
1

PORTOFOLIU DE LUCRĂRI

CANDIDAT Conf. dr. Alexandra Băicoianu

Doctor în Informatică

Titlul tezei de doctorat Some Other Issues in Discrete Optimization, Facultatea de Matematică și

Informatică, Universitatea Babeș-Bolyai din Cluj-Napoca, ordin 3148/30.01.2017

Titlul tezei de abilitare Applied Intelligence - Machine Learning Across Interdisciplinary Technologies and

Systems

Portofoliul de lucrări relevante din domeniul de doctorat INFORMATICĂ

1. Multi-Texture Synthesis through Signal Responsive Neural Cellular Automata

Scientific Reports

În recenzie, etapa II, minor revision

Also, on arXiv https://arxiv.org/abs/2407.05991

2. Fractal interpolation in the context of prediction accuracy optimization

Engineering Applications of Artificial Intelligence, 2024,

10.14569/IJACSA.2019.0100514

https://www.sciencedirect.com/science/article/pii/S0952197624005384

3. Multisource Remote Sensing Data Visualization using Machine Learning

IEEE Transactions on Geoscience and Remote Sensing, 2024, Volume: 62, On Page(s): 1-

12, Print ISSN: 0196-2892, DOI 10.1109/TGRS.2024.3372639

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10458686

4. Medical Emergency Department Triage Data Processing using a Machine-Learning Solution

Heliyon, 2023, e18402, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e18402

https://www.sciencedirect.com/science/article/pii/S2405844023056104

5. A Concretization of an Approximation Method for Non-Affine Fractal Interpolation Functions

Mathematics, https://doi.org/10.3390/math9070767

https://www.mdpi.com/2227-7390/9/7/767

6. Learning about Growing Neural Cellular Automata

IEEE Access, 2024, DOI: 10.1109/ACCESS.2024.3382541

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480399

7. Towards Generating Executable Metamorphic Relations Using Large Language Models

QUATIC Conference 2024, Preprint version https://arxiv.org/abs/2401.17019

https://link.springer.com/chapter/10.1007/978-3-031-70245-7_9

8. DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural crop identification applications

Big Earth Data, https://doi.org/10.1080/20964471.2025.2512685

https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2512685?scroll=top&needAcces

s=true#d1e525

https://arxiv.org/abs/2407.05991
https://www.sciencedirect.com/science/article/pii/S0952197624005384
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10458686
https://doi.org/10.1016/j.heliyon.2023.e18402
https://doi.org/10.1016/j.heliyon.2023.e18402
https://www.sciencedirect.com/science/article/pii/S2405844023056104
https://doi.org/10.3390/math9070767
https://doi.org/10.3390/math9070767
https://www.mdpi.com/2227-7390/9/7/767
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480399
https://arxiv.org/abs/2401.17019
https://arxiv.org/abs/2401.17019
https://link.springer.com/chapter/10.1007/978-3-031-70245-7_9
https://doi.org/10.1080/20964471.2025.2512685
https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2512685?scroll=top&needAccess=true#d1e525
https://www.tandfonline.com/doi/full/10.1080/20964471.2025.2512685?scroll=top&needAccess=true#d1e525

2

9. An Extended Survey Concerning the Significance of Artificial Intelligence and Machine Learning

Techniques for Bug Triage and Management

IEEE Access, Print/Online ISSN: 2169-3536, Online ISSN: 2169-3536, DOI:

10.1109/ACCESS.2023.3329732

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10305170

10. AI-Based Visualization of Remotely-Sensed Spectral Images

2023 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 2023, pp.

1-4, 10.1109/ISSCS58449.2023.10190908

https://ieeexplore.ieee.org/document/10190908

 3.09.2025

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=10305170
https://ieeexplore.ieee.org/document/10190908

Multi-Texture Synthesis through Signal

Responsive Neural Cellular Automata

Mirela-Magdalena CATRINA∗,

Ioana Cristina PLAJER†, Alexandra BĂICOIANU‡

Abstract

Neural Cellular Automata (NCA) have proven to be effective in a variety of
fields, with numerous biologically inspired applications. One of the fields, in
which NCAs perform well is the generation of textures, modelling global pat-
terns from local interactions governed by uniform and coherent rules. This
paper aims to enhance the usability of NCAs in texture synthesis by address-
ing a shortcoming of current NCA architectures for texture generation, which
requires separately trained NCA for each individual texture. In this work, we
train a single NCA for the evolution of multiple textures, based on individ-
ual examples. Our solution provides texture information in the state of each
cell, in the form of an internally coded genomic signal, which enables the NCA
to generate the expected texture. Such a neural cellular automaton not only
maintains its regenerative capability but also allows for interpolation between
learned textures and supports grafting techniques. This demonstrates the abil-
ity to edit generated textures and the potential for them to merge and coexist
within the same automaton. We also address questions related to the influence
of the genomic information and the cost function on the evolution of the NCA.

1 Introduction

Texturing is a demanding, complex, and fundamental process in computer
graphics [1], referring to the process of mapping a texture, usually provided
by an image file, onto a given object. The technique of producing high-quality
textures of custom size, which are similar to the given examples without contain-
ing artifacts or unnatural repetition is called texture synthesis. The importance

∗Faculty of Mathematics and Informatics, Transilvania University of Braşov, Romania,
e-mail: mirela.catrina@student.unitbv.ro

†Department of Mathematics and Informatics, Transilvania University of Braşov, Romania,
e-mail: ioana.plajer@unitbv.ro

‡Department of Mathematics and Informatics, Transilvania University of Braşov, Romania,
e-mail: a.baicoianu@unitbv.ro

1

ar
X

iv
:2

40
7.

05
99

1v
2

 [
cs

.N
E

]
 1

9
Ju

l 2
02

4

of this technique is rapidly increasing due to its extensive use in industries like
game and film production, combined with the labor-intensive process of manual
texture creation.

Texture synthesis by procedural generation offers multiple advantages, such
as efficient sampling and use of time and memory. A few lines of shader code
can create complex, satisfactory patterns and improve the system efficiency
compared to sampling from 2D image textures, generated using example-based
methods [1, 2, 3]. These parametric methods, varying in diversity and size,
provide minimal errors and are highly scalable to any resolution output. It is
not unexpected that neural networks have been shown to be a powerful approach
to texture synthesis [4, 5, 6].

Recent work demonstrates the capabilities of neural cellular automata (NCA)
for this task and highlights the advantages of using this approach, namely, ef-
ficient sampling, compactness of the underlying representations and easy usage
through short shader programs [2, 3, 7, 8]. The NCA is employed as a differen-
tiable image parametrization [3, 9] meaning it transforms a given image, which
is initially, a gray uniform image, in the style of the given target or example. It
is important to underline, that the automaton does not create a pixel-copy of
the target image, but it generates an example-based texture. The NCA works
as a generator and uses the gradients provided by a pre-trained differentiable
model, in order to learn the style of the target. This means that each trained
NCA generates one single targeted texture and, consequently, such an approach
for large-scale multiple texture generation may become burdensome.

Nevertheless, after multiple experiments and research, we concluded that
NCAs could perfectly fit the task of generating textures, given the fact that
they model global patterns from local interactions governed by uniform, con-
sistent rules, enhancing structured, near-regular patterns in a compact manner.
Therefore, by this study we aim to enhance the usability of NCAs in texture
synthesis by training a single neural cellular automaton to evolve into multiple
textures, thus increasing the automaton’s generalisation capacity. Our solution
relies on providing texture information into the seed, as a genomically-coded
internal signal that the NCA will interpret and thus yield the expected texture.
Particularly, we define a few hidden channels of the cell’s state to be genome
channels, and use binary encoding for each example image index. As a result our
NCA will be able to develop 2, 4, 8 (or any other power of two) number of tex-
tures. We detail the process of selecting an optimal baseline for our architecture
in Section 2.1 and cover the implementation details of the proposed approach
in Section 2.2. The results, consisting of an NCA that evolves up to 8 textures,
are showcased in Section 3. Moreover, considering the increased complexity and
extended range of behaviours exhibited by the NCA, we explore interpolation
behaviour and grafting techniques, further emphasizing the editability of our
generated textures and the possibility of multiple textures joining and coexist-
ing in one single automaton. In Section 3, we also address questions relating
to the extent to which our NCA uses the genomic information, and proper loss
function selection based on the properties of selected example images.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

2 Methodology

In this section we introduce the methodology and the theoretical aspects im-
portant to our scope. Firstly we introduce the architecture of an NCA for
single texture generation and we describe the way it evolves in a given texture,
specifically focusing on the loss function and cell perception methodologies.

In the following, we explain the NCA model for multiple texture generation,
which is the main scope of our work. The experiments follow the proposed
genomic coding in the seed for the development of multiple textures. We explain
the reasoning for choosing this type of encoding, as well as the architecture
and the training details. Furthermore, we briefly discuss the new behaviour of
texture interpolation specific to our NCA and its potential.

Finally, in this section, we introduce further capabilities of the proposed ar-
chitecture, like regeneration and grafting. Clear and concise steps are presented
for these experiments and the results are detailed in Section 3.

2.1 Single texture generation NCA

Starting from the architecture discussed in [3] this study aims to determine an
optimal baseline for further expanding the NCA for multi-texture generation.
Our experiments included choosing optimal perception kernels, an adequate
neural network architecture and an appropriate loss function.

