, in particular, links MAT and Zermelo's
navigation problem (ZNP).

Approached problems:

@ One-parameter time-optimal navigation problems through the slippery slope
models that incorporate a traction coefficient:

» slippery with a cross-traction coefficient 1 € [0, 1] (SLIPPERY), interlinking
MAT and ZNP under the influence of the gravitational wind (Ch. 7);

» slippery with an along-traction coefficient 77 € [0, 1] (S-CROSS) which con-
nects the cross problem under cross-gravity effect (CROSS) and ZNP under
the influence of the gravitational wind (Ch. 8);

@ A two-parameter time-optimal navigation problem through a slippery slope
model where both traction coefficients 1 and 7 are admitted to vary simulta-
neously, in full ranges (Ch. 9).
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Part 1l Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

Main refs.: S.S. Chern & Z. Shen 2005, |. Bucitaru & R. Miron 2007, Z. Shen
CJM 2003, C. Yu & H. Zhu DGA 2011.

@ M - a real n-dimensional C*°-manifold, n > 1;
@ (2%),i=1,...,n - the local coordinates in = € M;
@ T, M - the tangent space at x € M;

° {821-} - the natural basis for the tangent bundle TM = U T,M;
xeM

e Vye T, M, y=1y'

2+ (2°,y") - the local coordinates in (z,y) € TM.

Definition
The pair (M, F) is a real Finsler manifold if F' : TM — [0,00) is a continuous
function with the following properties:

i) F is a C°°-function on the slit tangent bundle TMy, = TM\{0};

ii) F is positively homogeneous of degree one with respect to y, ie.
F(z,cy) = cF(z,y), for all ¢ > 0;

i17) the Hessian g;;(z,y) = %% is positive definite for all (z,y) € T' M.
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Part 1l Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

@ Ir ={(x,y) € TM | F(x,y) = 1} denotes the indicatrix of F;

iii) refers to the fact that Iy is strongly convex;

o S:ylazz _2gi8(zia isa spray on M'

@ The spray coefficients G* = G*(z,y), i = 1,...,n are positively homogeneous
of degree two with respect to y;

@ If S is induced by a Finsler metric F', then
i L oitgim2 k 2 L (,99;0  Ogjk i)k
G'(@,y) = 79" [F laryy” = [F?lat} = 39" (2505 — 5.0 ) v’ (35)
(") being the inverse matrix of (g;1);
@ v:[0,1] = M, y(t) = (v4(t)), is a regular piecewise C*°-curve on M;
@ 7 is F-geodesic if 4(t) = ’fl;’ is parallel along the curve, i.e. in the local
coordinates, v%(t), i = 1,...,n are the solutions of the ODE system
FH(t) +2G" (v(t), (1)) = 0. (36)
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Part 1l Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

Proposition [Z. Shen, Canad. J. Math. 2003]

Let (M,F) be a Finsler manifold and W a vector field on M such that
F(xz,—W) < 1. Then the solution of the Zermelo's navigation problem with the
navigation data (F, W) is a Finsler metric F' obtained by solving the equation

F(xay - F(:Evy)W) = F(xvy)a (37)

for any nonzero y € T, M, x € M.

Lemma [S.S. Chern, Z. Shen, 2005]

Let (M, F') be a Finsler manifold and W be a vector field on M with F(z, —W) < 1
Vx € M. Define I : TM — [0,00) by (37). For any piecewise C*°-curve y on
M, the F-length of v is equal to the time for which the object travels along it.

Any regular piecewise C°°-curve v : [0,1] — M, parametrized by time, that
represents a trajectory in Zermelo's navigation problem has unit F-length, i.e.

F(y(t),4(1)) = 1.
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Part 1l Chapter 6: Rudiments of real Finsler geometry

6.2 General («, B)-metrics

@ A Finsler metric F is called general («a, 8)-metric if it can be expressed as
F=ag(b’,s),
where ¢(b?,s) is a positive C>°-function in the variables

b2 = ||BH§ = aijbibj S = é,
«

with |[s| < b < bp and 0 < by < oo; see [C. Yu, H. Zhu, Diff. Geom. Appl. 2011].

Proposition 1 [C. Yu, H. Zhu, Diff. Geom. Appl. 2011]

Let M be an n-dimensional manifold. F = a¢(b?,s) is a Finsler metric for any Rieman-
nian metric o and 1-form B, with ||B||la < bo if and only if ¢ = ¢(b*,s) is a positive
C*®°-function satisfying

¢ —5p2>0, ¢—spa+ (b°—5>)paz >0,

when n > 3 or
¢ — 562+ (b° — 5%)¢22 > 0,
when n = 2, where s = g and b = ||B||« satisfy |s| < b < bo.
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Part 1l Chapter 6: Rudiments of real Finsler geometry

6.2 General («, B)-metrics

rij = 5(bij; +b5p5), ri=0ru, vt =a"r;, roo =riy'y’, ro=mriy', r=0b"r,

sij = 5(bajj — bj1a),  si=0bsj, s'=a"s;, so=a"spy", so = sy,

with b/ = a?'bi, by; = 3% — by and T = a*™ (8517 + G — g%)
Proposition 2 [C. Yu, H. Shu, Diff. Geom. Appl. 2011]

