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Main objectives

1 To contribute to the development of complex Finsler geometry, addressing
some aspects related to

complex Landsberg spaces,
projectivity,
holomorphic curvature,
deformation.

2 To extend Matsumoto's slope-of-a-mountain problem through a general model
of time-optimal navigation based on Riemann-Finsler geometry, handling

one-parameter models,
two-parameter model.
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Plan of presentation

General structure

1 Part I. Di�erent aspects of complex Finsler geometry

Chapter 1: Rudiments of complex Finsler geometry
Chapter 2: On complex Landsberg spaces
Chapter 3: Projectivities in complex Finsler geometry
Chapter 4: Projective invariants of a complex Finsler space
Chapter 5: Zermelo's deformation of Hermitian metrics

2 Part II. Extensions of Matsumoto's slope-of-a-mountain problem

Chapter 6: Rudiments of real Finsler geometry
Chapter 7: Time geodesics on a slippery slope under gravitational wind
Chapter 8: The slope-of-a-mountain problem in a cross gravitational
wind
Chapter 9: A general model for time-minimizing navigation on a moun-
tain slope under gravity

3 Further research: directions & perspectives
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Part I Di�erent aspects of complex Finsler geometry

General view

Complex Finsler geometry is extremely beautiful (S. S. Chern, 1996)

Aim: to introduce general themes from real Finsler geometry into complex Finsler
geometry.

Approached problems:

Detailed study of the complex Landsberg and generalized Berwald spaces;
particular cases of complex Landsberg spaces (Ch. 2);

Projectively related complex Finsler metrics; complex versions of Rapcsák's
theorem; a complex Finsler solution of Hilbert's fourth problem (Ch. 3);

Exploration of the projective curvature invariants of Douglas and Weyl type;
complex Finsler spaces of constant holomorphic curvature; complex Douglas
spaces (Ch. 4);

Zermelo's navigation problem on a Hermitian manifold; how some properties
of a Hermitian metric are a�ected by the Zermelo deformation under action
of some special winds (Ch. 5).
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Part I Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

Main refs.: M. Abate & G. Patrizio (1994), G. Munteanu (2004)

M - n-dimensional complex manifold;

z = (zk) ∈ M , k = 1, n - the complex coordinates in a local chart;

TRM ; TCM = T ′M ⊕ T ′′M , where T ′M - holomorphic tangent bundle,
π : T ′M → M ; T ′′M - antiholomorphic tangent bundle;

T ′M is a complex manifold ; the local coordinates u = (zk, ηk).

De�nition

(M,F ) is a complex Finsler space, where F : T ′M → R+ is a continuous
function satisfying the conditions:

i) L = F 2 is smooth on T̃ ′M = T ′M\{0};
ii) F (z, η) ≥ 0, for all F (z, η) ∈ T ′M ; the equality holds i� η = 0;
iii) F (z, λη) = |λ|F (z, η), ∀λ ∈ C, λ ̸= 0;

iv) the Hermitian matrix
(
gij̄(z, η)

)
is positive de�nite, where gij̄ = ∂2L

∂ηi∂η̄j the

fundamental metric tensor.
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Part I Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

TC(T
′M) = T ′(T ′M)⊕ T ′′(T ′M);

V T ′M = kerπ∗ ⊂ T ′(T ′M) - the vertical bundle; VuT
′M ; { ∂

∂ηk };

A complex nonlinear connection (c.n.c.) is a complex subbundle of T ′(T ′M),
such that T ′(T ′M) = HT ′M ⊕ V T ′M ;

HuT
′M ; { δ

δzk = ∂
∂zk −N j

k
∂

∂ηj }; N j
k(z, η) - the coe�cients of the (c.n.c.);

{δk = δ
δzk , ∂̇k = ∂

∂ηk } - the adapted frame on T ′
u(T

′M) of the (c.n.c.);

By conjugation ; the adapted frame {δk̄, ∂̇k̄} on T ′′
u (T

′M);

{dzk, δηk = dηk +Nk
j dz

j} and {dz̄k, δη̄k} - the adapted dual frames;

A section on T ′(T ′M), locally expressed as S = ηk ∂
∂zk − 2Gk(z, η)∂̇k is a

complex spray, where Gk denote the spray coe�cients;

Chern-Finsler (c.n.c.) with the local coe�cients

N i
j = gmi

∂glm
∂zj

ηl; (1)

; δk is w.r.t. Chern-Finsler (c.n.c.).
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Part I Chapter 1: Rudiments of complex Finsler geometry

1.1 Complex Finsler spaces

Chern-Finsler connection D: i) of (1, 0)-type (i.e. DJXY = JDXY, ∀ X
section on T ′(T ′M), ∀ Y vertical vector �eld) ii) metrical w.r.t. the Hermitian
structure; Locally, CFΓ = (N i

j , L
i
jk, L

ı
jk
, Ci

jk, C
ı
jk
), where

N i
j = Liljη

l, Lijk = gliδkgjl = ∂̇jN
i
k, Cijk = gli∂̇kgjl, Lıjk = Cıjk = 0. (2)

Complex Cartan tensors: Cij̄k = ∂̇kgij̄ and Cij̄k̄ = ∂̇k̄gij̄ ;

Ri
jhk

= −δhL
i
jk − (δhN

l
k)C

i
jl denote the hh̄ - curvatures coe�cients of D;

Holomorphic curvature of the complex Finsler space (M,F ) in direction η

KF (z, η) =
2

L2
Rr̄jk̄hη̄

rηj η̄kηh, where Rr̄jk̄h = Rijk̄hgir̄. (3)

(M,F ) is strongly Kähler i� T i
jk = 0;

(M,F ) is Kähler i� T i
jkη

j = 0;

(M,F ) is weakly Kähler i� gilT
i
jkη

jηl = 0, where T i
jk = Li

jk − Li
kj ;

strongly Kähler ≡ Kähler [B. Chen, Y. Shen, Chin. Ann. Math. 2009];

weakly Kähler ≡ Kähler for pure Hermitian metrics, i.e. gij = gij(z);
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Part I Chapter 1: Rudiments of complex Finsler geometry

1.2 Connections on a complex Finsler space

Chern-Finsler (c.n.c.) determines a complex spray with the local coe�cients

2Gi = N i
jη

j ; (4)

Gi induce a (c.n.c.) by
c

N i
j= ∂̇jG

i called canonical (c.n.c);

c

δk is related to canonical (c.n.c.), i.e.
c

δk=
∂

∂zk−
c

N j
k ∂̇j ;

W.r.t. the canonical (c.n.c.) we consider two linear connections:

i) of Berwald type BΓ = (
c

N i
j , G

i
jk, G

i
jk̄
, 0, 0) having the connection form

ωi
j(z, η) = Gi

jkdz
k +Gi

jk̄dz̄
k, (5)

where Gi
jk = ∂̇k

c

N i
j = Gi

kj and Gi
jk̄

= ∂̇k̄

c

N i
j ;

ii) of Rund type RΓ = (
c

N i
j ,

c

Li
jk,

c

Li
jk̄
, 0, 0), where

c

Li
jk = 1

2g
li(

c

δkgjl +
c

δjgkl) and
c

Li
jk̄

= 1
2g

li(
c

δk̄gjl −
c

δl̄gjk).
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Part I Chapter 1: Rudiments of complex Finsler geometry

1.2 Connections on a complex Finsler space

RΓ is only h-metrical and BΓ is neither h- nor v-metrical;

2Gi = N i
jη

j =
c

N i
jη

j = Gi
jkη

jηk and
c

δj = δj − (
c

Nk
j −Nk

j )∂̇k;

If (M,F ) is Kähler ⇒ Nk
j =

c

N i
j ,

c

δk= δk,
c

Li
hj̄

= 0, Li
jk =

c

Li
jk = Gi

jk.

Lemma [N.A., G. Munteanu, J. Geom. Phys. 2012]

For any complex Finsler space (M,F ), the following statements hold:
i) Gi

jk̄
η̄k = 0;

ii) g
lr̄

B

| h
+ g

hr̄
B

| l
+Gm̄

r̄hglm̄ +Gm̄
r̄lghm̄ = −C

lr̄h
B

| 0
;

iii) 2(∂̇h̄G
i)gir̄ = C

0r̄h̄
B

| 0
= C0r̄h̄|0;

iv) C
ij̄h

B

| k
= ∂̇h(g

ij̄
B

| k
) + (∂̇hG

l
ik)glj̄ + (∂̇hG

m̄
j̄k
)gim̄;

v) C
ir̄h̄

B

| k
= ∂̇h̄(g

ij̄
B

| k
) + (∂̇h̄G

l
ik)glj̄ + (∂̇h̄G

m̄
j̄k
)gim̄ +Gl

kh̄
Cij̄l −Gm̄

h̄k
Cij̄m̄,

where
B
p is h-covariant derivative with respect to BΓ.
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

N. Aldea, G. Munteanu, On complex Landsberg and Berwald spaces.
J. Geom. Phys., 62(2) (2012), 368-380.

De�nition

Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called

a complex Landsberg space if Gi
jk =

c

Li
jk.

Kähler spaces o�er an asset family of complex Landsberg spaces.

Theorem

Let (M,F ) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M,F ) is a complex Landsberg space;
ii) C

lr̄h
B

| 0
= 0;

iii) 2(∂̇hG
i
jk)gir̄ −Gm̄

r̄kCjm̄h −Gm̄
r̄jCkm̄h = C

jr̄h
B

| k
+ C

kr̄h
B

| j
;

iv) g
ij̄

B

| k
=

c

(Lm̄
j̄k

−Gm̄
j̄k
)gim̄.
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

De�nition

Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
aG-Landsberg space if it is Landsberg and the spray coe�cientsGi are holomorphic
with respect to η, i.e. ∂̇k̄G

i = 0.

Theorem

Let (M,F ) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M,F ) is a G-Landsberg space;

ii) Gi
jk =

c

Li
jk(z);

iii) C
lr̄h

B

| 0
= 0 and C

j0̄h
B

| 0̄
= 0;

iv) g
ij̄

B

| k
=

c

Lm̄
j̄k
gim̄ and ∂̇h̄G

i = 0.

v) C
jr̄h

B

| k
+ C

kr̄h
B

| j
= 0 and C

rl̄h
B

| k̄
+ C

rk̄h
B

| l̄
= 0.
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

De�nition

Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called
a strong Landsberg space if C

lr̄h
B

| 0
= 0 and C

jr̄h
B

| 0̄
= 0.

Theorem

Let (M,F ) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M,F ) is a strong Landsberg space;
ii) g

lr̄
B

| s
(z) and ∂̇h̄G

i = 0;

iii) C
lr̄h

B

| k
= 0 and ∂̇h̄G

i = 0;

iv) C
jr̄h

B

| k̄
= 0.

De�nition

Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called a G-Kähler
space if it is Kähler and the spray coe�cients Gi are holomorphic w.r.t. η.
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

(M,F ) is complex Berwald i� Li
jk(z) [T. Aikou, Contemp. Math., 196, 1996];

Li
jk(z) ⇔ Clr̄h|k = 0 ⇔ Clr̄h|k̄ = 0.

Theorem

(M,F ) is Kähler-Berwald space if and only if it is Kähler and either Clr̄h|k̄ = 0 or
Clr̄h|k = 0.

Theorem

Let (M,F ) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M,F ) is a G-Kähler space;

ii) Gi
jk̄

=
c

Li
jk̄
;

iii) Gi
jk = Li

jk(z);
iv) (M,F ) is a Kähler-Berwald space;
v) g

ij̄
B

| k
= 0 and ∂̇h̄G

i = 0.
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

De�nition

Let (M,F ) be an n-dimensional complex Finsler space. (M,F ) is called generalized
Berwald if the horizontal coe�cients Gi

jk of BΓ depend only on the position z.