2.1.1 Architecture and Inference

A neural cellular automaton is a model that encompasses cells displayed in
a structured manner. Different cellular automaton types were developed in
literature, each designed for a specific use-case [10, 11, 12, 13, 14].

For the texture synthesis task, alive cells are displayed in a grid and each one
corresponds to a pixel in the generated texture. The NCA is initialized with a
seed state, s0, and is guided through time using an update function applied for
each cell. At each timestamp, cell states are modified, and thus the expected
texture emerges after a few evolution stages. The update rule is learnt by a
neural network and outputs the new state of a cell based on its previous state
and those of its neighbours.

Each cell’s information is stored in an ns-dimensional state vector, where
ns is a hyperparameter of the model. The state vector for each of the cells
comprises two components:

• 3 color channels: the first 3 values of the state vector correlate with the
RGB channels, assigning color to the corresponding pixel

• nh hidden channels: the following values or channels, designed to fa-
cilitate cell communication (nh = ns − 3). orangeIn our experiments,
we preponderantly used nh ∈ {9, 10, 12} hidden channels, specific per-
experiment values are detailed in Section 3.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 1: One NCA pass.

For single texture generation we use a NCA based on the architecture pro-
posed in [3]. A NCA pass, applied at the transition from time step t to t + 1,
is illustrated in Figure 1 and consists of two major steps: perception, and state
processing and update. The perception stage employs 4 fixed kernels: I3 - 3× 3
identity kernel, Sx - Sobelx, Sy - Sobely, Lap - Laplacian to convolve with each
channel of the NCA state and offers the perception values for the next stage.
We used the 9-point variant of the discrete Laplace operator, as recommended
in [3]. The kernel values for Sx, Sy, Lap are displayed in Equation 1.

Sx =

 −1 0 1
−2 0 2
−1 0 1

 ;Sy =

 −1 −2 −1
0 0 0
1 2 1

 ;Lap =

 1 2 1
2 −12 2
1 2 1

 (1)

Different kernels have been studied and are discussed in further sections.
Also, during this stage circular padding is applied to ensure the preservation
of the image size and the visual tileability of the generated texture. The con-
catenated results provided by the 4 kernels are fed to the neural network that
models the update rule as they provide each cell’s state together with data from
its neighbourhood.

The neural network employed for learning the update rule is displayed in
Figure 2. It is important to note that all of its filter kernels are of size 1 ×
1, meaning a cell only updates its state based on the input received by the
perception, and does not interfere with the processing of other states. This
simulates the per-cell, independent, state processing. The first convolutional
layer employs nf filters. In our experiments we use different values for the nf

hyperparameter. These specific values are presented in Section 3. The neural
network generates the values needed to update each cell’s state, resulting in an
output size h × w × ns (h - height, w - width) similar to the input automaton
state, and the necessity of using ns filters in the second convolutional layer.

The output modification values are applied stochastically, to break symme-
try and relax the expectancy of global synchronization for our self-organising
system. This can also be seen as a per-cell dropout [3]. In our experiments, half

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 2: The NN that models the update rule based on the perception output.

the number of the total cells updates at each timestamp.
Using this architecture, we can generate textures of varying sizes. During

training, we use 128×128 examples. At inference, we can generate both 128×128
textures and smaller or larger rectangular textures.

2.1.2 Training of the NCA

In the current context, training the NCA involves training the neural network
that models the update rule. We initialize the NCA with a uniform state and
evolve it iteratively for t steps. At timestamp t + 1 we measure the quality of
the generated texture against the provided example and apply backpropagation
to the neural network. In our experiments, t is a randomly generated num-
ber between 32 and 96, as utilized and tested in [3]. The training proccess is
illustrated in Figure 3.

Figure 3: A training step. The NCA runs iteratively through the NN for t
steps, as illustrated in Figure 1. The loss is then calculated and the the NN’s
parameters are updated by backpropagation through time.

Loss function
Our NCA should imitate a given example’s style, not generate a pixel copy

of it. Therefore, we must train our state processor, represented by the neural

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

network illustrated in Figure 2, accordingly. Most style transfer methods rely
on the distributions of feature maps provided by a neural network whose layers
are considered to capture style. We name it an observer or differentiable texture
discriminator [9, 15]. We pass the RGB channels of our NCA and the example
image through the observer and drive the selected feature maps distributions to
match.

Figure 4: VGG16 architecture

The NCA uses a trained VGG16 network as the differentiable texture dis-
criminator. The choice of VGG is deliberate, as most style transfer approaches
utilize VGG variants due to superior results compared to other architectures
[9, 3]. The activations provided by a selection of L = 5 layers from the VGG16
network (conv1-1, conv2-1, conv3-1, conv4-1, conv5-1) is used, considering the
architecture as shown in Figure 4. The loss calculation process is illustrated in
Figure 5.

Figure 5: The loss calculation process. The feature distributions for the specified
L layers are extracted by passing the state’s RGB channels through VGG16.
They are then matched to those of the example image using SWL.

Although most texture synthesis algorithms rely on feature distribution
matching based on Gram matrices [16, 3], their limitations have been thoroughly

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

discussed. The recent work of [16] demonstrates the superiority of the Sliced
Wasserstein Loss (SWL) in capturing the complete set of feature distributions.
Therefore, we employ the SW Loss for our experiments.

We select feature maps from L layers of the observer network for the tar-
get image I, and the generated image, Ĩ. We denote the textural loss by
L(I, Ĩ) ∈ R+. For a layer l we have Ml = h × w (w - height, w - width)
feature vectors: Fm ∈ Rcl ,m ∈ {0, 1, . . . ,Ml − 1}, where cl is the depth di-
mension of the feature map. The set of distributions for these vectors is noted
pl for the features obtained by passing the example image through the VGG,
respectively p̃l, obtained by passing the generated image through the VGG.

The SWL operates on the sets of distributions pl and p̃l, for all l ∈ L. Its
value is the sum of the distances between the distributions extracted from I and
Ĩ at each layer l, as formalized by

LSW (I, Ĩ) =

L∑
l=1

LSW (pl, p̃l) (2)

The distance between the distributions pl and p̃l is calculated by approxi-
mating the optimal transport (OT) between them (note that the transport map
is not optimal but the optimized distribution is proven to converge towards the
target distribution [16]):

LSW (pl, p̃l) = Ev[LSW1D(plV , p̃
l
V)] (3)

The approximation is done through the SW distance, as defined in Eq 3:
the expectation of the one dimensional optimal transport (1D OT) distances
after projecting the feature points onto random directions V ∈ Scl (here, plV
and p̃lV correspond to the projections of the feature points on a direction V).
Projecting over several directions leads our histogram to converge towards the
target histogram [17].

We project pl and p̃l feature vectors on a random direction using dot product
with the vector V and obtain two sets of scalars. The 1D OT is calculated by
sorting the scalars and applying Mean Squared Error (MSE), known also as L2

norm, over the obtained sets:

LSW1D(S, S̃l) =
1

|S|

∥∥∥sort(S)− sort(S̃)
∥∥∥2 (4)

A simplified visualization of the SWL is illustrated in Figure 6 and a pseu-
docode for this algorithm is presented in Algorithm 1. First, we reshape the
feature tensor of shape h× w × cl into Ml × cl. We then project these features
over 32 random directions (unit vectors of dimension cl), sort them and measure
the L2 distance. The strategy of applying this loss is portrayed in Figure 5. A
detail not covered in the figure for simplicity is the overflow loss term, given
in equation 5, that we add alongside the SWL to keep all state channels in the
interval [−1, 1].

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 6: The Sliced Wasserstein loss visualized for a 2D example. By com-
puting the L2 difference between sorted lists of projections from the target
distribution (plV) and the obtained distribution (p̃lV) we push the NN to reach
the targeted distribution. This process is done for several projection directions
to capture all necessary information.

Loverflow(I) =
∑
x∈I

|x− clip[−1,1]x| (5)

Note that clip[−1,1]x returns a vector of the same dimension, with all values
clipped in the [−1, 1] interval. This stabilises training by preventing drift in
latent channels and aids in post-training quantisation [2]. The complete formula
for our loss is:

L(I, Ĩ) = LSW (IRGB , Ĩ) + Loverflow(I) (6)

Algorithm 1 Sliced Wasserstein Loss Computing

Input:
sourcel - features received from VGG’s l layer for the NCA output, with (cl,Ml)
shape
targetl - features received by the same layer for the example image of the same
shape

Output: the SWL for the given layer - LSW (pl, p̃l)
function sw loss(sourcel, targetl)

proj n← 32 ▷ number of projections
V s← rand like(cl, proj n) ▷ random directions (normalized values)
source proj ← dot(sourcel, V s) ▷ project source in Vs
target proj ← dot(targetl, V s) ▷ project target in Vs
diff ← sort(source proj, axis = 1)− sort(target proj, axis = 1)
return mean(square(diff))

end function

Pooling
We pass NCA states to the training step in batches. A sample pool based

strategy is necessary for the long-term stability of the automaton [18, 14, 3],
explicitly the behaviour of the NCA outside the few steps considered during
training. If no pooling strategy is applied, the behaviour of the automaton

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

after the 96 steps threshold would be unstable. We employ the same strategy
presented in [14, 3] meaning we construct a pool of 1024 future textures, and
seed states of the NCA. Batches of 8 elements are selected from this pool, and
after the training step presented in Figure 3 the new states are placed back into
the pool. Also, at batch selection, the highest loss scoring element is replaced
with a seed - the uniformly initialized image - to enforce seed evolution, and
texture stability and avoid training on irrelevant hallucinations during the first
stages of training.