For a general (cv, B)-metric F' = a¢(b?, s), its spray coefficients G* are related to the spray
coefficients G, of « by

G' = Gi-+aQsh+ [6(=20Qs0 + oo + 20°Rr) + aQ(ro + 50)] L

+ [¥(—2aQs0 + To0 + 20°Rr) + all(ro + 50)] b — &®R(r* + %),

where
0 = % o = _ (&=562)d2 — s¢d
¢ —sp2’ 20[¢ — sz + (b? — 52)¢2a]’
_ P22 o— (¢ — sp2)p12 — sp1¢22
2[¢ — sp2 + (b2 — 5?) 2]’ (¢ — 5¢2)[p — s¢2 + (b2 — 52)¢p22]’
201 s+ (b° — 5°)2 1
b= 5 0 T g

Habilitation Thesis
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.1 Gravitational wind

@ N. Aldea, P. Kopacz, Time geodesics on a slippery slope under gravitational wind.
Nonlinear Anal.-Theor. 227 (2023), 113160.

@ (M, h) - a surface embedded in R3 ~+ a mountain slope;

@ 7o - the tangent plane to M at an arbitrary point O € M,

@ G - a gravitational field in R3 that affects M;

@ G=GT 4+ G* ~ G+ is orthogonal to M and G7 is tangent to M in O;
e G7 - gravitational wind ~»

» GT acts along an anti-gradient (a negative gradient), i.e. the steepest
descent (downhill) direction;

» G” depends on the gradient vector field related to the slope M and a given
acceleration of gravity.

» [|GT||, = V/h(GT,GT) - force of GT;

@ u € o - a desired direction of motion ~ the self-velocity of a moving craft
or a walker on M.
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.1 Gravitational wind

G" = Proj,G" + Proj,. G”
—— ——
Guarar G ymar
along-gravity effect cross-gravity effect

Cross-gravity effect is omitted in Matsumoto's reasoning: the component perpen-
dicular to the velocity u is regarded to be cancelled by planting the walker's legs
on the road determined by u. [M. Matsumoto, J. Math. Kyoto Univ. 1989].

In MAT the resultant velocity: vpyar =u+ Gurar ~  vyar || w.
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.1 Gravitational wind

@ ~» cross-traction coefficient n € [0,1] ~ AB = (1 —n)Proj,. GT

o ~ active wind G, = Proj, G” + AB = Proj, G + (1 — 1)Proj, . GT

= G, = 1 Garar + (1—mn) G" (38)
I. u-direction-dependent . rigid translation

deformation

@ Resultant velocity: v, = u + G, ~ vy Jf u in contrast to MAT;

° ||@||h - measures the sliding effect ~ the lesser the traction, the greater the
sliding; n =1 in MAT and n = 0 in ZNP under action of G7.

SLIPPERY problem: Suppose a person walks on a horizontal plane at a constant
speed, while the gravity acts orthogonally to this plane. Imagine the person en-
deavours to walk now on the slippery mountainside with a given traction coefficient
and under the influence of gravity.

How should the person navigate on the slippery slope of a mountain in order to
travel from one point to another in the shortest time?
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.2 Main results ~ Background

@ (M, h) - an n-dimensional Riemannian manifold, n > 1 ~» model for a slippery
slope of a mountain.

o wh=hi"2 0. _ the gradient vector field of p; p : M — R is a C*-function

on M.

o GT = —guwt is the gravitational wind (g is the rescaled magnitude of the
acceleration of gravity g, i.e. g = Ag, A > 0).

@ Based on scaling, for the self-velocity u of a moving craft on the slope we
assume that ||ul|p, = /h(u,u) = 1.

@ Notations:
o 1 )
o® = |lyllz = hijy'y’  and = _§h(y, G") = h(y,w") =biy’, (39)

a=a(z,y), B=PBx,y) and [|B]ln = ||w|n, (z,y) € TM.

@ = [ - closed differential 1-form, i.e. s;; = 0 [N.A, P. Kopacz, R. Wolak, Period.
Math. Hung. 2023].
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.2 Main results ~ Slippery slope metric

Theorem 7.1.1. (Slippery slope metric)

Let a slippery slope of a mountain (M,h) be an n-dimensional Riemannian
manifold, n > 1, with the gravitational wind G on M and the cross-traction
coefficient n € [0,1]. The time-minimal paths on (M, h) in the presence of an
active wind G, as in (38) are the geodesics of the slippery slope metric Fn which
satisfies

/a2 + 201 - )3BF, + (1L —n2||GTI2F} = o® + (2 - )3BF, + (1 — n)|GT |} £2

with « = a(z,y), 8 = B(z,y) given by (39), where either n € [0,1] and
IGT|ln < 1, orn € (3,1] and ||GT || < 5. In particular, if 1) =1, then
the slippery slope metric is reduced to the Matsumoto metric, and if n = 0, then it
is the Randers metric which solves the Zermelo navigation problem on a Rieman-
nian manifold under a gravitational wind G* .
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Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.2 Main results ~ Time geodesics

Theorem 7.1.2. (Time geodesics)