Theorem

Let (M,F ) be an n-dimensional complex Finsler space. Then the following asser-
tions are equivalent:
i) (M,F ) is generalized Berwald;
ii) Gi are holomorphic with respect to η;
iii) BΓ is of (1, 0)-type.

Corollary

If (M,F ) is a complex Berwald space, then the space is generalized Berwald.

generalized Berwald ≡ weakly complex Berwald [C. Zhong, Di�. Geom. Appl. 2011].
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Part I Chapter 2: On complex Landsberg spaces

Examples

Complex version of the Wrona metric ; generalized Berwald

F (z, η) =
|PQ|
|OH| =

|η|4

|z|2|η|2 − | < z, η > |2 , (6)

with (z, η) ∈ Ω = {(z, η) ∈ Cn × Cn | z ̸= λη, λ ∈ C}, where P, Q ∈ Cn,
O is the origin of Cn, H is the projection of O on the line PQ.

; Gi = 0 and
c

Li
jk ̸= Gi

jk ; (6) is a generalized Berwald metric which is

neither G-Landsberg nor Berwald; it satis�es
c

Li
jkη

j = Gi
jkη

j .

Complex version of the Antonelli-Shimada metric ; complex Berwald

F 2
AS = LAS(z, w; η, θ) = e2σ

(
|η|4 + |θ|4

) 1
2 , with η, θ ̸= 0, (7)

on a domain D from T̃ ′M, dimM = 2, such that its metric tensor is
nondegenerated. The non-zero coe�cients:

L1
11 = L2

21 = 2
∂σ

∂z
and L1

12 = L2
22 = 2

∂σ

∂w
,

depend only on z and w. LAS is not G-Landsberg (
c

Li
jk ̸= Gi

jk).
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Part I Chapter 2: On complex Landsberg spaces

2.2 From complex Landsberg to generalized Berwald spaces

Theorem [N.A, G. Munteanu, Di�. Geom. Appl. 2012]

Let (M,F ) be a complex Finsler space that satis�es the weakly Kähler and gener-
alized Berwald conditions. Then (M,F ) is a Kähler-Berwald space.

Figure 1: Inclusion diagram

C. N. Aldea Habilitation Thesis 16



Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics

N. Aldea, G. Munteanu, Projectively related complex Finsler metrics.
Nonlinear Anal. Real World Appl. 13(5) (2012), 2178-2187.

In Abate-Patrizio's sense [M. Abate, G. Patrizio 1994], a geodesic curve is provided
by

D
Th+ThT

h = θ∗(Th, Th), (8)

where Th is the horizontal lift of the tangent vector along the curve and

θ∗ = gm̄kgip̄(L
p̄

j̄m̄
− Lp̄

m̄j̄
)dzi ∧ dz̄j ⊗ δk. (9)

The equations of a geodesic z = z(s) of (M,F ), with s a real parameter, can be
rewritten as

d2zi

ds2
+ 2Gi(z(s),

dz

ds
) = θ∗i(z(s),

dz

ds
), (10)

where zi(s), i = 1, n, are the coordinates along of the curve z = z(s) and

θ∗k = 2gj̄k
c

δj̄ L.

θ∗i=0 i� (M,F ) is weakly Kähler.

θ∗i are (1, 1)-homogeneous w.r.t. η and η̄ respectively, i.e. (∂̇kθ
∗i)ηk = θ∗i

and (∂̇k̄θ
∗i)η̄k = θ∗i.
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Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics

Let F̃ be another complex Finsler metric on the underlying manifold M.

De�nition

The complex Finsler metrics F and F̃ on manifold M are called projectively related
if they have the same geodesics as point sets.

Theorem

Let F and F̃ be complex Finsler metrics on M . Then F and F̃ are projectively
related if and only if there is a smooth function P on T ′M with complex values,
such that

G̃i = Gi +Bi + Pηi, (11)

where Bi = 1
2 (θ̃

∗i − θ∗i), i = 1, n.

(11) - projective change

Corollary

Let F and F̃ be complex Finsler metrics on M. F and F̃ are projectively related if
and only if there is a smooth function P on T ′M , such that G̃i = Gi + (∂̇kP )ηkηi,
Bi = −(∂̇k̄P )η̄kηi and (∂̇kP )ηk + (∂̇k̄P )η̄k = P , for any i = 1, n.
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Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ; Rapcsák's theorem

Theorem

Let F and F̃ be two projectively related complex Finsler metrics on M. Then, F
is weakly Kähler if and only if F̃ is also weakly Kähler. In this case, the projective
change is G̃i = Gi + Pηi, where P is a (1, 0)-homogeneous function.

Lemma

Let L and L̃ be complex Finsler metrics on M. The spray coe�cients G̃i and Gi

of the metrics L and L̃ satisfy

G̃i = Gi +
1

2
g̃r̄i

[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
, i = 1, n. (12)

Theorem

Let L and L̃ be complex Finsler metrics on M. Then, L and L̃ are projectively
related if and only if

1

2

[
∂̇r̄(δkL̃)η

k + 2(∂̇r̄G
l)(∂̇lL̃)

]
= P (∂̇r̄L̃) +Big̃ir̄, r = 1, n, (13)

with P = 1
2L̃

[(δkL̃)η
k + θ∗i(∂̇iL̃)].
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Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ; Rapcsák's theorem

Theorem

Let L and L̃ be complex Finsler metrics on M. Then, L and L̃ are projectively related if
and only if

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) =
1

L̃
(δkL̃)η

k(∂̇r̄L̃), (14)

Br = −
1

2L̃
θ∗l(∂̇lL̃)η

r, r = 1, n,

P =
1

2L̃
[(δkL̃)η

k + θ∗i(∂̇iL̃)].

Moreover, the projective change is G̃i = Gi + 1

2L̃
(δkL̃)η

kηi.

Theorem

Let L be a weakly Kähler complex Finsler metric and L̃ be another complex Finsler metric,
both on M. Then, L and L̃ are projectively related if and only if L̃ is weakly Kähler and

∂̇r̄(δkL̃)η
k + 2(∂̇r̄G

l)(∂̇lL̃) = 2P (∂̇r̄L̃), r = 1, n, (15)

P =
1

2L̃
(δkL̃)η

k.

Moreover, the projective change is G̃i = Gi + Pηi and P is (1, 0)-homogeneous.
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Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ; Rapcsák's theorem

Corollary

Let F be a generalized Berwald metric and F̃ be another complex Finsler metric, both
on M. Then, F and F̃ are projectively related if and only if

∂̇r̄(δkF̃ )ηk =
1

F̃
(δkF̃ )ηk(∂̇r̄F̃ ), Br = −

1

F̃
θ∗l(∂̇lF̃ )ηr, (16)

P =
1

F̃
[(δkF̃ )ηk + θ∗i(∂̇iF̃ )],

for any r = 1, n. Moreover, the projective change is G̃i = Gi + 1

F̃
(δkF̃ )ηkηi and F̃ is

also generalized Berwald.

Corollary

Let F be a Kähler-Berwald metric and F̃ be another complex Finsler metric, both on M.
Then, F and F̃ are projectively related if and only if F̃ is weakly Kähler and

∂̇r̄(δkF̃ )ηk = P (∂̇r̄F̃ ), r = 1, n and P =
1

F̃
(δkF̃ )ηk. (17)

Moreover, the projective change is G̃i = Gi + Pηi and F̃ is Kähler-Berwald.

Proposition

Let F and F̃ be two projectively related complex Finsler metrics on M. If
P is (1, 0)-homogeneous and F is generalized Berwald, then P is

holomorphic with respect to η.
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Part I Chapter 3: Projectivities in complex Finsler geometry

3.2 Projectively related complex Finsler metrics ; Hilbert's fourth problem

Theorem

Let L be the complex Euclidean metric on a domain D from Cn and L̃ be another
complex Finsler metric on D. Then, L and L̃ are projectively related if and only if
L̃ is weakly Kähler and

G̃i =
1

2L̃

∂L̃

∂zk
ηkηi, i = 1, n. (18)

Moreover, L̃ is Kähler-Berwald.

(18) ⇒ G̃i = 1
F̃

∂F̃
∂zk η

kηi, i = 1, n.

Examples of complex Finsler metrics which are projectively related to the
complex Euclidean metric:

F̃ 2(z, η) =
|η|2 + ε

(
|z|2|η|2 − |< z, η >|2

)
(1 + ε|z|2)2

, ε < 0, (19)

de�ned on the disk ∆nr =
{
z ∈ Cn, |z| < r, r =

√
1/|ε|

}
⊂ Cn.

; G̃i = − ε<z,η>
1+ε|z|2 η

i = 1
F̃

∂F̃
∂zk η

kηi;

; the metrics (19) are Kähler, pure Hermitian with KF̃ = 4ε;

; for ε = −1, (19) provides the Bergman metric on the unit disk ∆n = ∆n
1 .
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Part I Chapter 4: Projective invariants of a complex Finsler space

4.2 Projective curvature invariants

N. Aldea, G. Munteanu, On projective invariants of the complex Finsler spaces.
Di�. Geom. Appl., 30(6) (2012), 562-575.

N. Aldea, G. Munteanu, On complex Douglas spaces.
J. Geom. Phys., 66 (2013), 80-93.

Key tool: Berwald type connection BΓ ; the canonical (c.n.c.);

Connection form of BΓ: ωi
j(z, η) = Gi

jkdz
k +Gi

jk̄
dz̄k;

The structure equation: dωi
j − ωk

j ∧ ωi
k = Ωi

j with the curvature form:

Ωij = −
1

2
Ki
jkhdz

k ∧ dzh −
1

2
Ki
jk̄h̄

dz̄k ∧ dzh +Ki
jhk

dzk ∧ dzh

−Gijkhdz
k ∧

c
δηh −Gi

jk̄h̄
dz̄k ∧

c
δη̄h −Gi

jhk
dzk ∧

c
δηh +Gi

jhk

c
δηk ∧ dzh;

hh-, h̄h̄- and hh̄- curvature tensors:

Ki
jkh =

c
δhG

i
jk −

c
δkG

i
jh +GljkG

i
lh −GljhG

i
lk,

Ki
jk̄h̄

=
c
δh̄G

i
jk̄

−
c
δk̄G

i
jh̄

+Gl
jk̄
Gi
lh̄

−Gl
jh̄
Gi
lk̄
,

Ki
jk̄h

=
c
δhG

i
jk̄

−
c
δk̄G

i
jh +Gl

jk̄
Gilh −GljhG

i
lk̄
.
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4.2.1 Curvature forms and Bianchi identities

hv-, h̄v̄- and hv̄- curvature tensors:

Gijkh = ∂̇hG
i
jk, G

i
jk̄h̄

= ∂̇h̄G
i
jk̄
, Gi

jk̄h
= ∂̇hG

i
jk̄
.

Bianchi identities:
∂̇rG

i
jkh = ∂̇hG

i
jkr, ∂̇rG

i
jkh

= ∂̇hG
i
jkr

, ∂̇rG
i
jk̄h̄

= ∂̇h̄G
i
jkr

,

∂̇r̄G
i
jkh = ∂̇hG

i
jrk, ∂̇r̄G

i
jk̄h̄

= ∂̇h̄G
i
jk̄r̄

, ∂̇r̄G
i
jhk

= ∂̇h̄G
i
jrk.