2.2 Multi-texture generation

Signals are the central component of animal interaction and an essential part of
animal life. Internal signals include hormonal or neural signals within the body,
bioelectrical and genomic signals during development [19]. Research studying
the integration of internal signals in the morphogenesis model of NCA has been
conducted [11, 19, 20], but not in the context of self-organising textures.

Integrating internal signals in our NCA boils down to attributing special
meaning to a few channels of the cell’s hidden state. As illustrated in Figure 7,
the hidden nh channels of the hidden state are now divided into nc communi-
cation channels and ng genomic channels.

Figure 7: The state vector of a cell in a multi-texture generation NCA. It
comprises ns components: 3 RGB channels, nh hidden channels consisting of
nc communication channels and ng genome channels.

Our experiments include ng = 1, ng = 2 and, respectively, ng = 3 genomic
channels, corresponding to 2, 4 and 8 different textures generated by one NCA.
Since we employ the overflow loss to stabilise training, encouraging all channels
to hold values in the [-1, 1] interval, we needed an appropriate encoding strategy.
Therefore we chose binary encodings, as genome channel values will initially be
either 0 or 1. Furthermore, ng genomic channels allow generation of 2ng textures
and a texture index in its binary coding will allow (ideally) interpolation with
all other textures, an advantage further detailed in Section 2.3. An example
further discussed in the results section is depicted in Figure 8 where we see
the correspondence between the expected textures and the genomic encoding.
The genome channels are set at timestamp 0 for each cell in the automaton as
follows: for a frilly texture, we set them to 000, for a stratified texture - 001
and so on. In pseudocode, this translates to the function written in Algorithm
2. In the algorithm, we initialize all cells in the automaton to be of genome g,

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

by setting their last ng channels (seed[:, :,−ng :]) to the binary encoding of the
genome index g. All other values are 0.

Algorithm 2 Automaton genome-based initialization

Input:
h,w = height and width of cell plane (size of texture)
nh = number of cells’ state hidden channels, with ng genome channels,
g = expected genome index

Output: One NCA state of the specified genome
function seed of genome(h, w, g)

seed← zeros(h,w, 3 + nh)
gb2 ← to base 2(g, ng) ▷ binary representation of g on ng bits
seed[:, :,−ng :]← gb2
return seed

end function

After timestamp 1, we do not interfere with any channels: we do not restrict
their modifications or values other than encouraging low values through the
overflow loss. It is up to the automaton to understand and keep the information
throughout evolution in order to reach the expected specimen. Discussions on
how the automaton understands and preserves the genome details throughout
evolution are addressed in the results and discussions section, see Section 3.

Algorithm 3 Interpolated genome initialization

Input:
ns = number of cell’s state channels, with ng genome channels,
g1 = first genome index
g2 = second genome index

Output: A NCA cell state situated halfway between genomes g1 and g2
function interp genome(g1, g2)

g1b2 ← to base 2(g1, ng)
g2b2 ← to base 2(g2, ng)
gresult ← (g1b2 + g2b2)/2
seed← zeros(ns)
seed[−ng :] = gresult
return seed

end function

Apart from generating textures based on the given 2, 4 or 8 example images,
we also study the interpolation behaviour for these NCA. Interpolation refers
to creating blended textures, a smooth transition between two given examples.
Meaning, if the automaton learnt textures based on Figure 8, we could also cre-
ate a mossy wood (combination between the first and second images, starting
with a seed with genomic channels set to, for example, g=(0,0,0.5)) or grids
on the spectrum defined from the third and fourth textures. Technically, we
could interpolate between any two learnt genomes: we interpolate between a
genomic code g1 = (a0, a1, . . . , ang

) and g2 = (b0, b1, . . . , bng
) by selecting all

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 8: Examples of textures generated by a 3-genome NCA architecture.
The tuple for each texture corresponds to the (g1, g2, g3) channels in the seed
state. This means that, for example, if we want to create a cherry texture, at
timestamp 0 all cells would have the state vector with all values set to 0, except
the last and second-to-last position which would be set to 1.

pairs where ai = bi and setting ci = ai and for all pairs where ai ̸= bi set-
ting ci to an intermediate value (eg. 0.25, 0.5, 0.75, etc.). The result will be
g3 = (c0, c1, . . . , cng

). Experiments showed that interpolations, where more than
one intermediate value has to be set in the genome, are more unstable and un-
predictable. The algorithm for creating a genome situated at an equal distance
between two learnt genomes is depicted in Algorithm 3. While interpolation be-
haviour has been studied for multiple texture synthesis models [21], it is specific
to our architecture in the NCA realm given that other NCAs only develop one
texture. Interpolation is performed during inference and does not influence the
training strategy.

The optimal adapted training strategy for multi-texture generation relies
on a pool with equally divided seeds for each texture. When replacing the
highest-scoring state during batch selection, we replace it with a seed with
the same initial genome coding. Moreover, we cycle through genome coding
replacements: we don’t choose the highest-scoring state, but the highest-scoring
state belonging to the genome gr, and then move on to the next gr. Practically,
we replace from the first batch the highest-scoring state belonging to the genome
g0, in the second batch we replace the state belonging to genome g1 and so on.
This ensures that more intricate textures, that are harder to learn and yield an
overall higher loss during training are not always replaced, since it would lead
to instability during the inference for those textures.

Algorithm 4 outlines the pooling-based training strategy for generating mul-
tiple textures. First, the pool is initialized (init pool(pool size)) by creating
pool size/n genomes seeds of each genome and placing all of them in the shared
pool. For each element in the pool, we track the NCA state (x) and the index
of the corresponding genome (y). This tracking is essential because the genome
channels in the NCA state change throughout evolution, and we need to identify
the corresponding genome at any time for loss calculation and eventual replace-
ment. Next, we initialize the NCA parameters, particularly those of the neural
network that models the update rule. The training process runs for a specified
number of epochs, where, in each iteration, a batch is selected, prepared, run
through the NCA for updates, and then returned to the pool. The NCA weights
are adjusted based on the loss calculated for each batch. This iterative process
allows the algorithm to evolve and refine the textures within the pool.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Algorithm 4 Pooling strategy based training for multi-texture generation

Input: The pool size of nca states, number of epochs and batch size
Output: The trained nca, the final pool

pool← init pool(pool size)
nca← init nca params()
for iteration ∈ range(0, number of epochs) do

batch← random pick batch size elements from pool
▷ states and corresponding genome indices

gr ← iteration%n genomes
if exists gr genome in batch then

worstgr ← state with highest loss of genome(batch, gr)
else

worstgr ← state with highest los(batch)
end if
batch[worstgr].x← seed of genome(batch[worstgr].y)
num steps← random(64, 90)
for i ∈ range(0, num steps) do

batch.x = nca(batch.x)
end for
loss← compute loss(batch.x, target images(batch.y))
apply nca weights backpropagation
pool← put updated individuals of batch back in the pool

end for
return nca

2.3 Regeneration and Grafting

A well-studied property of NCAs is regeneration [14]. No adaptation of the
training strategy is required for the single-texture experiments, and the au-
tomaton inherently regenerates and stabilises the pattern shortly after being
damaged. However, slight alterations in the training strategy must be applied
for the multi-texture architecture. Without these modifications, the NCA gener-
ates patches of different textures instead of regenerating the governing texture.

Fortunately, only a few adjustments must be made. The automaton reaches
the desired behaviour using the adaptation presented in [9]. During batch sam-
pling from the pool, besides replacing a high-scoring state we also damage the
lowest-scoring state. Damaging here refers to randomizing the state vectors for
cells contained in a circle of a radius of 15 to 25 pixels. The adapted training
procedure is concisely shown in Algorithm 5, as an altered version of Algorithm
4.

Other experiments include grafting visualizations. Grafting is the act of join-
ing two organisms to continue their growth together. In our case, we consider
grafting two or more types of cells, belonging to different genomes, coexisting
in one automaton. We do this by initializing, either at timestamp 0 or at a ran-
dom timestamp, some cells with the seed values of a different genome. By doing
this, we enable two textures to coexist and interact in the same automaton.
This yields to interesting results, studied in further sections. Cells of differ-

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Algorithm 5 Regeneration-adapted training for multi-texture architecture

Input: the pool size of nca states, number of epochs and batch size
Output: The trained nca, the final pool

pool← init pool(pool size)
nca← init nca params()
for iteration ∈ range(0, number of epochs) do

batch← random pick batch size elements from pool
▷ states and corresponding genome indices

gr ← iteration%n genomes
replace highest loss of genome(batch, gr) ▷ as in Alg. 4
x1, x2 ← lowest 2 losses(batch)
damage texture from batch(batch[x1])
damage texture from batch(batch[x2])
nca train step(nca) ▷ as in Alg. 4
loss← compute loss(batch.x, target images(batch.y))
apply nca weights backpropagation
pool← put updated individuals of batch back in the pool

end for
return nca

ent genomes can be structured in multiple ways, by creating concentric circles,
stripes etc. of different genome cells. An example for generating a texture where
the left half belongs to one genome and the right half belongs to another genome
is depicted in Algorithm 6.