Let a slippery slope of a mountain (M, h) be an n-dimensional Riemannian man-
ifold, n > 1, with the gravitational wind G and the cross-traction coefficient
n € [0,1]. The time-minimal paths on (M, h) in the presence of an active wind
G, as in (38) are the time-parametrized solutions v(t) = (v'(t)), i = 1,...,n of
the ODE system

71(t) + 26, (v(t), 4(1)) = 0, (40)
for each n € [0, 1], where
G (v(1),4(t) = GL(v(E),¥(1) + [é(roo +2a%Rr) + a!}ro} ﬁzo(ét)
- . . wt o~ . awd
— [W(roo +202Rr) + OLHTO] 7 szlj?’

with

C. N. Aldea Habilitation Thesis



Part 1l Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ~» 7.1.2 Main results ~ Time geodesics

Theorem 7.1.2. (Time geodesics) - cont.

GL(v(), 7(1) = 3h™ (250 — S ) ¥ ()7* (D),

roo = —swiR¥ (), ro= FwpY @w*,  r=—Zuwjpwivt,
R=U00(Ba® +27), 6 =Telbo2D)  j_ Sel(ipeeDy)
2 = U8 (Bo? + 20)(g°B® + 2D°||GT|[2) — 4nD(5° B + A||GT|2)],
= %Vméba + (Ba? + 2n)(AB%a? — 2D?B)],

A=-B{a1-nl-@-IETI} - @-n*FB - @-ma},
B=-%{1-20-nIG"I}]-22-mgs-222}, =1 (Ba®+4p),
D=2A—@2-n3B, E=gBC%+(IG"|}a* - 3°6%)(A*B +2D?)

and a = a(y(t),§(t)), 8 = B(v(¢), (D).
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.1 Model of a slope under the cross-gravity effect ~ Cross slope

D N. Aldea, P. Kopacz, The slope-of-a-mountain problem in a cross gravitational wind.
Nonlinear Anal.-Theor., 235 (2023), 113329.

@ N. Aldea, P. Kopacz, Time geodesics on a slippery cross slope under gravitational
wind. Nonlinear Anal. Real World Appl., 81 (2025), 104177.

GcT = ProjuGT + Proj,, 1 GT ~ if along-gravity effect is omitted
————
GM;—'\T GLMAT
along-gravity effect cross-gravity effect

~+ Cross slope (CROSS) ~+ impact of GT-components is reversed in comparison to MAT

active wind ~  cross gravitational wind Gt = G ayrar = —Garar + GT (41)

® Resultant velocity: v, = u + Proj,,. GT =u+Gy.

/ Y Guar o
& A
\ i
: i
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.1.2 Main results ~ Cross-slope metric

CROSS problem: Suppose a person walks on a horizontal plane at a constant speed,
while the gravity acts orthogonally to this plane. Imagine the person endeavours to walk
now on a slope of a mountain under the influence of a cross gravitational wind.

How should the person navigate on the slope to get from one point to another in the
shortest time?

Theorem 8.1.1. (Cross-slope metric)

Let the slope of a mountain be an n-dimensional Riemannian manifold (M,h), n > 1,
with the gravitational wind GT. The time-minimal paths on (M, h) in the presence of
the cross gravitational wind G+ as in (41) are the geodesics of the cross-slope metric F
which satisfies

IGT|[RF* +2g8F® + (o — §° %) F? — 2ga’BF — o* =0, (42)

where o = o, y), B = B(z,y) are given by (39) and ||G” ||, < L.
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.1.2 Main results ~ Time geodesics

Theorem 8.1.2. (Time geodesics)

Let the slope of a mountain be an n-dimensional Riemannian manifold (M,h), n > 1,
with the gravitational wind G*. The time-minimal paths on (M, h) in the presence of

the cross wind G are the time-parametrized solutions y(t) = (v'(t)), i = 1

,...,n Of the
ODE system

F(8) +26°(7(#), 4(8)) = O, (43)
for each 1 € [0, 1], where At
G4 = GAOE),4(®) + [(roo + 207 Rr) + airo] 1
7 2 ]
—[u'/(roo+2a RT)+aHr0]w——Rw| @ ,
g
with gh (0,40 = dnim (2505 - Tk ) 0w, A= —%
ro0 = 7%wj‘k"y-7(t)’?/k(t), TO = g%wﬂk‘yj(t)wk, r= 7§%wﬂkw-7‘wk,
6 = 22 (aSAB* - 3p), f_?:*52[a41§3+§BB+HGT||%(1§7A)], (44)
v = %(a%zéJrl), ﬁ:7%‘;[%143(&24371)7§B(a23+1)],
A= 21 (g8+a%-1), B:ﬁ(2§5+2a2—1), ¢=1(a?8+gp4),
E=BC?a® + (||GT||}a? — §°8%)(a*A%B + 1)
and o = a(y(t), ¥(t)), B = /5(() (1)).