θ∗i hold: θ∗ikjη
k = 0, θ∗i

kh̄
ηk = θ∗i

h̄
, θ∗i

k̄j
η̄k = θ∗ij , θ∗i

k̄h̄
η̄k = 0,

θ∗ikjrη
k = −θ∗ijr, θ∗i

kh̄j
ηk = 0, θ∗i

rk̄j
η̄k = θ∗irj , θ∗i

jk̄h̄
η̄k = 0,

θ∗i
kh̄r̄

ηk = θ∗i
h̄r̄
, θ∗jhlrmη

m = −2θ∗jhlr, θ∗j
hl̄rm

η̄l = θ∗jhrm,

θ∗j
hl̄r̄m

η̄l = 0, θ∗j
hl̄rm

ηm = −θ∗j
hl̄r
, θ∗j

hl̄r̄m
ηm = 0, θ∗kηk = 0.

Let F̃ be a complex Finsler metric on M ; F̃ ; G̃i and θ̃∗i.

F and F̃ are projectively related i� ∃ P smooth on T ′M , such that

G̃i = Gi + V ηi and θ̃∗i = θ∗i +Qηi, i = 1, n, (20)

V = (∂̇kP )ηk is (1, 0)-homogeneous, Q = −2(∂̇k̄P )η̄k is (0, 1)-homogeneous
and P = V − 1

2Q.
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4.2.2 Projective curvature invariants of Douglas type

Sketch of proof

Di�erentiating in (20) w.r.t. ηj , we get

G̃i = Gi +
1

2
(θ̃∗i − θ∗i) +

1

n+ 1
(
c

Ñ l
l −

c

N l
l )η

i −
1

2n
(θ̃∗ll − θ∗ll )ηi, i = 1, n. (21)

Successive di�erentiations of (21) w.r.t. η and η̄ yield

G̃
i
jkh = G

i
jkh +

1

n + 1
[(∂̇hD̃jk − ∂̇hDjk)η

i
+

∑
(k,j,h)

(D̃jh −Djh)δ
i
k]

+
1

2
(θ̃

∗i
jkh − θ

∗i
jkh) −

1

2n
[(∂̇hθ̃

∗l
ljk − ∂̇hθ

∗l
ljk)η

i
+

∑
(j,k,h)

(θ̃
∗l
ljh − θ

∗l
ljh)δ

i
k],

G̃
i
jk̄h̄ = G

i
jk̄h̄ +

1

n + 1
[(∂̇jD̃k̄h̄ − ∂̇jDk̄h̄)η

i
+ (D̃k̄h̄ −Dk̄h̄)δ

i
j ]

+
1

2
(θ̃

∗i
jk̄h̄ − θ

∗i
jk̄h̄) −

1

2n
[(∂̇h̄θ̃

∗l
lk̄j − ∂̇h̄θ

∗l
lk̄j)η

i
+ (θ̃

∗l
lk̄h̄ − θ

∗l
lk̄h̄δ

i
j ],

G̃
i
jk̄h = G

i
jk̄h +

1

n + 1
[(∂̇hD̃k̄j − ∂̇hDk̄j)η

i
+ (D̃k̄j −Dk̄j)δ

i
h + (D̃k̄h −Dk̄h)δ

i
j ]

+
1

2
(θ̃

∗i
jk̄h − θ

∗i
jk̄h) −

1

2n
[(∂̇hθ̃

∗l
lk̄j − ∂̇hθ

∗l
lk̄j)η

i
+ (θ̃

∗l
lk̄j − θ

∗l
lk̄j)δ

i
h + (θ̃

∗l
lk̄h − θ

∗l
lk̄h)δ

i
j ],

(22)

where Dkh = Giikh, Dk̄h̄ = Gi
ik̄h̄

and Dk̄h = Gi
ik̄h

are respectively, hv-, h̄v̄- and hv̄-
Ricci tensors.

C. N. Aldea Habilitation Thesis 25



Part I Chapter 4: Projective invariants of a complex Finsler space

4.2.2 Projective curvature invariants of Douglas type ; complex Douglas space

⇒ 3 projective curvature invariants of Douglas type

Di
jkh = Gi

jkh − 1
n+1

[(∂̇hDjk)η
i +

∑
(k,j,h)Djhδ

i
k] −

1
2
{θ∗ijkh − 1

n
[(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h) θ
∗l
ljhδ

i
k]},

Di
jk̄h̄

= Gi
jk̄h̄

− 1
n+1

[(∂̇jDk̄h̄)ηi +Dk̄h̄δ
i
j ] −

1
2
{θ∗i

jk̄h̄
− 1

n
[(∂̇h̄θ

∗l
lk̄j

)ηi + θ∗l
lk̄h̄

δij ]},

Di
jk̄h

= Gi
jk̄h

− 1
n+1

[(∂̇hDk̄j)η
i +Dk̄jδ

i
h +Dk̄hδ

i
j ] −

1
2
{θ∗i

jk̄h
− 1

n
[(∂̇hθ

∗l
lk̄j

)ηi + θ∗l
lk̄j

δih + θ∗l
lk̄h

δij ]}.

(23)

De�nition

A complex Finsler space (M,F ) is called a complex Douglas space if all of the
invariants (23) are vanishing.

Remark

If F is Kähler-Berwald, then the projective curvature invariants of Douglas type
are vanishing ⇒ any Kähler-Berwald space is a complex Douglas space.
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4.2.2 Projective curvature invariants of Douglas type ; complex Douglas space

Theorem

Let F and F̃ be projectively related complex Finsler metrics on M . F is a Douglas metric
if and only if F̃ is a Douglas metric.

Theorem

Let (M,F ) be a complex Finsler space. (M,F ) is a complex Douglas space if and only
if it is generalized Berwald with

θ∗ijkh =
1

n
[(∂̇hθ

∗l
ljk)η

i +
∑

(j,k,h)

θ∗lljhδ
i
k], (24)

θ∗i
jk̄h̄

=
1

n
[(∂̇h̄θ

∗l
ljk̄

)ηi + θ∗l
lk̄h̄

δij ],

θ∗i
jk̄h

=
1

n
[(∂̇hθ

∗l
ljk̄

)ηi + θ∗l
ljk̄
δih + θ∗l

lk̄h
δij ].

We call generalized Kähler the complex Finsler spaces which satisfy (24).

Notation Ki = θ∗i − 1
n
θ∗ll ηi.
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Part I Chapter 4: Projective invariants of a complex Finsler space

4.2.2 Projective curvature invariants of Douglas type ; complex Douglas space

Theorem

Let (M,F ) be a complex Finsler space. (M,F ) is a generalized Kähler space if and only
if the functions Ki are homogeneous polynomials in η and in η̄ of �rst degree. Moreover,
the functions Ki vanish identically if and only if the space is weakly Kähler.

Proposition

Let (M,F ) be a complex Finsler space. If θ∗i are homogeneous polynomials in η and η̄
of �rst degree, then (M,F ) is a generalized Kähler space.

Examples of generalized Kähler metrics are provided by the pure Hermitian metrics.

gij = gij(z) ⇒ Gi =
1

2
gm̄i

∂glm̄

∂zj
ηlηj and θ∗i = −gm̄i(

∂glm̄

∂z̄k
−
∂glk̄
∂z̄m

)ηlη̄k.

The pure Hermitian metrics are complex Douglas metrics.

Corollary

Let (M,F ) be a complex Finsler space. (M,F ) is a complex Douglas space if and only
if it is a generalized Berwald space and Ki = φir̄sη̄

rηs, where φir̄s are smooth functions
that depend only on z and z̄.

C. N. Aldea Habilitation Thesis 28



Part I Chapter 4: Projective invariants of a complex Finsler space

4.2.3 Weakly Kähler projective changes ; proj. curvature invariant of Weyl type

Let F be a weakly Kähler Finsler metric. Then, the projective changes is

G̃i = Gi + Pηi, (25)

where P is a (1, 0)-homogeneous and the weakly Kähler property is preserved.
Assuming that F is generalized Berwald ⇒

1 F and F̃ are Kähler-Berwald metrics;

2 Ki
jk̄h̄

= 0, Ki
jk̄h

= −δk̄L
i
jh and Ri

jk̄h
= Ki

jk̄h
+Kl

mk̄h
ηmCi

jl;

3 Rr̄jk̄h = Kr̄jk̄h +Kl
mk̄h

ηmCjr̄l and KF (z, η) =
2
L2Kr̄jk̄hη̄

rηj η̄kηh;

4 P is holomorphic with respect to η, i.e. Pk̄ = 0.

Consequently,

K̃i
jk̄h = Ki

jk̄h − Pjh|k̄η
i − Pj|k̄δ

i
h − Ph|k̄δ

i
j , (26)

0 = Pjhr|k̄η
i + Pjh|k̄δ

i
r + Pjr|k̄δ

i
h + Phr|k̄δ

i
j .

⇒ the projective curvature invariant of the Weyl type,

W i
jk̄h = Ki

jk̄h − 1

n+ 1
(Kk̄jδ

i
h +Kk̄hδ

i
j), (27)

where Kk̄h = Ki
ik̄h

is hh̄-Ricci tensor.
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4.3 Locally projectively �at complex Finsler metrics
Theorem

Let (M,F ) be a connected n-dimensional Kähler-Berwald spaces, n ≥ 2. Then, W i
jk̄h

= 0 if and

only if Km̄jk̄h = KF
4

(gjk̄ghm̄ + ghk̄gjm̄). In this case, KF = c, where c is a constant on M and

the space is either pure Hermitian with Kk̄j =
c(n+1)

4
gjk̄ or non-pure Hermitian with c = 0 and

Ki
jk̄h

= 0.

Let F̃ be a locally Minkowski complex Finsler metric on M, (i.e. ∀ z ∈ M , ∃ local charts
such that the fundamental metric tensor g̃ij̄ depends only on η) ⇒ G̃i = θ̃∗i = 0.

A complex Finsler metrics F on M is called locally projectively �at i� it is projectively
related to the locally Minkowski metric F̃ .

Theorem

Let (M,F ) be a connected n-dimensional complex Finsler space, n ≥ 2. If F is locally projectively

�at then it has constant holomorphic curvature. Moreover, if the constant value of the holomorphic

curvature is non-zero, then (M,F ) is a pure Hermitian space.

Theorem [N.A, P. Kopacz, Di�. Geom. Appl. 2017]

Let F be a complex Finsler metric on domain D from Cn. F is locally projectively �at if and only

if it is Kähler-Berwald and Gi = 1
F
∂F
∂zk

ηkηi.
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4.5 Complex Douglas spaces with Randers metrics

Consider ã = aij̄(z)dz
i⊗dz̄j a pure Hermitian metric and b = bi(z)dz

i a di�erential
(1, 0)-form ; the complex Randers metric

F (z, η) = α+ |β|, (28)

α(z, η) =
√
aij̄η

iη̄j and β(z, η) = biη
i [N.A., G. Munteanu, J. Kor. Math. Soc. 2009];

Gi =
a

Gi + 1
2γ

(lr̄
∂b̄r

∂zj
− β2

|β|2
∂br̄
∂zj

η̄r)ξiηj + β
4|β|k

ri ∂br̄
∂zj

ηj ;

a

θ∗i = −Γlr̄m̄a
m̄iηlη̄r, Γlr̄m̄ = ∂alm̄

∂z̄r
− ∂alr̄
∂z̄m

;

θ∗i = −α(Γlr̄m̄τ lη̄r + 2β
|β|Ωm̄)(hm̄i − β̄

γ
bm̄ηi),

where hm̄i = am̄i − α2

γ
bm̄bi and Ωm̄ =

a

N s̄
m̄bs̄ −

∂br̄
∂z̄m

η̄r − β̄2

|β|2
∂bl
∂z̄m

ηl.