Algorithm 6 Grafting inference

Input: nca = nca model with associated hyperparameters
h,w = height and width of expected texture
g0 = expected genome index for the left half of the texture
g1 = expected genome index for the right half of the texture
t max = timestamp at which to extract the generated texture

Output: The grafted texture (RGB image) at timestamp t max
function graft(h,w, g0, g1, t max)

left seed← seed of genome(h,w/2, g0)
right seed← seed of genome(h,w/2, g1)
texture← concat(left seed, right seed, dim = 1)
for t ∈ range(0, t max) do

texture← nca(texture)
end for
return textureRGB

end function

3 Results and Discussions

In order to analyze and evaluate the impact of the different hyperparameters,
like size of the first hidden layer and loss function, as well as the influence of

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 9: All generation snapshots are taken at timestamp 90. From left to
right we see the texture generated with Sobel and Laplace perception kernels,
4 learnt convolution kernels, 4 learnt depthwise convolution kernels.

the genome on the generation of different texture, a series of experiments were
performed. Furthermore the possibility of using the NCA for more complex tasks
like interpolation of textures, regeneration of damaged textures and grafting is
studied and evaluated.

The images for all experiments are selected from the Describable Textures
Dataset [22] that groups of 5640 images, organized in 47 terms (categories)
inspired by human perception: banded, bubbly, bumpy, frilly etc. Moreover, we
selected a few textures from VisTex Database [23]. All experiments were run
on T4 GPU and lasted up to 2h each.

3.1 Results of the experiments

The single texture generation experiments studied the influence of different per-
ception filters on the quality of the generated texture. For these experiments
we used a pool of 1024 images with a batch size of 8. Training was performed
for 5000 epochs.

As represented in Figure 9, the Sobelx, Sobely, Laplace filters offer enough
representation of the neighbors and lead to significantly better results than
learned kernels. Of course, leaving the NCA to train longer may enrich the
representation provided by learnt kernels. Still, we consider that it would not
quantitatively improve the quality output, but it would only add up to the com-
plexity of the NCA representation. Insight on the influence of image processing
filters can be studied in [18], where experiments with other combinations of
hardcoded filters have been conducted concerning the influence of such filters
on the perception stage.

The main focus of this paper is on using a single NCA for the generation of
multiple textures, by using the information in the genome channel. Furthermore,
some new usages of the NCA were explored. The following experiments and
results underline the significance of our work.

3.1.1 Multi-texture generation and interpolation results

This subsection details the tackled NCA architectures for multi-texture gen-
eration. Specifically, we study different state formats, the long-term stabil-
ity of generated textures, and address interpolation behaviour between learnt

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

genomes. The NCAs are trained for 10000 epochs, with a pool size of 1024 sam-
ples and batch size of 8 images. Table 1 summarizes the performed multi-texture
experiments.

No. Experiment nh nf Aim
genomes name nc ng

2 G2Feasible (G2F) 9 1 96 feasibility of model

4
G4Similar (G4Sim) 9 2 128 similar (sim.) textures

G4Different (G4Diff) 9 2 128 different (diff.) textures

G4Structured (G4Str) 9 2 128 structured textures

8
G8Large (G8L) 9 3 128 diff. + sim. textures

G8Medium (G8M) 6 3 70 small model

G8SmallNoR (G8SNR) 3 3 30 xs model (no regen.)

Table 1: Multi-texture initial experiments. Sobel and Laplacian filters are used
for perception. nh = number of state’s hidden channels with nc communication
channels and ng genomic channels. nf = number of filters for the first convolu-
tion layer of the NN.

The experiments covered various aspects in the image examples, such as
similarity and regularity, and are detailed as follows:

• Experiment G2Feasible (G2F) tested whether a proposed genomic
coding is enough for the NCA to learn to differentiate between textures.
Since the results were satisfactory and the NCA learned to differentiate
between the two provided textures, it opened the way for generating more
textures and lead to the experiments presented below.

• Experiment G4Similar (G4Sim) follows the generation of 4 similar
textures by a single NCA, enhancing shared feature representation but
struggling with long-term stability of the genomes. The automaton learns
to read the genome and differentiate the wanted textures, but, as seen
in Figure 10, shows difficulties in maintaining the textures over a large
number of iterations. This instability may be prevented by training the
NCA for more epochs. All 4-genome experiments training lasted around
1h40min.

Figure 10: Genome stability for experiment G4Sim.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

• Experiment G4Different (G4Diff) aims the generation of different
textures by a single NCA, which means that different features must be
interpreted and learnt. It successfully demonstrated that the automaton
does not depend on shared features between textures for learning and gath-
ers a deeper understanding of the genome and particularizes its behaviour
accordingly. This experiment also uncovered an intriguing behaviour for
the artificially generated texture regarding global communication along
cells. Specifically, the NCA fails to achieve the global organization of the
grid texture as provided for genome 2 (01), but it still produces a tex-
ture with the style specifics of the example (Figure 11, second top). This
means that the NCA learns the difference between the genomes, but fails
to understand the global organization required for the highly structured
texture. Referencing the G4Sim experiment, we only changed the textures
we provided as examples to the automaton.

• Experiment G4Structured (G4Str) followed the above observation re-
garding the NCA behaviour on textures with large repetitive models and
trained highly structured patterns that necessitate a broader communica-
tion across cells in order to test the extent of the cell’s global organisation.
The experiments’ results hyphened a shortcoming of our approach, as the
automaton can not reach the global organisation of such textures although
it does imitate the style of smaller patterns (Figure 11, third top). This
limitation is tackled in Section 3.3.

• Experiments G8Large (G8L) and G8Medium (G8M) followed 8-
texture generation on a pack of different textures, both artificially gen-
erated and real-life examples. They covered different texture categories,
colors and patterns, while offering enough room for interpolation between
examples. Experiment G8M was performed in order to optimize the num-
ber of parameters of the NCA used in Experiment G8L, downgrading the
10k parameter architecture to a 4270 parameter architecture with similar
results, while keeping all the other training details unaltered. Training
these experiments lasted approximately 1h40min.

• Experiment G8SmallNoR (G8SNR) followed 8-texture generation on
the same texture pack as the other 8-genome experiments, with the scope
of testing how small can our neural network be. Since G8M exhibited a
slow regeneration process, we decided to drop the regeneration expectancy
for this experiment. We therefore obtained a 1500 parameter NCA that
can generate 8 different textures and that holds stability up until 500
steps. Roughly, this architecture size would be equivalent to 8 NCAs with
187 parameters that correctly generate the expected textures, a hard-to-
complete task. However, our approach’s disadvantage in this case would
be the long-term instability of the genomes. This architecture trained for
1h20min.

In Figure 11 we visualize the images generated by our experiments, in groups.
The conducted experiments were successful. The automaton learned to evolve

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

numerous textures according to the planted internal signals. Most training ex-
periments were done on an unnecessarily large neural network, as seen in com-
paring the results between architecture G8L of 10k parameters and architecture
G8M of 4k parameters with little impact on output texture quality, visible in
the second and third rows of Figure 11. However, the smaller architecture’s
regeneration process is slowed down. For example, the G8L architecture visu-
ally regenerates the first genome in approximately 180 steps, whereas the G8M
architecture restores it in approximately 420 steps. Another experiment with
an even smaller architecture followed, with 3300 parameters (nc = 5, nf = 60),
and the 8 textures was successfully developed similarly to the ones presented
above, but the regeneration process lasted 700 steps and the automaton did not
recover perfectly. Moreover, the genomes get corrupted around the timestamp
1000.

Figure 11: The results for multitexture generation, using the architectures as
in 1. Images are grouped according to architectures, each genome representing
a texture. For each group of experiments, the top row represents the provided
examples, and the bottom illustrates the generated textures after training.

The images selected in Figure 11 are at timestamp 110. At inference, cellular
automata can run an indefinite number of steps. In most of our experiments,
we observed that the automaton held stability up until 6000 iterations (some
even longer) when one genome would get corrupted and start evolving patches
of some other genomes.

Furthermore, we test the NCA’s ability to generalize learnt features by an-
alyzing its performance on interpolation tasks. Interpolation is a niche texture
generation area [24], of interest in computer graphics [25, 26]. This ability is
specific to our NCA architecture, as other NCAs developed for texture synthesis

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

cannot generate multiple textures using one single model.
Figure 12 illustrates the interpolation between two learnt genomes, for ex-

periment G4Sim. We aimed to achieve a blended polka-dot texture between a
coloured and grayscale version of the same texture. This is an ideal scenario, as
the textures are highly similar. We can observe in Figure 12 the quality of the
interpolated textures, which closely resemble those that a programmer could
manually create by using color dots derived from each texture. The interpo-
lation method avoids combining multiple colors into a single dot and ensures
that the dots maintain alignment with the properties of the original genomes.
This observation aligns with the statement in [3] that the cells find an algorithm
that generates the patterns. Moreover, specifically on these textures, this ex-
ample can be extended into multiple color spectrums and enjoy the advantages
of interpolation in creating new, blended, images.

Figure 12: Interpolation of learnt genomes for G4Sim experiment.

Examples covering the interpolation of more distinctive textures are repre-
sented in Figure 13. These extend on the aforementioned ideas and demonstrate
the quality and utility of interpolation, paving a new area of development for
NCAs in texture generation. The loss function heavily influences the interpola-
tion behaviour, and employing other loss functions will lead to varying results,
as seen in the experiments conducted in Section 3.3 and in [21].

Figure 13: More interpolated textures, all for the 8-genome experiment G8L.
Genomes initialized with: (a) g = (0, 0, 0.5) (b) g = (0, 1, 0.5) (c) g = (1, 1, 0.5)
(d) g = (1, 0.5, 0), (e) g = (0.35, 0.35, 0.35).