—/
C. N. Aldea
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.3 Model of a slippery cross slope under gravitational wind

GcT = Proj, GT + Proj,. GT
—— ————
Grar Gtapar
along-gravity effect cross-gravity effect
@ along-gravity effect is partially cancelled ~ 7 € [0,1]

@ ~ Slippery cross slope (S-CROSS)

@ ~ active wind G; = (1 — 7)Proj, G” + Proj,. GT

= G = —7 Gmar + G’ (45)
. u-direction-dependent Il. rigid translation

deformation
@ Resultant velocity: vz = u + G3.

/ 1% Gwar o v o

« \
u  gravitational \(G)
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.3 Model of a slippery cross slope under G” ~ Slippery-cross-slope metric

S-CROSS problem: Suppose a craft or a vehicle goes on a horizontal plane at maximum
constant speed, while gravity acts perpendicularly on this plane. Imagine the craft moves
now on a slippery cross slope of a mountain, with a given along-traction coefficient and
under gravity.

What path should be followed by the craft to get from one point to another in the
minimum time?

Theorem 8.3.1. (Slippery-cross-slope metric)
Let a slippery cross slope of a mountain be an n-dimensional Riemannian manifold (M, h),
n > 1, with the along-traction coefficient ij € [0, 1] and the gravitational wind GT on M.
The time-minimal paths on (M, h) under the action of an active wind Gy as in (45) are
the geodesics of the slippery-cross-slope metric Fﬁ which satisfies

PWaz +2gBF; + ||GT||2F2 = o + (2 — §)gBF; + (1 — )||GT||R F3,

with o = a(x,y), B = B(x,y) given by (39), where either 7j € [0, 5] and ||GT||» < %5,
or i € (3,1] and |GT|n < 2—177 In particular, if 7 =1, then the slippery-cross-slope
metric yields the cross-slope metric, and if 7 = 0, then it is the Randers metric which
solves the Zermelo navigation problem on a Riemannian manifold under a gravitational

wind GT.
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.3 Model of a slippery cross slope under G ~+ Time geodesics

Theorem 8.3.2. (Time geodesics)

Let a slippery cross slope of a mountain be an n-dimensional Riemannian manifold
(M, h), n > 1, with the along-traction coefficient 7 € [0,1] and the gravitational
wind GT on M. The time-minimal paths on (M, h) under the action of an active
wind Gj; as in (45) are the time-parametrized solutions v(t) = (v'(t)), i = 1,..,n
of the ODE system »

5(8) + 265 (1(2), 4(1)) = 0, (46)

for each n € [0, 1], where

Gi(v(®), 7)) =  GL(v(1),%(t) + [C@(Too”a”:“”)+ O‘QTO} ﬁio(f)

)

= [‘i’(roo + ZaQRr) + aﬁro} wE — Rw’

with
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Part 1l Chapter 8: The slope-of-a-mountain problem in a cross gra

8.3 Model of a slippery cross slope under G ~+ Time geodesics

Theorem 8.3.2. (Time geodesics) - cont.

Ga(v(1),4(®) = tr (252 — S Y0 (1), ¥ = ZE (@ AB +7),
roo = —2w;ik ¥’ ()7*(¢), ro = Sw;¥’ (Hwk, r = —ssw;pwlw®,
R=3;Z:-[1-ie*B -7, 6=22(a°AB? - iPgp),

@ = = {{(1 - 7) &®B — 7(a® B + 7P||GT|[}) — ia?(38B + ||GT|[2 A)},
=2

C=1(a’B+gBA), E=a°BC+(IG"|}a? - g*8%)(a* A%B + %)

and a = a(y(t),7(t)), B = B(¥(), 7(1))-
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Part Il Chapter 9: A general model for time-min| ng navigation

9.1 Broader meaning of a slippery slope ~ General model ~ 2-parameter model

@ N. Aldea, P. Kopacz, A general model for time-minimizing navigation on a mountain

slope under gravity.
J. Geom. Anal., 35 (2025) 282.

1-parameter models:
© SLIPPERY model: € [0,1] ~ particular cases MAT, ZNP and many other

SLIPPERY

@ S-CROSS model: 7 € [0, 1] ~ particular cases CROSS, ZNP and many other

n
- - - ol ot =
> ~ = > = s

Se

§ - CROSS

~» ZNP is border for SLIPPERY and S-CROSS: n =% =0

Habilitation Thesis
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Part Il Chapter 9: A general model for time-minimizing navigation

9.1 Broader meaning of a slippery slope ~ General model ~ 2-parameter model

CROSS RIEM CROSS RIEM.
10 10} @rmmmOmmmm QO
R-CROSS e
Ce 08 &
o
06 2 05 2 & //, o
< & < g Ly N
oafih ol i3 ‘ ¢
i4
SLIPPERY // SLIPPERY
00} @-=----@--mmn @----- @------ 00} @@ @
o o
G510 0 Gzl A 55 a1 s T R R
n A n
~» MAT, ZNP, , CROSS ~» corner and particular cases

~> other 1-parameter models:
@ R-MAT - reduced Matsumoto slope-of-a-mountain problem (n =1 & 7 € [0, 1])

Iyl 17
llylln + (1 = h(y, GT)’

@ R-ZNP - reduced Zermelo navigation problem (n =7 € [0, 1])
VIA=mhw, GO + 7\ llllE (1= nya(y, GT)
)\Tl - )\Tl ’

with [|GT 5, < 125 and A, = 1 — (1 - )?[|GT|2.