Theorem [N.A., G. Munteanu, J. Geom. Phys. 2012]

Let (M,F ) be a connected complex Randers space. Then, (M,F ) is a generalized Berwald

space if and only if (β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0. Moreover, given any of them, Gi =

a

Gi .
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4.5 Complex Douglas spaces with Randers metrics

Theorem

Let (M,F ) be a connected complex Randers space. Then, (M,F ) is a complex Douglas

space if and only if (β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0 and Ki =

a

Ki. Given any of them, Ωm̄ =

− 1
2
Γlr̄m̄blη̄r. Moreover, if α is Kähler, then (M,F ) is a Kähler-Berwald space.

Theorem

Let (M,F ) be a connected complex Randers space. If (M,F ) is a generalized Berwald

space, then Ki =
a

Ki if and only if θ∗i =
a

θ∗i.

Theorem

Let (M,F ) be a connected complex Randers space. Then, (M,F ) is a complex Douglas

space if and only if (β̄lr̄
∂b̄r

∂zj
+ β ∂br̄

∂zj
η̄r)ηj = 0 and θ∗i =

a

θ∗i .

Theorem [N.A., G. Munteanu, Nonlinear Anal. Real World Appl. 2012]

Let (M,F ) be a connected complex Randers space. Then, α and F are projectively
related if and only if F is generalized Berwald and Bi = −Pηi, for any i = 1, n, where
P = − β̄

4F |β|Γlr̄m̄bm̄ηlη̄r.
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4.5 Complex Douglas spaces with Randers metrics

Theorem

Let (M,F ) be a connected complex Randers space. Then, (M,F ) is a complex Douglas
space if and only if α and F are projectively related.

Remark

Any complex Randers Douglas space of dimension two is a Kähler-Berwald space.

Example 1. Let ∆ =
{
(z, w) ∈ C2, |w| < |z| < 1

}
be the Hartogs triangle with the pure

Kähler-Hermitian metric

aij =
∂2

∂zi∂zj
(log

1

(1− |z|2) (|z|2 − |w|2)
), (z, w) = (z1, z2). (29)

and b1 = w
|z|2−|w|2 , b2 = − z

|z|2−|w|2 ⇒ a Kähler-Berwald metric F = α+ |β| ; α and

F are projectively related.

Example 2. On M = C3 we set: the pure Hermitian metric

α2 = ez
1+z̄1

∣∣η1∣∣2 + ez
2+z̄2

∣∣η2∣∣2 + ez
1+z̄1+z3+z̄3

∣∣η3∣∣2 (30)

and the (1, 0)-di�erential form β given by β = ez
2

η2 ⇒ a complex Douglas-Randers

metric F = α+ |β| ; α and F are projectively related.
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4.5 Complex Douglas spaces with Randers metrics

Example 3. On Hartogs triangle ∆, we set b1 = w
|z|2−|w|2 and b2 = − z

|z|2−|w|2 and

the pure Hermitian metric α2 = aijη
iηj , with (aij) =

( 1
1−|z|2 + b1b1̄ b1b2̄

b2b1̄ b2b2̄

)
⇒ a generalized Berwald-Randers metric F = α+ |β| which is not Douglas.

Figure 2: Inclusion diagram
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Part I Chapter 5: Zermelo's deformation of Hermitian metrics

5.2 Rudiments of R-complex Finsler geometry

N. Aldea, Zermelo deformation of Hermitian metrics by holomorphic vector �elds.
Results in Math., 75(4) (2020), 140.

N. Aldea, P. Kopacz, Generalized Zermelo navigation on Hermitian manifolds under mild

wind. Di�. Geom. Appl., 54(A) (2017), 325-343.

De�nition

An R-complex Finsler space is a pair (M,F ), where F is a continuous function F :
T ′M −→ R+ satisfying the conditions:
i) L = F 2 is smooth on M̃ = T ′M\{0};
ii) F (z, η) ≥ 0 for all (z, η) ∈ T ′M ; the equality holds if and only if η = 0;
iii) F (z, λη, z̄, λη̄) = λF (z, η, z̄, η̄), for all λ > 0.

The Hessian and the Levi matrices of L induce the tensors

gij =
∂2L

∂ηi∂ηj
, gij̄ =

∂2L

∂ηi∂η̄j
, gı̄j̄ =

∂2L

∂η̄i∂η̄j
; (31)

(∂̇iL)η
i + (∂̇ı̄L)η̄

i = 2L, gijη
i + gjı̄η̄

i = ∂̇jL, L = Re{gijηiηj}+ gij̄η
iη̄j ,

(∂̇jgik)η
j + (∂̇j̄gik)η̄

j = 0, (∂̇jgik̄)η
j + (∂̇j̄gik̄)η̄

j = 0.

⇒ two general classes of R-complex Finsler spaces:

1 R-complex Hermitian Finsler spaces, i.e. (gij̄) is positive de�nite

2 R-complex non-Hermitian Finsler spaces, i.e. (gij) is positive de�nite
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5.2 Rudiments of R-complex Finsler geometry

Let (M,F ) be a R-complex Hermitian Finsler space.

Chern-Finsler (c.n.c) with N i
j = gm̄i ∂2L

∂zk∂η̄m
= gm̄i[(∂kgr̄m̄)η̄r + (∂kgsm̄)ηs].

Chern-Finsler connection D : Γ(T ′M̃) → Γ(T ∗
CM̃ ⊗ T ′M̃) locally given by

Lijk = gm̄i(δjgkm̄), Cijk = gm̄i(∂̇jgkm̄), Lijk̄ = Cijk̄ = 0, (32)

with Lijk = ∂̇jN
i
k and N i

k = Lijkη
j + (∂̇r̄N

i
k)η̄

r and T ijk = Lijk − Likj .

KF (z, η) = 2

L̃2 gim̄Ri
jhk

ηj η̄hηkη̄m is the holomorphic curvature of F in direction η,

where Ri
jhk

= −δhL
i
jk − (δhN

l
k)C

i
jl and L̃ = gim̄ηkη̄m.

(M,F ) is called strongly Kähler or Kähler i� T ijk = 0 or T ijkη
j = 0, respectively.

α2 = Re{aijηiηj}+ aij̄η
iη̄j , with a = aij̄ (z) dz

i ⊗ dz̄j a Hermitian metric on M .

β = Re{biηi}, with b = bi(z)dz
i a di�erential (1, 0)-form, ||b||2 = aj̄ibibj̄ .

Lemma

Let F = α+ β be an R-complex Randers function with aij =
1
2
bibj . Then, F is positive

on M̃ if and only if ||b||2 < 2. Moreover, any of these assertions implies α2 − β2 > 0.

||b||2 < 2 also assures that gij̄ is positive de�nite ; F = α + β with aij = 1
2
bibj

is an R-complex Hermitian Randers metric (brie�y R-complex Randers metric).
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5.3 Generalized Zermelo navigation under weak wind
(M,h) is an n-dimensional Hermitian manifold (h = hij̄dz

i ⊗ dz̄j is a Hermitian
metric, hjk̄(z) = h( ∂

∂zj
, ∂
∂z̄k

)) ; the imaginary sea;

; a perturbing vector �eld W = W j ∂
∂zj

, ||W ||h < 1 ; a weak wind;

u is the velocity of a ship in the absence of wind, ||u||h = f(z) ∈ (||W ||h, 1], where
f : M → (||W ||h, 1] is smooth ; the ship's speed ||u||h is space-dependent;

(h, f(z),W ) ; the generalized navigation data

⇒ the ship's resultant velocity v = u+W ⇒ h is deformed into the R-complex Randers
metric F (z, η) = α+ β (called W -Zermelo deformation) with

α =

√
[Reh(η, W̄ )]2 + ||η||2

h
ψ

ψ2
=
√
Re{aijηiηj} + aij̄η

iη̄j , β = −
Reh(η, W̄ )

ψ
= Re{biη

i},

α is a Hermitian metric, Reh(η, W̄ ) ̸= 0, ||b||2 ∈ (0, 2) because the wind W is weak,

aij̄ =
hij̄

ψ
+
WiWj̄

2ψ2
, aij =

WiWj

2ψ2
, bi = −

Wi

ψ
, ψ = f2 − ||W ||2h. (33)

Theorem

An R-complex Hermitian Finsler metric F is of Randers type, i.e. F = α+β with (33), if
and only if it solves the generalized Zermelo navigation problem on a Hermitian manifold
(M,h), with space-dependent ship's speed ||u(z)||h ≤ 1 and under action of weak wind
W . Moreover, F is a pure Hermitian metric conformal to h, with the conformal factor

1
||u(z)||h

, if and only if W = 0.
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5.4 W -Zermelo metric ; 5.4.2 Holomorphic Zermelo deformation

W is called f -holomorphic if ∂W
k

∂z̄r
= 0 and W k

|j =
∂ log f2

∂zj
W k, where

W k
|j =

∂Wk

∂zj
+ hm̄k ∂hrm̄

∂zj
W r, k = 1, n.

W is f -holomorphic i�
a

δjβ = 0, with bi = −Wi
ψ
.

Theorem

Let (M,h) be an n-dimensional Kähler manifold, n ≥ 2, and (h, f(z),W ) be the gener-
alized navigation data, with W an f -holomorphic vector �eld. Then, f is a constant if
and only if W -Zermelo deformation F is strongly Kähler.

Theorem

Let (M,h) be an n-dimensional Hermitian manifold and (h, f(z),W ) be the generalized
navigation data, with W an f -holomorphic vector �eld. Then, the holomorphic curvature
in direction η, corresponding to W -Zermelo deformation F is

KF (z, η) =
h̃4P

(1− c)f2

(
Kh(z, η) +

2

h̃2

∂2 log f2

∂zj∂z̄m
ηj η̄m

)
, (34)

where c ∈ (0, 1). If ∂ log f2

∂zj
is a holomorphic function, then KF (z, η) = h̃4P

(1−c)f2Kh(z, η).
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Part II Extensions of Matsumoto's slope-of-a-mountain problem

Genesis of Matsumoto's slope-of-a-mountain problem

Finsler's answer to Matsumoto's letter about �models of Finsler spaces�:

(...) on a slope of the earth surface we sometimes measure the distance in a time (...)

The shortest line along which we can reach the goal, for instance, the top of a mountain

as soon as possible will be a complicated curve. (P. Finsler, 1969)

M. Matsumoto, A slope of a mountain is a Finsler surface with respect to a time
measure. J. Math. Kyoto Univ., 29 (1989), 17-25.

Matsumoto's slope-of-a-mountain problem:

Suppose a person walking on a horizontal plane with velocity c, while the gravitational
force is acting perpendicularly on this plane. The person is almost ignorant of the action
of this force. Imagine the person walks now with same velocity on the inclined plane of
angle ε to the horizontal sea level.

Under the in�uence of gravitational forces, what is the trajectory the person should walk
in the centre to reach a given destination in the shortest time?

; an exact formulation of the model of a Finsler surface

; the most e�cient (time-minimizing) paths are the geodesics of the slope metric.
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Part II Extensions of Matsumoto's slope-of-a-mountain problem

General view

Aim: to present a general time-optimal navigation problem on a slippery moun-
tain slope under the action of gravity which uni�es all extensions of Matsumoto's
slope-of-a-mountain problem (MAT) and, in particular, links MAT and Zermelo's
navigation problem (ZNP).