3.1.2 Regeneration and grafting results

In addition to the experiments described in the preceding sections, some exper-
iments related to regeneration and grafting have also been performed. These

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

highlight the proposed architecture’s extensibility while also providing a stable
baseline for texture synthesis using small models.

Regeneration experiments were carried out to test whether our automaton
can consistently inpaint a damaged region. This behaviour is studied in differ-
ent NCA architectures [3, 14, 19] and the inpainting task is also covered by
other texture synthesis architectures [21]. The outcome of our experiments em-
phasizes the rich representation of the genomic texture that leads to successful
regeneration. All of our NCAs trained with the adapted methodology enhanced
this behaviour. The NCA of experiment G8M had a slower regeneration process
due to its reduced architecture.

Figure 14 displays the NCA regeneration behaviour before and after adjust-
ing the training methodology, as presented in Algorithm 5 of Section 2.3.

Figure 14: Regeneration before and after adjusting the training methodology,
exemplified on the automaton of experiment G4Dif.

Grafting experiments highlight the rich context in which textures can be
generated and combined. As discussed, interpolation tasks involve blending be-
tween existing textures to create a new one, combining features of both in a
smooth transition. On the other hand, grafting combines distinct textures onto
a single surface and often requires careful alignment and blending for a cohesive
appearance. Recent implementations of grafting techniques in this context in-
clude utilizing compatible neural cellular automata instances. For example, [27]
defines compatible NCA instances as instances where their weights at training
are initialized with those from a common trained ancestor. These instances pro-
vide the base for texture grafting, alongside interpolation at the border between
the two textures provided by passing one image through both NCA instances
and masking them to create the final result. While our architecture allows for
this grafting type, we see the benefit of being able to obtain grafting based just
on the genome channel with a single automaton.

We graft textures by either initializing, at timestamp 0, one NCA with differ-
ent genomes in the patches we want, or running a NCA on one genome, selecting
a patch at a given timestamp and transferring that patch over to another NCA,
with different genomes. Of course, given that the combined automaton will con-
tinue to evolve iteratively, the patches will modify shape, location and area over
time. If this is an unwanted behaviour, we could create the illusion of grafting
by running 2 or more instances of the NCA, each with an expected genome, and

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

layering the generated textures over each other by masking unwanted patches
for each.

In Figure 15 a visual example of the initialization with different genomes
for grafting is presented. In Figure 15 (a) the yellow color represents genome
g1 = (0, 0, 1), while the blue color represents genome g0 = (0, 0, 0). The shades
between yellow and blue represent genomes for which the last channel has in-
termediate values in the range of [0, 1], enabling a smooth transition between
the two textures. Figure Figure 15 (b) illustrates the comparison of the initial-
ization mask with the results of the evolution of the nca at timestamp 30. The
results of this initialization on the evolution of the nca at timestamp 110 can
be seen in Figure 15 (c).

Figure 15: Grafting the G8L nca. Initialization example with genomes g0 =
(0, 0, 0), g1 = (0, 0, 1). (a) Initialisation of the last genome channel, (b) Com-
parison of the channel initialization with the evolution of the nca at timestamp
30, (c) The state of the nca at timespamp 110.

Figure 16 illustrates a four textures generated through grafting techniques.
We observe that the automaton can develop patches of specific genomes. More-
over, we see a communion where the two or more genomes collide, forming a
consistent boundary transition area of cells, whether visualized as a barrier (as
seen in (b), (d)) or a smooth transition ((a), (c)). Nevertheless, the transition
behavior between genomes remains consistent across the intersection line.

In the light of all the described experiments, two main questions arose.
Firstly we were intrigued by the role of the generation and stability of the
desired texture. Thus we studied if the automaton preserves the genome infor-
mation in the texture cell during evolution and by this learns to discern between
the different textures. The second question was about the influence of the loss
function on improving the generation of highly-structured textures that require
broad-image communication. The results obtained using two different loss func-
tions were compared. In the following these two aspects are presented in more
detail.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 16: Grafted textures, from left to right, for NCAs of experiment (a)
G4Structured: illustrates a NCA formed of cells of genome 2 with a disc of
genome 1 situated in the center, (b) G4Similar: the top half is formed out of
genome 3 cells, whereas the bottom half is formed out of genome 1 cells, (c)
G8Large: cells situated similarly to (a), of genome 1 and 2, (d) G8Large: cells
situated in three equally distributed vertical stripes of genomes 4, 3 and 1.

3.2 Preservation of the genome

Given the diversity of the generated textures in our experiments, it is essential
to investigate whether the automaton preserves and generates textures based
solely on the perception stage and vicinity properties, or if it also maintains
genome information to ensure stability.

To investigate this issue, we based our approach on experiment G2F, where
the two genomes correspond to the same texture in both color and grayscale.
The automaton is more unstable given the similarity of the textures, but we can-
not attribute this to the vicinity similarity, given the different colours. There-
fore, we create two similar textures and test whether the automaton can learn
the difference between them and remain stable over time. We selected the
dotted 0201 texture [22] (Figure 17 left) and created a similar one by deleting
the blue polka-dots (Figure 17 right). Note that other colours were not modified,
only the blue dots were deleted.

Figure 17: The 2 textures used for this experiment, the left one corresponds to
the genome 0, the right one - genome 1.

We name this experiment G2Preserve (G2Psv). The state vector of the
NCA for these two textures has ns = 13 values, representing the 3 RGB chan-
nels, nc = 9 communication channels and ng = 1 genome channel. The genome
channel is set to 0 for the first texture and to 1 for the one without blue dots.
We employ nf = 128 filters for the first convolutional layer and train the NCA
for 10000 epochs. The training step took 1h30min.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 18: The evolution of the automaton based on the selected genome, in
the first row - genome 0, in the second row - genome 1. The examples on the
first column of size 128× 128 are provided for comparison to the generation of
the textures of size 256× 256.

Figure 18 displays the texture generation results for each of the two genomes
after different timestamps. It can be observed that the automaton has learned
to differentiate between the two textures despite their extreme similarity, sug-
gesting that the automaton considers the genome throughout evolution.

We also remark an intriguing, unexpected behaviour. Monitoring the evolu-
tion of the NCA, we notice in the second texture (with genome 1) the emergence
of small blew dots at evolution step 60. While not yet prominent, it would have
likely continued evolving them into dots akin to those seen in the texture gen-
erated by genome 0, had the automaton not considered the genome (see this
transformation of blue dots throughout genome 0 generation in Figure 18 steps
60-90). However, for genome 1 the formed dots are dimmed and at step 500 no
such dots are in formation, supporting the idea that the automaton does keep
the genome information throughout evolution.

To further support this hypothesis, we provide two figures constructed in sim-
ilar manner. Figure 19 illustrates the generated textures alongside the genome
channel values for two inferences of this experiment, one with cells’ belonging
to genome 0 (top two rows) and one with cells’ belonging to genome 1 (bottom
rows). The genome channel is visualized through the colormap corresponding to
the colorbar represented on the right of the image, where black corresponds to
a genome channel value of -1, and yellow to a genome channel of 1. We observe
that the genome channel values are as expected up until around timestamp 60,
for genome 0, the channel’s values are close to 0 and for genome 1 the channel’s
values are close to 1. Although the values converge at later timestamps, we
pose that the automaton has assigned certain genomic values to each texture
style specifics and uses them, alongside the other channels, to maintain texture
stability over time. To support this statement, we direct the attention towards
the genome channel for the genome 0 NCA run, at timestamp 500 (last column
of row 1 in Figure 19). The lower values, approaching -1, visualized as black and

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

dark-purple dots correspond directly to blue dots in the RGB correspondent of
the NCA state (row 0, last column), meaning, the automaton has attributed low
genome values to texture features specific to the provided example for genome
0, and higher values otherwise, as the common features represent both genome
0 and 1. For the genome 1 generation (third row) we see higher values over-
all, no deep purple spots in the genome channel at timestamp 500. The lower
genome values correspond to the blue, faded dots and areas that are prone to
the generation of such dots in the texture; values are later corrected by the
self-organising system.

Figure 19: Analysis of the genome channel for the G2Psv NCA. The first and
bottom rows illustrate the generated textures, whereas the second and third
rows represent the corresponding genome channels.

We also provide the last genome channel analysis for textures generated
by experiment G2Diff. The textures representing genome 00 and 01 have no
similar features, as the ones discussed in the aforementioned example, resulting
in a clearer divide between the values representing the last genome channel. The
last genome channel values for the top rows keep values around 0, as the values
for the generation of genome 01 keep higher values throughout evolution.

Furthermore, upon comparing the textures generated with automaton G2Psv
for genome 0 with those generated by genome 0 for the G4Sim NCA, we remark
an uptick in the occurrence of red, orange, and yellow dots, accompanied by a
decrease of blue and green dots. We also observe throughout training that the
G2Psv automaton learned to only generate the edited (polka-dots-nb) texture
up until the 2000 epoch. Before and at this timestamp, the automaton gener-
ates the edited version of the texture no matter what genome we set for in the
seed. Only after this epoch, the automaton learns to generate the blue dots cor-
responding to genome 0. This highlights the complex interactions between the
textures during training and the NCAs tendency to generalize learnt behaviour.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 20: Analysis of the genome channel for G4Diff NCA.

In these experiments, the NCA has learnt to evolve red, orange and yellow dots
faster through the texture provided for genome 1, consequently influencing the
generation process for genome 0.