v=u+(1—-H)Guar ~ Flz,y) = 1G], <

_
2(1—7)

v=ut(1-nGT ~ Fla,y) =

C. N. Aldea Habilitation Thesis 61



Part Il Chapter 9: A general model for time-minimizing navigation

9.1 Broader meaning of a slippery slope ~ General model ~ 2-parameter model
@ R-CROSS - reduced cross slope problem (n € [0,1] & 71 = 1)

~ 1
v=u+(1-=n)Giar ~ |F(z,y) = L.O NG| < =
NSO 2(1—mn)
@ Varying simultaneously both 7,7} € [0, 1] ~ 2-parameter model of slippery mountain
slope under the action of gravity ~ General model

~ & =10,1] x [0,1] - complete problem square diagram including: all navigation
problems P, 5 on the slippery slope under gravity, with (n,7) € S =8 ~ {(1,1)}
and transitions ’7;131 between P, 5 and Py, .

i
S-CROSS

@.]

(]
R-MAT

NP : SLIPPERY(STD) | MAT
00 02 0.4 0.6 08 1.0

n
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Part Il Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems

GENERAL problem: Suppose a walker, craft or a vehicle has a certain constant maximum
speed as measured on a horizontal plane, while gravity acts perpendicular to this plane.
Imagine now that the craft endeavours to move on a slippery slope of a mountain under
gravity, admitting a traction-dependent sliding in arbitrary (downward) direction.

What path should be followed by the craft to get from one point to another in the least
time?

gravitational (G")

X

@ Active wind: G,; = (1 — 7)Proj,G” 4 (1 — n)Proj,. G, (n,7) € S

= Gy = (n — M) Gamar + (1-n)G" (47)
~—_—— ———
I. anisotropic deformation Il. rigid translation

@ Resultant velocity: v,; = u + G5, (17,7) € S.
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Part Il Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems ~» (7, 77)-slope metric

Theorem 9.1.1. ((n, 77)-slope metric)

Let a slippery slope of a mountain be an n-dimensional Riemannian manifold (M, h)
n > 1, with a cross-traction coefficient 1 € [0, 1], an along-traction coefficient 7 € [0, 1]
and a gravitational wind GT on M. The time-minimal paths on (M, h) under the action

of an active wind G5 as in (47) are the geodesics of an (n,7j)-slope metric F, 5, which
satisfies

Fppfa? +200 — mghFy; + (1 — m2IGTI2F2, = o® + (2 — 1 — MFBFy; + (1 — m (1 — DIGT1ZF2;

with a = a(z,y), B = B(z,y) g/ven by (39), where either ||G"||n < L= and
(n,7) € D1 U D2, or ||GT||n < a1 and (n,7) € D3 U Da, where
Di={(na) €S |n=7q>2m—1}, Do = {(n,7) € S | ¥+ <n <7},

Ds={(na)eS|n>L d<2p—1}, Di={(nn)eS|a>1% n<

e
)

S = U D; and D; N D; = &, for any i # j, i,5 = 1,...,4. No restriction should be

lmposed on ||GT||n ifn =7 = 1. In particular, a slope metric of type (0,0), (1,0) (0,1),
(1,1) is reduced to a Randers metric, a Matsumoto metric, a cross slope metric and
a Riemannian metric h, respectively.
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Part Il Chapter 9: A general model for time-min| ng navigation

9.1.2 Problem formulation and main theorems ~ Time geodesics

Theorem 9.1.2. (Time geodesics)

Let a slippery slope of a mountain be an n-dimensional Riemannian manifold (M,h),
n > 1, with a cross-traction coefficient € [0,1], an along-traction coefficient 7} € [0,1]
and a gravitational wind G on M. The time-minimal paths on (M, h) under the action
of an active wind G, as in (47) are the time-parametrized solutions v(t) = (v(t)),
i=1,...,n of the ODE system

(1) + 26, (7(t), 4(1)) = 0, (48)

where

(1)

g;ﬁ(W(t)a"Y(t)) = gi (v(t),5(¢)) + [é(Too + QQQRT) + aflro]

i i i QP
_ [\1/(7«00 + 207 Rr) + aHro] S i
g g

with
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Part Il Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems ~ Time geodesics

Theorem 9.1.2. (Time geodesics) - cont.

; . ; Ohim  Ohik\ .. = o
GL(v(®),3()) = Jhim (2% — SHE) S (0)ik @), &= LT[0t A2B + (7 n)?),
To0 = *%wjlk"}’j(t)’?k(t): ro = g%wj\k’yj(t)wk, 7= *%%\kijk,

= 00810 _j)a2B - (7-n), 6=1 — (71— n)2g8),

2 = 0502 (1~ 7) a? B — (7 — m][a® B + (7 — mAIGT 2] — (7 — m2a2(@BB + |GT (2 A)},

i = 8= (11— ) a?B - (7 — ))[2a®AB2 — (7 — m)258] + (7 — mZa2B[2a? + (1 — )3k},

A=—H{Q-n1-@-n-9)Q-DIGTI}F] - 2-n-1)?38 - (2—n—7a?},

B

—z{l -2 =)@ - DIGTIZ] - 2(2 - n — 7)gh — 227},
C=1(a?B+gBA),  E=a%BC+(IGT|}0? - 3°%)[0* 425 + (7 — n)’]

and a = a(y(t),¥(t)), B = B(v(t),7(t)), and w denoting the components of GT'.
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Sketches