Approached problems:

One-parameter time-optimal navigation problems through the slippery slope
models that incorporate a traction coe�cient:

▶ slippery with a cross-traction coe�cient η ∈ [0, 1] (SLIPPERY), interlinking
MAT and ZNP under the in�uence of the gravitational wind (Ch. 7);

▶ slippery with an along-traction coe�cient η̃ ∈ [0, 1] (S-CROSS) which con-
nects the cross problem under cross-gravity e�ect (CROSS) and ZNP under
the in�uence of the gravitational wind (Ch. 8);

A two-parameter time-optimal navigation problem through a slippery slope
model where both traction coe�cients η and η̃ are admitted to vary simulta-
neously, in full ranges (Ch. 9).
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Part II Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

Main refs.: S.S. Chern & Z. Shen 2005, I. Buc taru & R. Miron 2007, Z. Shen
CJM 2003, C. Yu & H. Zhu DGA 2011.

M - a real n-dimensional C∞-manifold, n > 1;

(xi), i = 1, ..., n - the local coordinates in x ∈ M ;

TxM - the tangent space at x ∈ M ;{
∂

∂xi

}
- the natural basis for the tangent bundle TM = ∪

x∈M
TxM ;

∀y ∈ TxM , y = yi ∂
∂xi ; (x

i, yi) - the local coordinates in (x, y) ∈ TM .

De�nition

The pair (M,F ) is a real Finsler manifold if F : TM → [0,∞) is a continuous
function with the following properties:
i) F is a C∞-function on the slit tangent bundle TM0 = TM\{0};
ii) F is positively homogeneous of degree one with respect to y, i.e.
F (x, cy) = cF (x, y), for all c > 0;

iii) the Hessian gij(x, y) =
1
2

∂2F 2

∂yi∂yj is positive de�nite for all (x, y) ∈ TM0.
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Part II Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

IF = {(x, y) ∈ TM | F (x, y) = 1} denotes the indicatrix of F ;

iii) refers to the fact that IF is strongly convex;

S = yi ∂
∂xi − 2Gi ∂

∂yi , is a spray on M ;

The spray coe�cients Gi = Gi(x, y), i = 1, ..., n are positively homogeneous
of degree two with respect to y;

If S is induced by a Finsler metric F , then

Gi(x, y) =
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
=

1

4
gil

(
2
∂gjl
∂xk

− ∂gjk
∂xl

)
yjyk, (35)

(gil) being the inverse matrix of (gil);

γ : [0, 1] → M , γ(t) = (γi(t)), is a regular piecewise C∞-curve on M ;

γ is F -geodesic if γ̇(t) = dγ
dt is parallel along the curve, i.e. in the local

coordinates, γi(t), i = 1, ..., n are the solutions of the ODE system

γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0. (36)
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Part II Chapter 6: Rudiments of real Finsler geometry

6.1 Finsler manifolds

Proposition [Z. Shen, Canad. J. Math. 2003]

Let (M,F ) be a Finsler manifold and W a vector �eld on M such that
F (x,−W ) < 1. Then the solution of the Zermelo's navigation problem with the
navigation data (F,W ) is a Finsler metric F̃ obtained by solving the equation

F (x, y − F̃ (x, y)W ) = F̃ (x, y), (37)

for any nonzero y ∈ TxM , x ∈ M.

Lemma [S.S. Chern, Z. Shen, 2005]

Let (M,F ) be a Finsler manifold andW be a vector �eld onM with F (x,−W ) < 1
∀x ∈ M . De�ne F̃ : TM → [0,∞) by (37). For any piecewise C∞-curve γ on
M , the F̃ -length of γ is equal to the time for which the object travels along it.

Remark

Any regular piecewise C∞-curve γ : [0, 1] → M , parametrized by time, that
represents a trajectory in Zermelo's navigation problem has unit F̃ -length, i.e.
F̃ (γ(t), γ̇(t)) = 1.
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Part II Chapter 6: Rudiments of real Finsler geometry

6.2 General (α, β)-metrics

A Finsler metric F is called general (α, β)-metric if it can be expressed as

F = αϕ(b2, s),

where ϕ(b2, s) is a positive C∞-function in the variables

b2 = ||β||2α = aijbibj s =
β

α
,

with |s| ≤ b < b0 and 0 < b0 ≤ ∞; see [C. Yu, H. Zhu, Di�. Geom. Appl. 2011].

Proposition 1 [C. Yu, H. Zhu, Di�. Geom. Appl. 2011]

Let M be an n-dimensional manifold. F = αϕ(b2, s) is a Finsler metric for any Rieman-
nian metric α and 1-form β, with ||β||α < b0 if and only if ϕ = ϕ(b2, s) is a positive
C∞-function satisfying

ϕ− sϕ2 > 0, ϕ− sϕ2 + (b2 − s2)ϕ22 > 0,

when n ≥ 3 or
ϕ− sϕ2 + (b2 − s2)ϕ22 > 0,

when n = 2, where s = β
α
and b = ||β||α satisfy |s| ≤ b < b0.
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Part II Chapter 6: Rudiments of real Finsler geometry

6.2 General (α, β)-metrics

rij =
1
2
(bi|j + bj|i), ri = bjrji, ri = aijrj , r00 = rijy

iyj , r0 = riy
i, r = biri,

sij =
1
2
(bi|j − bj|i), si = bjsji, si = aijsj , si0 = aijsjky

k, s0 = siy
i,

with bj = ajibi, bi|j =
∂bi
∂xj

− Γkijbk and Γkij =
1
2
akm

(
∂ajm
∂xi

+ ∂aim
∂xj

− ∂aij
∂xm

)
.

Proposition 2 [C. Yu, H. Shu, Di�. Geom. Appl. 2011]

For a general (α, β)-metric F = αϕ(b2, s), its spray coe�cients Gi are related to the spray
coe�cients Giα of α by

Gi = Giα + αQsi0 +
[
Θ(−2αQs0 + r00 + 2α2Rr) + αΩ(r0 + s0)

] yi
α

+
[
Ψ(−2αQs0 + r00 + 2α2Rr) + αΠ(r0 + s0)

]
bi − α2R(ri + si),

where

Q =
ϕ2

ϕ− sϕ2
, Θ =

(ϕ− sϕ2)ϕ2 − sϕϕ22

2ϕ[ϕ− sϕ2 + (b2 − s2)ϕ22]
,

Ψ =
ϕ22

2[ϕ− sϕ2 + (b2 − s2)ϕ22]
, Π =

(ϕ− sϕ2)ϕ12 − sϕ1ϕ22

(ϕ− sϕ2)[ϕ− sϕ2 + (b2 − s2)ϕ22]
,

Ω =
2ϕ1

ϕ
− sϕ+ (b2 − s2)ϕ2

ϕ
Π, R =

ϕ1

ϕ− sϕ2
.
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.1 Gravitational wind

N. Aldea, P. Kopacz, Time geodesics on a slippery slope under gravitational wind.
Nonlinear Anal.-Theor. 227 (2023), 113160.

(M,h) - a surface embedded in R3
; a mountain slope;

πO - the tangent plane to M at an arbitrary point O ∈ M ;

G - a gravitational �eld in R3 that a�ects M ;

G = GT +G⊥
; G⊥ is orthogonal to M and GT is tangent to M in O;

GT - gravitational wind ;

▶ GT acts along an anti-gradient (a negative gradient), i.e. the steepest
descent (downhill) direction;

▶GT depends on the gradient vector �eld related to the slope M and a given
acceleration of gravity.

▶ ||GT ||h =
√
h(GT ,GT ) - force of GT ;

u ∈ πO - a desired direction of motion ; the self-velocity of a moving craft
or a walker on M .
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.1 Gravitational wind

GT = ProjuG
T︸ ︷︷ ︸

GMAT

along-gravity e�ect

+ Proju⊥GT︸ ︷︷ ︸
G⊥

MAT

cross-gravity e�ect

Remark

Cross-gravity e�ect is omitted in Matsumoto's reasoning: the component perpen-
dicular to the velocity u is regarded to be cancelled by planting the walker's legs
on the road determined by u [M. Matsumoto, J. Math. Kyoto Univ. 1989].

In MAT the resultant velocity: vMAT = u+GMAT ; vMAT ∥ u.
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.1 Gravitational wind

; cross-traction coe�cient η ∈ [0, 1] ;
−−→
AB = (1− η)Proju⊥GT

; active wind Gη = ProjuG
T +

−→
AB = ProjuG

T + (1− η)Proju⊥GT

⇒ Gη = η GMAT︸ ︷︷ ︸
I. u-direction-dependent

deformation

+ (1− η)GT︸ ︷︷ ︸
II. rigid translation

(38)

Resultant velocity: vη = u+Gη ; vη ∦ u in contrast to MAT;

||
−→
AB||h - measures the sliding e�ect ; the lesser the traction, the greater the

sliding; η = 1 in MAT and η = 0 in ZNP under action of GT .

SLIPPERY problem: Suppose a person walks on a horizontal plane at a constant
speed, while the gravity acts orthogonally to this plane. Imagine the person en-
deavours to walk now on the slippery mountainside with a given traction coe�cient
and under the in�uence of gravity.

How should the person navigate on the slippery slope of a mountain in order to
travel from one point to another in the shortest time?

C. N. Aldea Habilitation Thesis 48



Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.2 Main results ; Background

(M,h) - an n-dimensional Riemannian manifold, n > 1;model for a slippery
slope of a mountain.

ω♯ = hji ∂p
∂xj

∂
∂xi - the gradient vector �eld of p; p : M → R is a C∞-function

on M.

GT = −ḡω♯ is the gravitational wind (ḡ is the rescaled magnitude of the
acceleration of gravity g, i.e. ḡ = λg, λ > 0).

Based on scaling, for the self-velocity u of a moving craft on the slope we
assume that ||u||h =

√
h(u, u) = 1.

Notations:

α2 = ||y||2h = hijy
iyj and β = −1

ḡ
h(y,GT ) = h(y, ω♯) = biy

i, (39)

α = α(x, y), β = β(x, y) and ||β||h = ||ω♯||h, (x, y) ∈ TM .

⇒ β - closed di�erential 1-form, i.e. sij = 0 [N.A, P. Kopacz, R. Wolak, Period.

Math. Hung. 2023].
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.2 Main results ; Slippery slope metric

Theorem 7.1.1. (Slippery slope metric)

Let a slippery slope of a mountain (M,h) be an n-dimensional Riemannian
manifold, n > 1, with the gravitational wind GT on M and the cross-traction
coe�cient η ∈ [0, 1]. The time-minimal paths on (M,h) in the presence of an

active wind Gη as in (38) are the geodesics of the slippery slope metric F̃η which
satis�es

F̃η

√
α2 + 2(1− η)ḡβF̃η + (1− η)2||GT ||2hF̃ 2

η = α2 + (2− η)ḡβF̃η + (1− η)||GT ||2hF̃ 2
η

with α = α(x, y), β = β(x, y) given by (39), where either η ∈ [0, 1
2 ] and

||GT ||h < 1, or η ∈ ( 12 , 1] and ||GT ||h < 1
2η . In particular, if η = 1, then

the slippery slope metric is reduced to the Matsumoto metric, and if η = 0, then it
is the Randers metric which solves the Zermelo navigation problem on a Rieman-
nian manifold under a gravitational wind GT .
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.2 Main results ; Time geodesics

Theorem 7.1.2. (Time geodesics)

Let a slippery slope of a mountain (M,h) be an n-dimensional Riemannian man-
ifold, n > 1, with the gravitational wind GT and the cross-traction coe�cient
η ∈ [0, 1]. The time-minimal paths on (M,h) in the presence of an active wind
Gη as in (38) are the time-parametrized solutions γ(t) = (γi(t)), i = 1, ..., n of
the ODE system

γ̈i(t) + 2G̃i
η(γ(t), γ̇(t)) = 0, (40)

for each η ∈ [0, 1], where

G̃i
η(γ(t), γ̇(t)) = Gi

α(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)

α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

] wi

ḡ
− R̃wi

|j
α2wj

ḡ2
,

with
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Part II Chapter 7: Time geodesics on a slippery slope under gravita

7.1 Slippery slope model ; 7.1.2 Main results ; Time geodesics

Theorem 7.1.2. (Time geodesics) - cont.