3.3 Loss function exploration

Utilizing the SW loss function, the automaton performs strongly on both near-
regular and irregular structures. However, it exhibits weaker performance on
textures that necessitate broader communication across the automaton, such
as images that contain large repetitive patterns. Examples of such given and
generated textures are depicted in Figure 21. It’s noteworthy that this behavior
is intentional and expected in many cases, as it allows for the capture of fine
details while disregarding potential irregularities in the given examples, without
straining the texture. The NCA does capture the style of the given image, but
does not reach a similar global state. Nevertheless, for the showcased instances,
we would prefer the NCA to prioritize learning the knitted, knotted, checkered
or tiling structures over focusing solely on the finer details of the examples.

For comparison, we employ the loss function termed OTT Loss proposed by
[2], specialized for regular patterns. We conducted a 4-genome experiment on
the regular patterns of Figure 21 using the architecture details as presented in
Section 2.2 for experiment G4Sim, using our SW Loss and OTT Loss respec-
tively. A further comparison of the performance of the two losses is obtained by
the 8-genome experiment with 4270 parameters, utilizing the G8M architecture,
and the outcomes can be visualized in Figure 22. Both experiments highlight
the limitations of each loss: SWL produces favorable results on most textures,
while OTT Loss excels in generating structured patterns. Examining the gen-
eration of the fibrous texture (Figure 22 g4), it is notable that SWL captures

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 21: Generation of fabric textures (extracted from [23]) and a grid texture
(extracted from [22]) using the SW Loss and OTT Loss.

Figure 22: Based on the examples of the top row, generated textures (size
256× 256) using the same architecture and parameters, but utilizing SWL Loss
and, respectively, OTT Loss during training.

a better understanding of the texture, while OTT Loss generates small dots
against a pink background. The interlaced texture (Figure 22 g3), character-
ized by similar colours for foreground lines and background is less accurately
captured by the OTT Loss, as are the properties of the frilly texture (Figure 22
g0) and pitted texture (Figure 22 g5).

Overall, SWL captures more details, as illustrated in Figure 22, given that
both trainings rely on 4270 parameters. However, the OTT Loss addresses the
aforementioned shortcoming of the SWL in enhancing broader communication
along the cells, as depicted in Figure 21. Regeneration is slowed down using
the OTT Loss (from 410 steps for regenerating the first genome to 1210), and
interpolation leads to images as displayed in Figure 23 (for comparison with the
textures displayed in Figure 13).

We conclude that the OTT loss covers the shortcoming of the SW Loss for
the NCA, which does not accurately reproduce textures with regular, relatively
large patterns. This makes OTT loss the preferred one int the case of such
texture (ideally artificial [2]) pattern generation. For a broader approach, we

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Figure 23: Interpolation behaviour comparison of the NCA trained on the same
methodologies with 4270 parameters but with SWL and, respectively, OTT
Loss. Genomes for interpolation are considered as in Figure 13.

consider that SWL covers most cases of the presented examples. A hybrid
approach may also lead to better results for both regular and irregular patterns
and is one of the things to consider in future experiments.

4 Conclusions

Neural cellular automata are an active research field with many promising fu-
ture opportunities. Self-organising structures are both studied from the software
point of view and hardware implementations are emerging. Cell division, regen-
eration, and grafting offer promising prospects in the context of physics, robotics
and swarm robotics, artificial intelligence and biology, offering a captivating ap-
proach to studying and understanding dynamic, self-organising systems. Real-
time robust synthesis of high-quality texture pictures can be achieved using the
lightweight NCA. More significantly, it exhibits an amazing zero-shot generaliza-
tion capability to several post-training adjustments, including local coordinate
transformation, speed control, and resizing.

This study aimed at increasing the usability of neural cellular automata in
the context of texture generation, pinpointing and providing a solution for the
limitation of using for each texture a dedicated automaton. For this scope, we
applied the idea of providing model context through internal signals, previously
used in NCAs trained for growing models from one cell [19]. By employing a
similar approach, we developed a novel architecture that enriches one NCA to
generate multiple textures. We improved the training methodology to enhance
the generation and stability of all textures, by cycling through genomes in the
genome replacement stage of batch preparation. Also, we provided qualitative
and quantitative analysis regarding the extent to which our automaton pre-
serves and uses the defined genome channels throughout evolution, supporting
our statement that the genome channels are indeed maintained and further used
in the automaton’s development. In essence, we trained the automaton to ex-
press the genomically coded signals accordingly, thus having the self-organising
system form and behave conclusively with its genome coding. In order to achieve

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

satisfying results on most types of textures, we employed an efficient loss func-
tion, Sliced Wasserstein Loss, supporting the statement that the SWL better
captures style than former Gram-based solutions, utilized in the base inspiration
for our implementation [3].

Moreover, we extended the study of neural cellular automata in the context
of texture interpolation, an area previously inaccessible due to the restricted
ability of only generating one texture per automaton. Interpolation is natural
to our automaton, as it can derive at inference the styling for an intermediate
texture between two learnt examples. We studied this behaviour and analyzed
its interactions with the used loss function. Also, we examined grafting tech-
niques using a single instance of a NCA as a host for cells belonging to different
genomes, as opposed to former solutions where multiple instances were used to
test this behaviour. Visual results were displayed and discussed.

To conclude, this study treated neural cellular automata as a model of mor-
phogenesis and utilized genomic coding to make it exhibit the wanted stylistic
properties of textures based on given examples. We encourage the use of NCA
in software solutions by providing an extensible yet compact and easy-to-train
architecture for texture synthesis. The proposed model was also studied in
adjacent research contexts, such as regeneration, grafting and interpolation,
and exhibits promising abilities, encouraging future developments of embedding
expected behaviour into the NCA model. Furthermore, given the interest in
extending NCAs to 3D textures, our study can also contribute to offering new
opportunities for improvement and generalization in this area.

References

[1] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk. State of the
Art in Example-based Texture Synthesis. In Eurographics 2009, State of
the Art Report, EG-STAR, pages 93–117, Munich, Germany, March 2009.
Eurographics Association.

[2] Alexander Mordvintsev and Eyvind Niklasson. µnca: Texture generation
with ultra-compact neural cellular automata, 2021.

[3] Eyvind Niklasson, Alexander Mordvintsev, Ettore Randazzo,
and Michael Levin. Self-organising textures. Distill, 2021.
https://distill.pub/selforg/2021/textures.

[4] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture synthesis
using convolutional neural networks. In C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 28. Curran Associates, Inc., 2015.

[5] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Victor Lempitsky.
Texture networks: Feed-forward synthesis of textures and stylized images.
In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings
of The 33rd International Conference on Machine Learning, volume 48 of

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Proceedings of Machine Learning Research, pages 1349–1357, New York,
New York, USA, 20–22 Jun 2016. PMLR.

[6] W. Xian, P. Sangkloy, V. Agrawal, A. Raj, J. Lu, C. Fang, F. Yu, and
J. Hays. Texturegan: Controlling deep image synthesis with texture
patches. In 2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 8456–8465, Los Alamitos, CA, USA, jun
2018. IEEE Computer Society.

[7] Ehsan Pajouheshgar, Yitao Xu, Tong Zhang, and Sabine Süsstrunk. Dynca:
Real-time dynamic texture synthesis using neural cellular automata. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[8] Yitao Xu. 3d texture synthesis using graph neural cellular automata, 2023.

[9] Alexander Mordvintsev, Nicola Pezzotti, Ludwig Schubert, and
Chris Olah. Differentiable image parameterizations. Distill, 2018.
https://distill.pub/2018/differentiable-parameterizations.

[10] E. F. Castejon C. M. Almeida, J. M. Gleriani and B. S. Soares-Filho. Us-
ing neural networks and cellular automata for modelling intra-urban land-
use dynamics. International Journal of Geographical Information Science,
22(9):943–963, 2008.

[11] Adversarial Takeover of Neural Cellular Automata, volume ALIFE 2022:
The 2022 Conference on Artificial Life of Artificial Life Conference Pro-
ceedings, 07 2022.

[12] Sam Earle, Justin Snider, Matthew C. Fontaine, Stefanos Nikolaidis, and
Julian Togelius. Illuminating diverse neural cellular automata for level
generation. In Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’22, page 68–76, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

[13] Kazuya Horibe, Kathryn Walker, and Sebastian Risi. Regenerating Soft
Robots Through Neural Cellular Automata, pages 36–50. 03 2021.

[14] Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael
Levin. Growing neural cellular automata. Distill, 2020.

[15] Alexander Mordvintsev and Ettore Randazzo. Texture generation with
neural cellular automata. CoRR, abs/2105.07299, 2021.

[16] Eric Heitz, Kenneth Vanhoey, Thomas Chambon, and Laurent Belcour. A
sliced wasserstein loss for neural texture synthesis. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), June 2021.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

[17] F. Pitie, A.C. Kokaram, and R. Dahyot. N-dimensional probability density
function transfer and its application to color transfer. In Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05) Volume 1, volume 2,
pages 1434–1439 Vol. 2, 2005.

[18] Sorana Catrina, Mirela Catrina, Alexandra Băicoianu, and Ioana Cristina
Plajer. Learning about growing neural cellular automata. IEEE Access,
12:45740–45751, 2024.

[19] James Stovold. Neural Cellular Automata Can Respond to Signals. volume
ALIFE 2023: Ghost in the Machine: Proceedings of the 2023 Artificial Life
Conference of Artificial Life Conference Proceedings, page 5, 07 2023.