Theorem 9.1.1. - sketch of proof ~» Step |

Py, on (M, h) under

Gnﬁ = (m —0)GraT + (I—mn) GT ~ Unp = uJFGm")
—_———— —_————
Step | (anisotropic deformation) Step Il (rigid translation)

F(z,—(1-1)GT) < 1

Step I: deformaNtion of h by (n — ))Guaar ~ v =u+ (n—7)Garar, ¥V (1,7) € S\ L,
L={nM)eES|n=qahn=0=>v=u.
Cl: |n—7| [|Gararlln <1; C2: |n—| ||Gararlln =1; €3t |n—17| [|Grar|ls >1 =

@ under |n — 7| ||Gaar||n <1 (performed for any direction), the deformation of h
by (n — 71)Gamar = a Finsler metric of Matsumoto type

a2

——— iff [|GT|n<
a—(n—m)gp

F(z,y) = ., V(n,7) €SN L.

1
2|n — 1|

@ when |7 — 17| ||Graar||n > 1(only for some directions), this deformation =+ a
Finsler metric.
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Sketches

Theorem 9.1.1. - sketch of proof ~» Step Il

Step 11: exploring Zermelo's navigation on (M, F') with the navig. data (F,(1—1n)G7"),
F(z,y) = #jﬁ)éﬁ' Y(n,7) € S = (1,7)-slope metric Fy; and the necessary and
sufficient conditions that its indicatrix I _is strongly convex.

@ Applying Proposition [Z. Shen, Canad. J. Math. 2003], for each (n,7) € S, the
(n, n)-slope metric is the unique positive solution F' of the irrational eq.

F\/a2 +2(1 —n)gBF + (1 —n)2||GT|2 F? = o + (2— n—MFBF + (1 —n)(1 — H)||GT| |7 F>
(49)

which is equivalent to
A -?GT|2[1 - 1 - |IGT|Z]F* +2(1 —n) [1 — 2—n—7) (1 —7)||GT|]2] gBF3

+{[1 _2(1 —77) (1 _ﬁ)HGTHi] a2 _ (2_n_ﬁ)2§2/82}p2 _2(2_77_77)§(X25F—a4(:)07
50

A

being assumed that
F(z,—(1-n)GT) < 1. (51)

o 15,,;, satisfies (49) and along any regular piecewise C*°-curve -, parametrized by time
that represents a trajectory in Zermelo's problem, we have F,;(v(t),5(t)) = 1.
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Sketches

Theorem 9.1.1. - sketch of proof ~» Step Il

@ Exploring F(z, —(1 — n)GT) < 1 = the necessary and sufficient conditions that
Ig is strongly convex can be expressed in terms of force of the gravitational wind

GT,ie. ||GT||; < bo, in the problem P, 5, for any (n,7) € S, where

. s, i (0,7) €D1UD,
bO S 1 . = .
if (77,77) € D3 UDy

(52)

2[n—mn|’

@ When (n,7) € Ry, it follows that by € [1,2). When (n,7) € Rz, we obtain by € (1, %)

@ For (1,7) € R3 U Ry, bop — oo as 7 7 1. For (1,7) € D3 U Dy, by — oo as |n — 7| — 0.
EEEEEEEEEEEEEEEEEEEEEEEEEE———E—————————————————————————————————————————————————————————————————————————————————
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Sketches

Theorem 9.1.2. - sketch of proof

@ An easy argument combined with F); satisfying (50) yields that F); is a general
(v, B)-metric,

Fyi(e,y) = adys(IGT17, 5),
with ¢, a positive C>°-function checking the identity
(1= n2GTI2 [ — (1 - ) IGT 2162, +2( —m) [1 — (2 —n—7) (1 — 7) [|GTI2] 3562,
+H1 -2 —n) (1 =D GT|Z — (2—n—)?g2s]d2; —2(2 —n— 1) gsdnz — 1 =0,

(53)

A

@ Some properties regarding the function ¢,;, implicitly given by (53), and its deriva-
tives combined with Proposition 1 [C. Yu, H. Zhu, DGA 2011] achieve the spray
coefficients of the (1, 77)-slope metric Fy5.

@ By (36), it is immediate to supply the equations of time geodesics of F};.