Giα(γ(t), γ̇(t)) = 1
4
him

(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
γ̇j(t)γ̇k(t),

r00 = − 1
ḡ
wj|kγ̇

j(t)γ̇k(t), r0 = 1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

R̃ = (1−η)ḡ2

2B̃α4 (B̃α2 + 2η), Θ̃ = ḡ2α(ÃB̃2α2−2D̃2β)

2Ẽ
, Ψ̃ = ḡ2α2(Ã2B̃+2D̃2)

2Ẽ
,

Ω̃ = (1−η)ḡ2

B̃Ẽα2 [(B̃α2 + 2η)(ḡ2B̃3α2 + 2D̃2||GT ||2h)− 4ηD̃(ḡ2B̃β + Ã||GT ||2h)],

Π̃ = (1−η)ḡ4

B̃Ẽα3 [4ηC̃D̃α+ (B̃α2 + 2η)(ÃB̃2α2 − 2D̃2β)],

Ã = − 2ḡ
α2

{
(1− η)[1− (2− η)||GT ||2h]− (2− η)2ḡβ − (2− η)α2

}
,

B̃ = − 2
α2

{
[1− 2(1− η)||GT ||2h]− 2(2− η)ḡβ − 2α2

}
, C̃ = 1

α

(
B̃α2 + Ãβ

)
,

D̃ = 2Ã− (2− η)ḡB̃, Ẽ = ḡ2B̃C̃2α2 + (||GT ||2hα2 − ḡ2β2)(Ã2B̃ + 2D̃2)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)).
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.1 Model of a slope under the cross-gravity e�ect ; Cross slope

N. Aldea, P. Kopacz, The slope-of-a-mountain problem in a cross gravitational wind.
Nonlinear Anal.-Theor., 235 (2023), 113329.

N. Aldea, P. Kopacz, Time geodesics on a slippery cross slope under gravitational
wind. Nonlinear Anal. Real World Appl., 81 (2025), 104177.

GT = ProjuG
T︸ ︷︷ ︸

GMAT

along-gravity e�ect

+ Proju⊥GT︸ ︷︷ ︸
G⊥

MAT

cross-gravity e�ect

; if along-gravity e�ect is omitted

; Cross slope (CROSS); impact of GT -components is reversed in comparison to MAT

active wind ; cross gravitational wind G† = G⊥
MAT = −GMAT +GT (41)

Resultant velocity: v† = u+ Proju⊥GT = u+G†.
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.1.2 Main results ; Cross-slope metric

CROSS problem: Suppose a person walks on a horizontal plane at a constant speed,
while the gravity acts orthogonally to this plane. Imagine the person endeavours to walk
now on a slope of a mountain under the in�uence of a cross gravitational wind.

How should the person navigate on the slope to get from one point to another in the

shortest time?

Theorem 8.1.1. (Cross-slope metric)

Let the slope of a mountain be an n-dimensional Riemannian manifold (M,h), n > 1,
with the gravitational wind GT . The time-minimal paths on (M,h) in the presence of
the cross gravitational wind G† as in (41) are the geodesics of the cross-slope metric F
which satis�es

||GT ||2hF 4 + 2ḡβF 3 + (α2 − ḡ2β2)F 2 − 2ḡα2βF − α4 = 0, (42)

where α = α(x, y), β = β(x, y) are given by (39) and ||GT ||h < 1
2
.
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.1.2 Main results ; Time geodesics

Theorem 8.1.2. (Time geodesics)

Let the slope of a mountain be an n-dimensional Riemannian manifold (M,h), n > 1,
with the gravitational wind GT . The time-minimal paths on (M,h) in the presence of
the cross wind G† are the time-parametrized solutions γ(t) = (γi(t)), i = 1, ..., n of the
ODE system γ̈i(t) + 2Gi(γ(t), γ̇(t)) = 0, (43)

for each η ∈ [0, 1], where

Gi(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)
α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃ r0

] wi
ḡ

− R̃wi|j
α2wj

ḡ2
,

with
Gi
α(γ(t), γ̇(t)) = 1

4
him

(
2
∂hjm

∂γk −
∂hjk
∂γm

)
γ̇j(t)γ̇k(t), R̃ = − ḡ2

2α4B̃
,

r00 = − 1
ḡ
wj|kγ̇

j(t)γ̇k(t), r0 = 1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

Θ̃ = ḡα

2Ẽ
(α6ÃB̃2 − ḡβ), Ω̃ = − ḡ2

B̃Ẽ
[α4B̃3 + ḡβB̃ + ||GT ||2h(B̃ − Ã)],

Ψ̃ = ḡ2α2

2Ẽ
(α4Ã2B̃ + 1), Π̃ = − ḡ3

2B̃Ẽα3 [2α4B̃(α2ÃB̃ − 1) − ḡβ(α2B̃ + 1)],

Ã = 1
α2 (ḡβ + α2 − 1), B̃ = 1

α2 (2ḡβ + 2α2 − 1), C̃ = 1
α

(
α2B̃ + ḡβÃ

)
,

Ẽ = B̃C̃2α6 + (||GT ||2hα
2 − ḡ2β2)(α4Ã2B̃ + 1)

(44)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)).
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.3 Model of a slippery cross slope under gravitational wind

GT = ProjuG
T︸ ︷︷ ︸

GMAT

along-gravity e�ect

+ Proju⊥GT︸ ︷︷ ︸
G⊥

MAT

cross-gravity e�ect

along-gravity e�ect is partially cancelled ; along-traction coe�cient η̃ ∈ [0, 1]

; Slippery cross slope (S-CROSS)

; active wind Gη̃ = (1− η̃)ProjuG
T + Proju⊥GT

⇒ Gη̃ = −η̃ GMAT︸ ︷︷ ︸
I. u-direction-dependent

deformation

+ GT︸︷︷︸
II. rigid translation

(45)

Resultant velocity: vη̃ = u+Gη̃.
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.3 Model of a slippery cross slope under GT
; Slippery-cross-slope metric

S-CROSS problem: Suppose a craft or a vehicle goes on a horizontal plane at maximum
constant speed, while gravity acts perpendicularly on this plane. Imagine the craft moves
now on a slippery cross slope of a mountain, with a given along-traction coe�cient and
under gravity.

What path should be followed by the craft to get from one point to another in the
minimum time?

Theorem 8.3.1. (Slippery-cross-slope metric)

Let a slippery cross slope of a mountain be an n-dimensional Riemannian manifold (M,h),
n > 1, with the along-traction coe�cient η̃ ∈ [0, 1] and the gravitational wind GT on M .
The time-minimal paths on (M,h) under the action of an active wind Gη̃ as in (45) are
the geodesics of the slippery-cross-slope metric F̃η̃ which satis�es

F̃η̃

√
α2 + 2ḡβF̃η̃ + ||GT ||2hF̃ 2

η̃ = α2 + (2− η̃)ḡβF̃η̃ + (1− η̃)||GT ||2hF̃ 2
η̃ ,

with α = α(x, y), β = β(x, y) given by (39), where either η̃ ∈ [0, 1
3
] and ||GT ||h < 1

1−η̃ ,

or η̃ ∈ ( 1
3
, 1] and ||GT ||h < 1

2η̃
. In particular, if η̃ = 1, then the slippery-cross-slope

metric yields the cross-slope metric, and if η̃ = 0, then it is the Randers metric which
solves the Zermelo navigation problem on a Riemannian manifold under a gravitational
wind GT .
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.3 Model of a slippery cross slope under GT
; Time geodesics

Theorem 8.3.2. (Time geodesics)

Let a slippery cross slope of a mountain be an n-dimensional Riemannian manifold
(M,h), n > 1, with the along-traction coe�cient η̃ ∈ [0, 1] and the gravitational
wind GT on M . The time-minimal paths on (M,h) under the action of an active
wind Gη̃ as in (45) are the time-parametrized solutions γ(t) = (γi(t)), i = 1, ..., n
of the ODE system

γ̈i(t) + 2G̃i
η̃(γ(t), γ̇(t)) = 0, (46)

for each η ∈ [0, 1], where

G̃i
η̃(γ(t), γ̇(t)) = Gi

α(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)

α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃r0

] wi

ḡ
− R̃wi

|j
α2wj

ḡ2
,

with
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Part II Chapter 8: The slope-of-a-mountain problem in a cross grav

8.3 Model of a slippery cross slope under GT
; Time geodesics

Theorem 8.3.2. (Time geodesics) - cont.

Giα(γ(t), γ̇(t)) = 1
4
him

(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
γ̇j(t)γ̇k(t), Ψ̃ = ḡ2α2

2Ẽ
(α4Ã2B̃ + η̃2),

r00 = − 1
ḡ
wj|kγ̇

j(t)γ̇k(t), r0 = 1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

R̃ = ḡ2

2α4B̃
[(1− η̃)α2B̃ − η̃], Θ̃ = ḡα

2Ẽ
(α6ÃB̃2 − η̃2ḡβ),

Ω̃ = ḡ2

α2B̃Ẽ
{[(1− η̃)α2B̃ − η̃](α6B̃3 + η̃2||GT ||2h)− η̃2α2(ḡβB̃ + ||GT ||2hÃ)},

Π̃ = ḡ3

2α3B̃Ẽ
{[(1− η̃)α2B̃ − η̃](2α6ÃB̃2 − η̃2ḡβ) + η̃2α2B̃(2α2 + ḡβ)},

Ã = − 1
α2 {

[
1− (2− η̃) (1− η̃) ||GT ||2h

]
− (2− η̃)2ḡβ − (2− η̃)α2},

B̃ = − 1
α2 {[1− 2(1− η̃)||GT ||2h]− 2(2− η̃)ḡβ − 2α2},

C̃ = 1
α

(
α2B̃ + ḡβÃ

)
, Ẽ = α6B̃C̃2 + (||GT ||2hα2 − ḡ2β2)(α4Ã2B̃ + η̃2)

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)).
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Part II Chapter 9: A general model for time-minimizing navigation

9.1 Broader meaning of a slippery slope ; General model ∼ 2-parameter model

N. Aldea, P. Kopacz, A general model for time-minimizing navigation on a mountain
slope under gravity.

J. Geom. Anal., 35 (2025) 282.

1-parameter models:

1 SLIPPERY model: η ∈ [0, 1] ; particular cases MAT, ZNP and many other

2 S-CROSS model: η̃ ∈ [0, 1] ; particular cases CROSS, ZNP and many other

; ZNP is border for SLIPPERY and S-CROSS: η = η̃ = 0
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Part II Chapter 9: A general model for time-minimizing navigation

9.1 Broader meaning of a slippery slope ; General model ∼ 2-parameter model
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; MAT, ZNP, RIEM , CROSS ; corner and particular cases

; other 1-parameter models:

R-MAT - reduced Matsumoto slope-of-a-mountain problem (η = 1 & η̃ ∈ [0, 1])

v = u+ (1− η̃)GMAT ; F̃ (x, y) =
||y||2h

||y||h + (1− η̃)h(y,GT )
, ||GT ||h <

1

2(1− η̃)
.

R-ZNP - reduced Zermelo navigation problem (η = η̃ ∈ [0, 1])

v = u+ (1− η)GT
; F̃ (x, y) =

√
[(1− η)h(y,GT )]2 + λη ||y||2h

λη
−

(1− η)h(y,GT )

λη
,

with ||GT ||h < 1
1−η and λη = 1− (1− η)2||GT ||2h.
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Part II Chapter 9: A general model for time-minimizing navigation

9.1 Broader meaning of a slippery slope ; General model ∼ 2-parameter model

R-CROSS - reduced cross slope problem (η ∈ [0, 1] & η̃ = 1)

v = u+ (1− η)G⊥
MAT ; F̃ (x, y) = . . ./ , ||GT ||h <

1

2(1− η)
.