[20] Gradient Climbing Neural Cellular Automata, volume ALIFE 2022: The
2022 Conference on Artificial Life of Artificial Life Conference Proceedings,
07 2022.

[21] Antoine Houdard, Arthur Leclaire, Nicolas Papadakis, and Julien Rabin. A
generative model for texture synthesis based on optimal transport between
feature distributions. J. Math. Imaging Vis., 65(1):4–28, jun 2022.

[22] Describing Textures in the Wild, volume Proceedings of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2014.

[23] MIT Vision and Modeling group. Vistex database.

[24] Jonathan Vacher, Aida Davila, Adam Kohn, and Ruben Coen-Cagli. Tex-
ture interpolation for probing visual perception. volume 33, 12 2020.

[25] Z. Bar-Joseph, R. El-Yaniv, D. Lischinski, and M. Werman. Texture mixing
and texture movie synthesis using statistical learning. IEEE Transactions
on Visualization and Computer Graphics, 7(2):120–135, 2001.

[26] Roland Ruiters, Ruwen Schnabel, and Reinhard Klein. Patch-based texture
interpolation. Computer Graphics Forum, 29(4):1421–1429, 2010.

[27] Ehsan Pajouheshgar, Yitao Xu, Alexander Mordvintsev, Eyvind Niklasson,
Tong Zhang, and Sabine Süsstrunk. Mesh neural cellular automata, 2024.

This work has been submitted to the IEEE for possible publication. Copyright
may be transferred without notice, after which this version may no longer be

accessible.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

Available online 11 April 2024
0952-1976/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Research Paper

Fractal interpolation in the context of prediction accuracy optimization
Alexandra Băicoianu a, Cristina Gabriela Gavrilă a, Cristina Maria Păcurar a,∗, Victor Dan Păcurar b

a Faculty of Mathematics and Computer Science, Transilvania University of Braşov, 50 Iuliu Maniu Blvd., Braşov, Romania
b Faculty of Silviculture and Forest Engineering, Transilvania University of Braşov, 1 Şirul Beethoven Street, Braşov, Romania

A R T I C L E I N F O

Keywords:
Machine learning
Fractal interpolation
LSTM
Synthetic data
Meteorological data
Optimization

A B S T R A C T

This paper focuses on the hypothesis of optimizing time series predictions using fractal interpolation tech-
niques. In general, the accuracy of machine learning model predictions is closely related to the quality and
quantitative aspects of the data used, following the principle of garbage-in, garbage-out. In order to quantitatively
and qualitatively augment datasets, one of the most prevalent concerns of data scientists is to generate synthetic
data, which should follow as closely as possible the actual pattern of the original data.

This study proposes three different data augmentation strategies based on fractal interpolation, namely
the Closest Hurst Strategy, Closest Values Strategy and Formula Strategy. To validate the strategies, we used four
public datasets from the literature, as well as a private dataset obtained from meteorological records in the city
of Braşov, Romania. The prediction results obtained with the LSTM model using the presented interpolation
strategies showed a significant accuracy improvement compared to the raw datasets, thus providing a possible
answer to practical problems in the field of remote sensing and sensor sensitivity. Moreover, our methodologies
answer some optimization-related open questions for the fractal interpolation step using Optuna framework.

1. Introduction

Developing successful Artificial Intelligence (AI) and machine learn-
ing (ML) models requires access to immense amounts of high-quality
data, as it is widely acknowledged that the performance of most ML
models depends on the quantity and diversity of data. However, col-
lecting the necessary amount of labelled training data can be cost-
prohibitive. Thus, developing various strategies to improve the quantity
and quality of data is of utmost importance.

Our research focuses on the use of interpolation to enhance the qual-
ity of the predictions of ML models. The interpolation technique that
we adopt is fractal interpolation which provides interpolants that are
not necessarily differentiable functions at every point. Since differen-
tiability implies smoothness and a continuous behaviour, interpolating
data using functions with this property tends to oversimplify or smooth
out some of the irregular and rough patterns that are specific to real-
world data, especially at smaller scales. This smoothing effect can lead
to a loss of crucial information, making the interpolation less suitable
for fitting real-world data. Furthermore, fractal interpolation allows
interpolants that can capture the inherent roughness and self-similar
structures often found in real-world data. These interpolants can better
replicate the complexity and irregularity present in natural phenomena.

On one hand, we develop three different strategies for the pre-
processing step of data, which all use fractal interpolation. Our first
strategy follows a similar approach to the one used by Raubitzek and

∗ Corresponding author.
E-mail address: cristina.pacurar@unitbv.ro (C.M. Păcurar).

Neubauer (2021). However, we managed to solve a series of issues,
such as answering the question of optimal choice of the vertical scal-
ing factors involved in fractal interpolation. Moreover, we present a
detailed scheme of all the steps involved, which makes our research
highly reproducible, and through Optuna framework we optimize the
prediction model presented. The other two strategies, Closest Values
Strategy and Formula Strategy are new approaches that have not been
considered in literature before as far as we know.

On the other hand, besides testing our strategies with an ML model
fed with public datasets, we also provide examples using real me-
teorologic data to put our research in the existing research context.
This opens a new gate for researchers in the field to obtain much-
needed data either when sensors break, or when finer data are needed,
based on data recorded at larger time intervals. The response time of a
temperature monitoring sensor is producer-dependent and defines how
fast the sensor can adapt to temperature changes in a defined period
of time, thus influencing the frequency of data logging. The sampling
rate, which determines the time resolution of data, depends on the
sensors’ response time (generally correlated with the price of the de-
vice). Developing better interpolation techniques could be very useful
for enabling time resolution enhancement, and making it possible, for
example, to integrate in the predictive models input data (with high
time resolution) subsets obtained from the raw data recorded by sensor-
loggers installed in the area for climatological purposes (less expensive

https://doi.org/10.1016/j.engappai.2024.108380
Received 28 May 2022; Received in revised form 9 October 2023; Accepted 1 April 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:cristina.pacurar@unitbv.ro
https://doi.org/10.1016/j.engappai.2024.108380
https://doi.org/10.1016/j.engappai.2024.108380
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108380&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Engineering Applications of Artificial Intelligence 133 (2024) 108380

2

A. Băicoianu et al.

devices, with a typical sample rate of 1 h, but with a much better spatial
coverage). This matter highly sustains the utility of the present study,
which aims to find new and improved techniques for data interpolation,
namely for modifying data time resolution.

Generating synthetic data, or data augmentation for time-series
data, has been an important research issue for many researchers.
Among utilization of data augmentation, we mention augmenting
sparse datasets (Forestier et al., 2017), generating controllable datasets
(Kang et al., 2019), moving block bootstrap (Bergmeir et al., 2016),
a.o. For a comprehensive review on time series augmentation for
deep learning see Wen et al. (2021). Among applications of data
augmentation, we also mention time series classification, Fawaz et al.
(2018), Guennec et al. (2016), Iwana and Uchida (2021) and Kamycki
et al. (2020) or improving the accuracy of forecasting (Bandara et al.,
2021, Lee and Kim, 2020 and Raubitzek and Neubauer, 2021). More-
over, it is noticeable that research on time-series data augmentation
proved interpolation to be a robust method (Oh et al., 2020).

Classical interpolation methods are often used in prediction ma-
chine learning techniques (Bélisle et al., 2015; Jia and Ma, 2017, Mei-
jering, 2002, Wu et al., 2020 and Yadav and Ray, 2021). Interpola-
tion techniques have proven to be an essential and effective tool in
reconstructing incomplete datasets (Chai et al., 2021).

Raubitzek and Neubauer have recently introduced fractal inter-
polation in data preprocessing for machine learning (Raubitzek and
Neubauer, 2021). However, our approach addressed several challenges,
including determining the optimal selection of vertical scaling factors in
fractal interpolation. Moreover, we optimize the presented prediction
model using the Optuna framework. Two strategies that we use, namely
the Closest Values Strategy and the Formula Strategy, represent novel
approaches that have not been used before.

Fractal interpolation is a method for generating interpolation points
between a given set of data 𝛥 = {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {0, 1, 2,… , 𝑁}}, where
𝑁 is a natural number. The main difference between fractal interpo-
lation and other types of interpolation techniques is the outlook of
the result of interpolation, which is a continuous function that is not
differentiable everywhere. Thus, fractal interpolation is more relevant
for fitting real-world data. Fractal interpolation has applications in
a vast range of areas, such as computer graphics (Manousopoulos
et al., 2008), image compression (Bouboulis et al., 2006 and May,
1996), reconstruction of satellite images (Chen et al., 2011), single-
image super-resolution procedure (Zhang et al., 2018), reconstruction
of fingerprint shape (Bajahzar and Guedri, 2019), signal processing
(Navascués, 2010 and Zhai et al., 2011), reconstruction of epidemic
curves (Păcurar and Necula, 2020) and others.

Research combining machine learning and fractal analysis features
has been performed before in combination with Support-Vector Ma-
chine (see Ni et al., 2011 that focuses on the enhancement of stock
trend prediction accuracy by combining a fractal feature selection
method with a support vector machine, demonstrating its superiority
compared to five other commonly used feature selection methods,
and Wang et al., 2019 where the stock price indexes are forecasted,
offering improved accuracy compared to three other commonly used
models) or Time-Delayed Neural Network (see Yakuwa et al., 2003
where there is shown an improved short-term prediction accuracy
compared to a back propagation-type forward neural network).