@ The argument that any time geodesic is unitary w.r.t. [,; because before all else,
it is a trajectory in Zermelo's navigation developed in Step Il, performs the proof of
Theorem 9.1.2.
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Classification

A kind of classification of the navigation problems P, i, for any (n,7) € S:

Let P, ; be a navigation problem under the action of an active wind G,; given
n (47), on a slippery slope of a mountain (M, h), with a cross-traction coefficient
n € [0,1], an along-traction coefficient 7j € [0,1] and a gravitational wind GT on
M. The following statements hold:

i) For any (n,7) € S with n > 1, P, 5 comes from SLIPPERY with a certain form
for the cross-traction coefficient, namely ¢, = € (0,1];

ii) For any (n,7) € S withn < 7, P, ; comes from S-CROSS with a certain form
for the along-traction coefficient, namely cy = € (0,1].
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Example 1

Inclined plane: z = z/2 (ie. f(z',2%) = z/2, 2 = a', y = 2%) ~ ||GT|ln = 5 =
const. Equations of indicatrix:

_§y1 — [1+(Tl_ﬁ)%cosﬂcos@-‘r(l—”l)%
’ , (54)
—y2 = [14+(n-— ﬁ)% cos 6] sin 6

for any direction 6 € [0, 27) of the velocity u.

— (0.75, ll}stl"I’Elﬂ’ 10, 0.3) - S-CROSS v
67l =049 vl

— O@-ZNP  [A-REM — (01)-CROSS - (10}-MAT (10/MAT — (0.1)-CROSS — (00)-ZNF (1,1)- RIEM
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Part Il Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ~ Example 2

Gaussian bell-shaped hill &3 : z = f(z1,22) = : 30 _ (k+1)e Pk = Lemr1 4 3e7r2 yemrs
~ with ||GT||, # const.

LEFT: On &3 : the time fronts centered at (0,0) for the cases: MAT, ZNP, RIEM (white), SLIPPERY (with
n = 0.7, magenta), S-CROSS (with 77 = 0.8, yellow), CROSS and (0.7, 0.8)-slope (black) and the related time
geodesics (dashed colours, respectively), where t = 2; g = 0.76.

RIGHT: The evolution of the unit time front on B3 w.r.t. variable force of gravitational wind (due to changing the
rescaled acceleration of gravity g), where g € {0.76 (black), 3 (magenta), 5 (orange), 7.65 (yellow)}. The initial
point is (1,0) and the traction coefficients are fixed, i.e. 77 = 0.7 and /) = 0.8. The corresponding time geodesics
in the initial setting (g = 0.76) are presented in dashed black. The action of the gravitational wind is indicated by

black arrows.
C. N. Aldea Habilitation Thesis 73



Further research: directions & perspectives

General view

© Future research directions in complex Finsler geometry
@ Future research directions related to navigation problems

© A brief list of the candidate’s background ~ Further perspectives
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Further research: directions & perspectives

(D Future research directions in complex Finsler geometry

1. The study of the complex Landsberg spaces

@ Unicorn problem: does there exist a complex Landsberg metric (non-pure Hermi-
tian), which is neither generalized Berwald nor K3hler?

@ To investigate a new class of complex Finsler spaces (e.g. weakly Landsberg spaces),
c
which holds L}, n’ = Gj,n’ ~ it generalizes the complex Landsberg spaces and it
can be exemplified by the complex Wrona metric.
2. Projectively related complex Finsler metrics

» At least two directions: i. complex Finsler metrizability and ii. projective metrizability
[I. Bucataru, Z. Muzsnay, Diff. Geom. Appl. 2013 & J. Aus. Math. Soc. 2014]

i. Complex Finsler metrizability ~» a sketch of study:

Definition

The complex spray S is complex Finsler metrizable if there exists a complex Finsler function

L = F? which satisfies S (7jx) = 0, where jx = gTLk. Moreover, S is weakly Kahler Finsler

metrizable if it is Finsler metrizable and S (%) = gsz,

® S (nk) = 2% iff F is weakly Kahler;

@ If S is weakly Kahler Finsler metrizable = the geodesics of S are solutions of the
Euler-Lagrange equations w.r.t. L = F? and S is the corresponding spray of the

weakly Kahler Finsler metric F'.
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Further research: directions & perspectives

(D Future research directions in complex Finsler geometry

@ The weakly K3hler Finsler metrizability problem ~» an inverse problem of the calculus
of variation on complex manifolds restricted to weakly K&hler Finsler metrics L ~»
to find the necessary and sufficient conditions (of Helmholtz type) for the existence

of two multiplier matrices (g;5(z, 22)) and (gs;(2, %)) such that

( dz) d?z7 + 263 dz) taui dz) d?z7 + 209 z) d (BL) oL .
ij (% —/— 2z, —/— ij (%, —— 2z, /0 = - . =, t=L,n,
9ii % gy dt2? dt it gy dt2? dt dt \ ani

for some complex Finsler functions L.

ii. Projective metrizability ~»
@ Projectively related (2,0)-homogeneous complex sprays
~ S and S are projectively related iffthere is a (1,0)-homogeneous function P(z,n)
on T'M such that G* = G* 4+ P(z,n)n*
@ Projective Finsler metrizable homogeneous complex spray i.e. when it is projectively
related to a weakly K3hler Finsler metrizable spray.
» Another direction ~» whether it is possible for two projectively related complex Finsler
metrics to have the same hh-curvature tensor ~» to find answer for non Kihler-Berwald
spaces.
3. Navigation problems on Hermitian manifolds (M, h)

@ W-Zermelo deformation when W is a gradient vector field (i.e. W =
w: M — R is a smooth real valued function on M).

mi Qw _9
h HZ™ §zi

@ A Hermitian approach for Matsumoto's slope-of-a-mountain problem.
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Further research: directions & perspectives

(2 Future research directions related to navigation problems

4. Geometric properties of the (7,7)-slope metric ~ flag curvature, Ricci curvature,
projective flatness, Einstein conditions, Douglas conditions, etc.