Varying simultaneously both η, η̃ ∈ [0, 1]; 2-parameter model of slippery mountain
slope under the action of gravity ∼ General model

; S̃ = [0, 1] × [0, 1] - complete problem square diagram including: all navigation
problems Pη,η̃ on the slippery slope under gravity, with (η, η̃) ∈ S = S̃ ∖ {(1, 1)}
and transitions T P′

P between Pη,η̃ and P ′
η′,η̃′ .
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Part II Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems

GENERAL problem: Suppose a walker, craft or a vehicle has a certain constant maximum
speed as measured on a horizontal plane, while gravity acts perpendicular to this plane.
Imagine now that the craft endeavours to move on a slippery slope of a mountain under
gravity, admitting a traction-dependent sliding in arbitrary (downward) direction.

What path should be followed by the craft to get from one point to another in the least

time?

Active wind: Gηη̃ = (1− η̃)ProjuG
T + (1− η)Proju⊥GT , (η, η̃) ∈ S̃

⇒ Gηη̃ = (η − η̃)GMAT︸ ︷︷ ︸
I. anisotropic deformation

+ (1− η)GT︸ ︷︷ ︸
II. rigid translation

(47)

Resultant velocity: vηη̃ = u+Gηη̃, (η, η̃) ∈ S̃.
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Part II Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems ; (η, η̃)-slope metric

Theorem 9.1.1. ((η, η̃)-slope metric)

Let a slippery slope of a mountain be an n-dimensional Riemannian manifold (M,h),
n > 1, with a cross-traction coe�cient η ∈ [0, 1], an along-traction coe�cient η̃ ∈ [0, 1]
and a gravitational wind GT on M . The time-minimal paths on (M,h) under the action

of an active wind Gηη̃ as in (47) are the geodesics of an (η, η̃)-slope metric F̃ηη̃, which
satis�es

F̃ηη̃

√
α2 + 2(1 − η)ḡβF̃ηη̃ + (1 − η)2||GT ||2

h
F̃2
ηη̃ = α

2
+ (2 − η − η̃)ḡβF̃ηη̃ + (1 − η)(1 − η̃)||GT ||2hF̃

2
ηη̃

with α = α(x, y), β = β(x, y) given by (39), where either ||GT ||h < 1
1−η̃ and

(η, η̃) ∈ D1 ∪ D2, or ||GT ||h < 1
2|η−η̃| and (η, η̃) ∈ D3 ∪ D4, where

D1 = {(η, η̃) ∈ S | η ≥ η̃ > 2η − 1} , D2 =
{
(η, η̃) ∈ S | 3η̃−1

2
< η < η̃

}
,

D3 =
{
(η, η̃) ∈ S | η ≥ 1

2
, η̃ ≤ 2η − 1

}
, D4 =

{
(η, η̃) ∈ S | η̃ ≥ 1

3
, η ≤ 3η̃−1

2

}
,

S =
4⋃
i=1

Di and Di ∩ Dj = ∅, for any i ̸= j, i, j = 1, ..., 4. No restriction should be

imposed on ||GT ||h if η = η̃ = 1. In particular, a slope metric of type (0, 0), (1, 0) (0, 1),
(1, 1) is reduced to a Randers metric, a Matsumoto metric, a cross slope metric and
a Riemannian metric h, respectively.
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Part II Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems ; Time geodesics

Theorem 9.1.2. (Time geodesics)

Let a slippery slope of a mountain be an n-dimensional Riemannian manifold (M,h),
n > 1, with a cross-traction coe�cient η ∈ [0, 1], an along-traction coe�cient η̃ ∈ [0, 1]
and a gravitational wind GT on M . The time-minimal paths on (M,h) under the action
of an active wind Gηη̃ as in (47) are the time-parametrized solutions γ(t) = (γi(t)),
i = 1, ..., n of the ODE system

γ̈i(t) + 2G̃iηη̃(γ(t), γ̇(t)) = 0, (48)

where

G̃iηη̃(γ(t), γ̇(t)) = Giα(γ(t), γ̇(t)) +
[
Θ̃(r00 + 2α2R̃r) + αΩ̃r0

] γ̇i(t)

α

−
[
Ψ̃(r00 + 2α2R̃r) + αΠ̃r0

] wi

ḡ
− R̃wi|j

α2wj

ḡ2

with
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Part II Chapter 9: A general model for time-minimizing navigation

9.1.2 Problem formulation and main theorems ; Time geodesics

Theorem 9.1.2. (Time geodesics) - cont.

Giα(γ(t), γ̇(t)) = 1
4
him

(
2
∂hjm
∂xk

− ∂hjk
∂xm

)
γ̇j(t)γ̇k(t), Ψ̃ = ḡ2α2

2Ẽ
[α4Ã2B̃ + (η̃ − η)2],

r00 = − 1
ḡ
wj|kγ̇

j(t)γ̇k(t), r0 = 1
ḡ2
wj|kγ̇

j(t)wk, r = − 1
ḡ3
wj|kw

jwk,

R̃ =
(1−η)ḡ2

2α4B̃
[(1− η̃)α2B̃ − (η̃ − η)], Θ̃ = ḡα

2Ẽ
[α6ÃB̃2 − (η̃ − η)2ḡβ],

Ω̃ =
(1−η)ḡ2

α2B̃Ẽ
{[(1 − η̃)α2B̃ − (η̃ − η)][α6B̃3 + (η̃ − η)2||GT ||2h] − (η̃ − η)2α2(ḡβB̃ + ||GT ||2hÃ)},

Π̃ =
(1−η)ḡ3

2α3B̃Ẽ
{[(1 − η̃)α2B̃ − (η̃ − η)][2α6ÃB̃2 − (η̃ − η)2ḡβ] + (η̃ − η)2α2B̃[2α2 + (1 − η)ḡβ]},

Ã = − 1
α2 {(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
− (2− η − η̃)2ḡβ − (2− η − η̃)α2},

B̃ = − 1
α2 {[1− 2(1− η)(1− η̃)||GT ||2h]− 2(2− η − η̃)ḡβ − 2α2},

C̃ = 1
α

(
α2B̃ + ḡβÃ

)
, Ẽ = α6B̃C̃2 + (||GT ||2hα

2 − ḡ2β2)[α4Ã2B̃ + (η̃ − η)2]

and α = α(γ(t), γ̇(t)), β = β(γ(t), γ̇(t)), and wi denoting the components of GT .
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Sketches

Theorem 9.1.1. - sketch of proof ; Step I

Pη,η̃ on (M,h) under

Gηη̃ = (η − η̃)GMAT︸ ︷︷ ︸
Step I (anisotropic deformation)

+ (1− η)GT︸ ︷︷ ︸
Step II (rigid translation)
F (x,−(1− η)GT ) < 1

; vηη̃ = u+Gηη̃

Step I: deformation of h by (η − η̃)GMAT ; v = u+ (η − η̃)GMAT , ∀ (η, η̃) ∈ S̃ ∖ L,
L = {(η, η̃) ∈ S̃ | η = η̃}; η = η̃ ⇒ v = u.

C1: |η − η̃| ||GMAT ||h < 1 ; C2: |η − η̃| ||GMAT ||h = 1 ; C3: |η − η̃| ||GMAT ||h > 1 ⇒

under |η − η̃| ||GMAT ||h < 1 (performed for any direction), the deformation of h
by (η − η̃)GMAT ⇒ a Finsler metric of Matsumoto type

F (x, y) =
α2

α− (η − η̃)ḡβ
i� ||GT ||h <

1

2|η − η̃|
, ∀(η, η̃) ∈ S̃ ∖ L.

when |η − η̃| ||GMAT ||h ≥ 1 (only for some directions), this deformation ⇏ a
Finsler metric.
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Sketches

Theorem 9.1.1. - sketch of proof ; Step II

Step II: exploring Zermelo's navigation on (M,F ) with the navig. data (F, (1− η)GT ),

F (x, y) = α2

α−(η−η̃)ḡβ , ∀(η, η̃) ∈ S̃ ⇒ (η, η̃)-slope metric F̃ηη̃ and the necessary and

su�cient conditions that its indicatrix IF̃ηη̃
is strongly convex.

Applying Proposition [Z. Shen, Canad. J. Math. 2003], for each (η, η̃) ∈ S̃, the
(η, η̃)-slope metric is the unique positive solution F̃ of the irrational eq.

F̃
√
α2 + 2(1− η)ḡβF̃ + (1− η)2||GT ||2hF̃ 2 = α2 +(2− η− η̃)ḡβF̃ +(1− η)(1− η̃)||GT ||2hF̃

2

(49)

which is equivalent to

(1− η)2||GT ||2h[1− (1− η̃)2 ||GT ||2h]F̃
4 + 2(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡβF̃ 3

+{
[
1− 2(1− η) (1− η̃) ||GT ||2h

]
α2 − (2− η − η̃)2 ḡ2β2}F̃ 2 − 2 (2− η − η̃) ḡα2βF̃ − α4 = 0,

(50)

being assumed that
F (x,−(1− η)GT ) < 1. (51)

F̃ηη̃ satis�es (49) and along any regular piecewise C
∞-curve γ, parametrized by time

that represents a trajectory in Zermelo's problem, we have F̃ηη̃(γ(t), γ̇(t)) = 1.

C. N. Aldea Habilitation Thesis 68



Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Sketches

Theorem 9.1.1. - sketch of proof ; Step II

Exploring F (x,−(1 − η)GT ) < 1 ⇒ the necessary and su�cient conditions that
IF̃ηη̃

is strongly convex can be expressed in terms of force of the gravitational wind

GT , i.e. ||GT ||h < b̃0, in the problem Pη,η̃, for any (η, η̃) ∈ S, where

b̃0 =

{
1

1−η̃ , if (η, η̃) ∈ D1 ∪ D2
1

2|η−η̃| , if (η, η̃) ∈ D3 ∪ D4
. (52)

When (η, η̃) ∈ R1, it follows that b̃0 ∈ [1, 2). When (η, η̃) ∈ R2, we obtain b̃0 ∈ (1, 3
2
).

For (η, η̃) ∈ R3 ∪R4, b̃0 → ∞ as η̃ ↗ 1. For (η, η̃) ∈ D3 ∪ D4, b̃0 → ∞ as |η − η̃| → 0.
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Sketches

Theorem 9.1.2. - sketch of proof

An easy argument combined with F̃ηη̃ satisfying (50) yields that F̃ηη̃ is a general
(α, β)-metric,

F̃ηη̃(x, y) = αϕ̃ηη̃(||GT ||2h, s),

with ϕ̃ηη̃ a positive C∞-function checking the identity

(1− η)2||GT ||2h[1− (1− η̃)2 ||GT ||2h]ϕ̃
4
ηη̃ + 2(1− η)

[
1− (2− η − η̃) (1− η̃) ||GT ||2h

]
ḡsϕ̃3ηη̃

+[1− 2(1− η) (1− η̃) ||GT ||2h − (2− η − η̃)2 ḡ2s2]ϕ̃2ηη̃ − 2 (2− η − η̃) ḡsϕ̃ηη̃ − 1 = 0,

(53)

Some properties regarding the function ϕ̃ηη̃, implicitly given by (53), and its deriva-
tives combined with Proposition 1 [C. Yu, H. Zhu, DGA 2011] achieve the spray
coe�cients of the (η, η̃)-slope metric F̃ηη̃.