GT is a gradient vector field ~+ the differential 1-form 3, defined in (39), is closed
= each (n,7)-slope metric becomes a candidate to be a Douglas metric on an
n-dimensional manifold with n > 3 [X. M. Wang, B. Li, Acta Math. Sinica 2017].

To study the geodesics of the Finsler spaces with (n,7)-slope metrics when the
gravitational wind G” is an infinitesimal homothety, i.e. Lgrh = oh, where o is a
constant ~ to see if it is possible to obtain a classification of (7, 77)-slope metrics
of constant flag curvature.

Under assumption Lgrh = o(z)h (i.e. G7 is conformal to h), to study if there
exist (1, 7)-slope metrics that are projectively flat or projectively related to «.

5. Non-uniform slippery slope

One or both traction coefficients depend on the position, n = n(z) or/and 7 = 7j(x)
~ more extensive resultant Finsler metrics Fy5 = a¢ns; because ¢n; depends in
addition on a third variable or on two more variables.

@ A varying self-speed ||u]|, of a craft on a slippery slope (M, h), i.e. ||[u]|n = f(x),

where f is a smooth function on M and f(z) € (0, 1], for any z € M.
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(2 Future research directions related to navigation problems

6. Matsumoto’s slope-of-a-mountain problem with wind

Consider the navigation data (F, W) on the Finsler manifold (M, F), where:
e F= % is the Matsumoto metric with ||G” ||, < %;
@ W is a vector field (the wind in the sense of Zermelo’s navigation).

~ a Finsler metric F implicitly given by

7 (VIlZ = 2100, W)F  [IWIEF? + by, GT) = kW, GTIF) = llylI} - 2000, W)F + W13 72,
under the constrains h(W,G") < [|[W||n(1 — [|[W||r) and ||G"||r < 3 which assure the

strong convexity of the indicatrix ;.

7. Slippery slope of a mountain in the presence of a wind

~ the time-minimal paths on (M, h) in the presence of an active wind G, and an arbitrary
wind W are the geodesics of the Finsler metric 7, which satisfies

Fa { (W1 +90)F2 = 20h(s. W) + (1= h(y. GTIF, + i}
= ([IWI[; +Q2)F2 = [2h(y, W) + (2 = nh(y, GT)]Fy + [y},
under the restrictions ||W||? + Q1 < 1/[|W][? + Q2 and ||GT||, < bo,
with Q1 = (1 —n)[2h(W,GT) + (1 = n)||GT[I7], Q2 = (2-nh(W,GT)+ (1 —n)|G"|]}, and
either by = 1if n € [0 = orbof— ifne(3,1]
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(3 A brief list of the candidate’s background

Q1 and Q2 research publications:
~ according to the ranking AlS lists, editions 2020-2024 (JCR 2019 - JCR 2023)

@ 9 papers published in _

1 ~» The Journal of Geometric Analysis (Jul. 2025)

2 ~» Nonlinear Analysis-Theory Methods and Applications (Feb. 2023, Oct. 2023)
2 ~» Nonlinear Analysis-Real World Applications (Oct. 2012, Feb. 2025)

1 ~ Journal of the Franklin Institute-Eng. and Applied Mathematics (Jan. 2021)
1 ~» Journal of Optimization Theory and Applications (Apr. 2021)

1 ~» Annual Reviews in Control (2020)

1 ~» The Journal of Navigation (Jan. 2021)

@ 10 papers published in Q2 journals :
3 ~» Journal of Geometry and Physics (Feb. 2012, Apr. 2013, Aug. 2016)
3 ~» Results in Mathematics (Sep. 2016, Dec. 2017, Aug. 2020)
2 ~» Differential Geometry and its Applications (Dec. 2012, Oct. 2017)
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(3 A brief list of the candidate's background ~ Further perspectives

~ W.r. t. the new Romanian minimal standards for habilitation [OMEC 3019 (February
11, 2025)] which will be applied starting with October 1, 2026, | have the parameters:

$,=9,1668 (> 4), S,=8,5578 (> 2,5), C;=35 (> 20), C2=27 (> 10), Nyeoent=16 > 2,
(counted in February 2025).

Financial support:

@ grant 2013/09/N/ST10/02537 financed by the Polish National Science Center,
Jagiellonian University in Krakow (2016-2017)

@ postdoctoral program POSDRU/89/1.5/S/59323 financed by the European Social
Fund of the Romanian Goverment (2010-2013)

@ Transilvania University of Brasov grant (2012)
@ grant CNCSIS A 424/2006.

Didactic activities:

@ 2015-present ~» advisor for 37 bachelor or master theses in Differential geometry
and Linear algebra. !

Overall candidate’s perspectives:
@ to extend and enhance the research significantly in the aforementioned directions,
@ to explore new avenues that may contribute to conferring a higher academic position.
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