By (36), it is immediate to supply the equations of time geodesics of F̃ηη̃.

The argument that any time geodesic is unitary w.r.t. F̃ηη̃ because before all else,
it is a trajectory in Zermelo's navigation developed in Step II, performs the proof of
Theorem 9.1.2.
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Classi�cation

A kind of classi�cation of the navigation problems Pη,η̃, for any (η, η̃) ∈ S:

Corollary

Let Pη,η̃ be a navigation problem under the action of an active wind Gηη̃ given
in (47), on a slippery slope of a mountain (M,h), with a cross-traction coe�cient
η ∈ [0, 1], an along-traction coe�cient η̃ ∈ [0, 1] and a gravitational wind GT on
M . The following statements hold:

i) For any (η, η̃) ∈ S with η > η̃, Pη,η̃ comes from SLIPPERY with a certain form

for the cross-traction coe�cient, namely c1 = η−η̃
1−η̃ ∈ (0, 1];

ii) For any (η, η̃) ∈ S with η < η̃, Pη,η̃ comes from S-CROSS with a certain form

for the along-traction coe�cient, namely c2 = η̃−η
1−η ∈ (0, 1].
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Example 1

Inclined plane: z = x/2 (i.e. f(x1, x2) = x/2, x = x1, y = x2) ; ||GT ||h = ḡ√
5
=

const. Equations of indicatrix:
−

√
5

2
y1 = [1 + (η − η̃) ḡ√

5
cos θ] cos θ + (1− η) ḡ√

5

−y2 = [1 + (η − η̃) ḡ√
5
cos θ] sin θ

, (54)

for any direction θ ∈ [0, 2π) of the velocity u.
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Part II Chapter 9: A general model for time-minimizing navigation

9.3 Proofs of the main results ; Example 2

Gaussian bell-shaped hill G3 : z = f(x1, x2) =
1
4

∑3
k=1(k+1)e−ρk = 1

2
e−ρ1 + 3

4
e−ρ2 +e−ρ3

; with ||GT ||h ̸= const.

LEFT: On G3 : the time fronts centered at (0, 0) for the cases: MAT, ZNP, RIEM (white), SLIPPERY (with

η = 0.7, magenta), S-CROSS (with η̃ = 0.8, yellow), CROSS and (0.7, 0.8)-slope (black) and the related time

geodesics (dashed colours, respectively), where t = 2; ḡ = 0.76.

RIGHT: The evolution of the unit time front on G3 w.r.t. variable force of gravitational wind (due to changing the

rescaled acceleration of gravity ḡ), where ḡ ∈ {0.76 (black), 3 (magenta), 5 (orange), 7.65 (yellow)}. The initial

point is (1, 0) and the traction coe�cients are �xed, i.e. η = 0.7 and η̃ = 0.8. The corresponding time geodesics

in the initial setting (ḡ = 0.76) are presented in dashed black. The action of the gravitational wind is indicated by

black arrows.
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Further research: directions & perspectives

General view

1 Future research directions in complex Finsler geometry

2 Future research directions related to navigation problems

3 A brief list of the candidate's background ; Further perspectives
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Further research: directions & perspectives

1O Future research directions in complex Finsler geometry

1. The study of the complex Landsberg spaces

Unicorn problem: does there exist a complex Landsberg metric (non-pure Hermi-
tian), which is neither generalized Berwald nor Kähler?

To investigate a new class of complex Finsler spaces (e.g. weakly Landsberg spaces),

which holds
c

Lijkη
j = Gijkη

j
; it generalizes the complex Landsberg spaces and it

can be exempli�ed by the complex Wrona metric.

2. Projectively related complex Finsler metrics

▶ At least two directions: i. complex Finsler metrizability and ii. projective metrizability
[I. Buc taru, Z. Muzsnay, Di�. Geom. Appl. 2013 & J. Aus. Math. Soc. 2014]

i. Complex Finsler metrizability ; a sketch of study:

De�nition

The complex spray S is complex Finsler metrizable if there exists a complex Finsler function
L = F 2 which satis�es S (η̄k) = 0, where η̄k = ∂L

∂η̄k
. Moreover, S is weakly Kähler Finsler

metrizable if it is Finsler metrizable and S (ηk) =
∂L
∂zk

.

S (ηk) =
∂L
∂zk

i� F is weakly Kähler;

If S is weakly Kähler Finsler metrizable ⇒ the geodesics of S are solutions of the
Euler-Lagrange equations w.r.t. L = F 2 and S is the corresponding spray of the
weakly Kähler Finsler metric F .
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Further research: directions & perspectives

1O Future research directions in complex Finsler geometry

The weakly Kähler Finsler metrizability problem; an inverse problem of the calculus
of variation on complex manifolds restricted to weakly Kähler Finsler metrics L ;
to �nd the necessary and su�cient conditions (of Helmholtz type) for the existence
of two multiplier matrices (gij̄(z,

dz
dt
)) and (gij(z,

dz
dt
)) such that

gij̄(z,
dz

dt
)

(
d2z̄j

dt2
+ 2G

j̄
(z,

dz

dt
)

)
+gij(z,

dz

dt
)

(
d2zj

dt2
+ 2G

j
(z,

dz

dt
)

)
=

d

dt

(
∂L

∂ηi

)
−
∂L

∂zi
, i = 1, n,

for some complex Finsler functions L.

ii. Projective metrizability ;

Projectively related (2, 0)-homogeneous complex sprays

; S and S̃ are projectively related i� there is a (1, 0)-homogeneous function P(z, η)
on T ′M such that G̃k = Gk + P(z, η)ηk.
Projective Finsler metrizable homogeneous complex spray i.e. when it is projectively
related to a weakly Kähler Finsler metrizable spray.

▶ Another direction ; whether it is possible for two projectively related complex Finsler
metrics to have the same hh̄-curvature tensor ; to �nd answer for non Kähler-Berwald
spaces.

3. Navigation problems on Hermitian manifolds (M,h)

W -Zermelo deformation when W is a gradient vector �eld (i.e. W = hm̄i ∂ω
∂z̄m

∂
∂zj

,
ω : M → R is a smooth real valued function on M).

A Hermitian approach for Matsumoto's slope-of-a-mountain problem.
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2O Future research directions related to navigation problems

4. Geometric properties of the (η, η̃)-slope metric ; �ag curvature, Ricci curvature,
projective �atness, Einstein conditions, Douglas conditions, etc.

GT is a gradient vector �eld ; the di�erential 1-form β, de�ned in (39), is closed
⇒ each (η, η̃)-slope metric becomes a candidate to be a Douglas metric on an
n-dimensional manifold with n ≥ 3 [X. M. Wang, B. Li, Acta Math. Sinica 2017].

To study the geodesics of the Finsler spaces with (η, η̃)-slope metrics when the
gravitational wind GT is an in�nitesimal homothety, i.e. LGT h = σh, where σ is a
constant ; to see if it is possible to obtain a classi�cation of (η, η̃)-slope metrics
of constant �ag curvature.

Under assumption LGT h = σ(x)h (i.e. GT is conformal to h), to study if there
exist (η, η̃)-slope metrics that are projectively �at or projectively related to α.

5. Non-uniform slippery slope

One or both traction coe�cients depend on the position, η = η(x) or/and η̃ = η̃(x)
; more extensive resultant Finsler metrics F̃ηη̃ = αϕ̃ηη̃ because ϕ̃ηη̃ depends in
addition on a third variable or on two more variables.

A varying self-speed ||u||h of a craft on a slippery slope (M,h), i.e. ||u||h = f(x),
where f is a smooth function on M and f(x) ∈ (0, 1], for any x ∈ M .
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2O Future research directions related to navigation problems

6. Matsumoto's slope-of-a-mountain problem with wind

Consider the navigation data (F,W ) on the Finsler manifold (M,F ), where:

F = α2

α−ḡβ is the Matsumoto metric with ||GT ||h < 1
2
;

W is a vector �eld (the wind in the sense of Zermelo's navigation).

; a Finsler metric F̃ implicitly given by

F̃

(√
||y||2

h
− 2h(y,W )F̃ + ||W ||2

h
F̃2 + h(y,G

T
) − h(W,G

T
)F̃

)
= ||y||2h − 2h(y,W )F̃ + ||W ||2hF̃

2
,

under the constrains h(W,GT ) < ||W ||h(1− ||W ||h) and ||GT ||h < 1
2
which assure the

strong convexity of the indicatrix IF̃ .

7. Slippery slope of a mountain in the presence of a wind

; the time-minimal paths on (M,h) in the presence of an active windGη and an arbitrary
wind W are the geodesics of the Finsler metric Fη which satis�es

Fη
{
(||W ||2h +Ω1)F2

η − 2[h(y,W ) + (1− η)h(y,GT )]Fη + ||y||2h
}1/2

= (||W ||2h +Ω2)F2
η − [2h(y,W ) + (2− η)h(y,GT )]Fη + ||y||2h,

under the restrictions ||W ||2h +Ω1 <
√

||W ||2h +Ω2 and ||GT ||h < b̃0,

with Ω1 = (1− η)[2h(W,GT ) + (1− η)||GT ||2h], Ω2 = (2− η)h(W,GT ) + (1− η)||GT ||2h and

either b̃0 = 1 if η ∈
[
0, 1

2

]
or b̃0 = 1

2η
if η ∈

(
1
2
, 1

]
.
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3O A brief list of the candidate's background

Q1 and Q2 research publications:

; according to the ranking AIS lists, editions 2020-2024 (JCR 2019 - JCR 2023)

9 papers published in Q1 journals :

1 ; The Journal of Geometric Analysis (Jul. 2025)

2 ; Nonlinear Analysis-Theory Methods and Applications (Feb. 2023, Oct. 2023)

2 ; Nonlinear Analysis-Real World Applications (Oct. 2012, Feb. 2025)

1 ; Journal of the Franklin Institute-Eng. and Applied Mathematics (Jan. 2021)

1 ; Journal of Optimization Theory and Applications (Apr. 2021)

1 ; Annual Reviews in Control (2020)

1 ; The Journal of Navigation (Jan. 2021)

10 papers published in Q2 journals :

3 ; Journal of Geometry and Physics (Feb. 2012, Apr. 2013, Aug. 2016)

3 ; Results in Mathematics (Sep. 2016, Dec. 2017, Aug. 2020)

2 ; Di�erential Geometry and its Applications (Dec. 2012, Oct. 2017)

1 ; Periodica Mathematica Hungarica (Mar. 2023)

1 ; Acta Mathematica Scientia (Jul. 2014)
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3O A brief list of the candidate's background ; Further perspectives

; W. r. t. the new Romanian minimal standards for habilitation [OMEC 3019 (February
11, 2025)] which will be applied starting with October 1, 2026, I have the parameters:

S1=9,1668 (≥ 4), S2=8,5578 (≥ 2, 5), C1=35 (≥ 20), C2=27 (≥ 10), Nrecent=16 ≥ 2,
(counted in February 2025).

Financial support:

grant 2013/09/N/ST10/02537 �nanced by the Polish National Science Center,
Jagiellonian University in Krakow (2016-2017)

postdoctoral program POSDRU/89/1.5/S/59323 �nanced by the European Social
Fund of the Romanian Goverment (2010-2013)

Transilvania University of Bra³ov grant (2012)

grant CNCSIS A 424/2006.

Didactic activities:

2015-present ; advisor for 37 bachelor or master theses in Di�erential geometry
and Linear algebra.

⇓
Overall candidate's perspectives:

to extend and enhance the research signi�cantly in the aforementioned directions,

to explore new avenues that may contribute to conferring a higher academic position.
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Thank you very much!
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