2. Materials

2.1. Datasets

This section presents the experimental datasets used in the current
research study. Their properties sustain the significance of interpolation
techniques in the prediction process, but also serve as validation for
the methodology that we will propose with respect to the quantitative
aspect of the data.

2.1.1. Meteorological data
The data set was provided by the Forest Meteorology-Climatology

Laboratory, from the Faculty of Silviculture and Forest Engineering,
Transilvania University of Brasov, more precisely it was extracted from
the database recorded by the automatic weather station
HOBO®RX3000 (research-grade), deployed at the Sânpetru Education
and Research Base, located about 10 km north-east of Braşov City
Centre (45.71◦N, 25.65◦W).

The temperature and relative humidity values were measured and
recorded every 10 min by an S-THB smart sensor (Hoboware, produced
by Onset Computer Corporation). This device is designed to operate in
a range from −40 ◦C to 75 ◦C, with an accuracy of ±0.21 ◦C (from 0◦

to 50 ◦C, thus in the temperature range of the three autumn months
considered in this study) and a resolution of 0.02 ◦C at 25 ◦C.

The sensor response time is 5 min (in air moving 1 m/s), conse-
quently, the time resolution of temperature data measurements
(10 min) was adequately established. For the data logger programming
an important element is the sampling time interval, which depends on
the sensor response time (a shorter sampling interval is not acceptable).
This issue highly sustains the utility of the present study, which aims
to find new, improved techniques for data interpolation, namely for
modifying data time resolution. For studying the regional mountain
climate, the Forest Meteorology-Climatology Laboratory operates a
dense network of temperature and relative humidity data loggers
(HOBO Pro v2 Temp/RH logger) deployed in Postavaru Mountains (on
different elevations, aspect, wind exposure etc.) with similar accuracy
and resolution, but with a response time of 40 min, which forces the
sampling interval to be higher, being consequently set at 1 h (suitable
for climatological studies but with the time resolution enhancement
useful for other applications).

For this study, the temperature data were formatted with two
decimals, as considered adequate for developing and testing the inter-
polation technique. For meteorological applications, the temperature
data resulting from direct measurements should be rounded to one
decimal (corresponding to readings at the ordinary meteorological
thermometer).

The data set is composed of 13 105 temperature entries recorded
between 1 September 2021, 0:00:00 and 30 November 2021, 23:50:00.
The file is in a .csv format with a size of 385 kB.

2.1.2. Additional public datasets
In view of the research by Raubitzek and Neubauer (2021), we

consider four additional public datasets: Shampoo sales with 36 data
points, (Kaggle, 2022), Airline passengers with 144 data points, (Kag-
gle, 2022), Annual wheat yields in Austria with 57 data points (Faostat-
Docs, 2022), and Annual maize yields in Austria with 58 data points
(FaostatDocs, 2022).

The consistent differences between our study and the research
from Raubitzek and Neubauer (2021) are convincingly outlined by
using the same datasets. Moreover, comparing the methods on the same
datasets highlights the progress in this direction of research that our
study provides.

2.2. Prerequisites

2.2.1. Fractal interpolation
Fractal interpolation was introduced by Barnsley (2012) and it has

since been intensively studied and applied.
To interpolate the data set 𝛥 = {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {0, 1, 2,… , 𝑁}} consider

the equations

𝑎𝑖 =
𝑥𝑖 − 𝑥𝑖−1
𝑥𝑁 − 𝑥0

𝑐𝑖 =
𝑥𝑁𝑥𝑖−1 − 𝑥0𝑥𝑖

𝑥𝑁 − 𝑥0
𝑑𝑖 =

𝑦𝑖 − 𝑦𝑖−1
𝑥𝑁 − 𝑥0

− 𝑠𝑖
𝑦𝑁 − 𝑦0
𝑥𝑁 − 𝑥0

𝑒𝑖 =
𝑥𝑖𝑦𝑖−1 − 𝑥0𝑦𝑖
𝑥𝑁 − 𝑥0

− 𝑠𝑖
𝑥𝑁𝑦0 − 𝑥0𝑦𝑛
𝑥𝑁 − 𝑥0

,

(1)

Engineering Applications of Artificial Intelligence 133 (2024) 108380

3

A. Băicoianu et al.

Fig. 1. Methodology outline.

where 𝑠𝑖 ∈ (−1, 1) is called the vertical scaling factor.
Let the family of functions 𝑓𝑖 ∶ [𝑥0, 𝑥𝑁] × 𝑌 → [𝑥0, 𝑥𝑁] × 𝑌 defined

as

𝑓𝑖

(

𝑥
𝑦

)

=
(

𝑎𝑖 0
𝑑𝑖 𝑠𝑖

)(

𝑥
𝑦

)

+
(

𝑐𝑖
𝑒𝑖

)

, (2)

for every 𝑖 ∈ {1,… , 𝑁}.
Given a metric space (𝑋, 𝑑), the pair ((𝑋, 𝑑), (𝑓𝑖)𝑖∈{1,…,𝑁}) is called

an iterated function system (IFS, for short) if:

(i) (𝑋, 𝑑) is a complete space;
(ii) the functions 𝑓𝑖 are continuous, for every 𝑖 ∈ {1,… , 𝑁}.

The concept of IFS is a notion due to Hutchinson (1981). For an
IFS, the fractal operator 𝐹 ∶ (𝑋) → (𝑋) is defined as 𝐹 (𝐾) =
∪𝑖∈{1,…,𝑁}𝑓𝑖(𝐾), for every 𝐾 ∈ (𝑋), where (𝑋) represents the set of
all subsets of 𝑋.

Taking 𝑋 = [𝑥0, 𝑥𝑁] with the Euclidean metric and the functions 𝑓𝑖
defined in Eq. (2), we obtain an IFS.

The fixed point of the fractal operator associated with an iterated
function system composed of the functions (𝑓𝑖)𝑖∈{1,…,𝑁} is an interpo-
lation function for the system of data 𝛥 called the fractal interpolation
function.

We construct the fractal interpolation part based on the above
formulas and the code provided by Barnsley in Chapter IV of Fractals
everywhere (Barnsley, 2012).

2.2.2. Optuna framework
Optuna is an open-source hyperparameter optimization framework

that provides multiple state-of-the-art algorithms for sampling hyper-
parameters ranging from grid sampling strategies to genetic algorithms
approaches (Optuna-ReadTheDocs, 2023b).

The main steps for using Optuna are as follows:

– Define an objective function to be optimized.
– Create an optimization study 𝑜𝑝𝑡𝑢𝑛𝑎_𝑠𝑡𝑢𝑑𝑦, which will determine

the best parameters by running several trials. A trial can be
defined as a single execution of the objective function.

– Use one or multiple suggest API function calls for the parameters
that are subject to optimization inside a trial.

The default hyperparameter sampler is TPESampler which im-
plements the Tree-structured Parzen Estimator algorithm (Optuna-
ReadTheDocs, 2023a). The algorithm starts by running the objective
function on randomly sampled hyperparameter values from the given
domain. After a number of observations, the results are divided into two
groups depending on whether they fall below or above a certain quan-
tile of the observed values of the objective function, thus separating the
best hyperparameter values from the others. In every iteration, the two
groups are updated and a Gaussian Mixture Model (GMM) is fitted to
each group, resulting in two densities, 𝑙(𝑥) for the best hyperparameters
values and 𝑔(𝑥) for the remaining ones, where 𝑥 is the value of the
hyperparameter. The algorithm will select the value that maximizes
the ratio 𝑙(𝑥)

𝑔(𝑥) .

3. Method and procedures

This section presents the methodology of the present study. We
emphasize the steps which are of utmost importance for the final results
in Fig. 1. Furthermore, in the following sections, we will explore each
block included in the diagram and highlight its role in the whole
process.

It is noteworthy that the main contribution of this paper is con-
centrated on the interpolation step, which is placed in a time series
prediction pipeline. The main goal is to evaluate how the data aug-
mentation step, through fractal interpolation, can have an impact on
the quality/accuracy of the prediction.

The field of modelling weather and climate is getting increasingly
popular, so choosing a suitable learning machine model becomes a
challenge. LSTM models are particularly suited for predicting climate
change because they can recall and utilize past data to inform future
forecasts. Seasonality and patterns in climate data are frequently visible
and can last many years. Based on past data, LSTM models may
successfully identify these patterns and produce precise forecasts. The
capacity of LSTM models to manage missing data is one of their key
characteristics. Due to several issues, including sensor malfunctions and
data gathering gaps, climate data is frequently unreliable. While LSTM
models can make predictions even with insufficient data, traditional
statistical methods have difficulty handling missing data.

LSTM models can also be trained to adjust to changing situations.
Since climate change is dynamic, conventional statistical models fre-
quently have difficulty adjusting to new patterns and trends. The ability
to train LSTM models on an ongoing stream of data, on the other
hand, enables them to adjust and produce precise forecasts even as the
climate changes.

For all these reasons exposed, in this research, we chose an LSTM
model to explore the predictions on the data used.

3.1. Data preprocessing step

Data preprocessing is an essential step in the development of suc-
cessful ML models. This technique requires some data preparation,
including cleaning the data and transforming the data such that their
quality is enhanced. Incomplete, inconsistent, or inaccurate data that
contain errors or outliers can be eliminated in this preprocessing step.
There are numerous preprocessing techniques (for a comprehensive
book on data preprocessing see Garcia et al., 2014) that produce
quality data that lead to high-quality patterns.

Our preprocessing step includes transformations of data (interpola-
tion, normalization, and stationarity) to obtain the most suitable data
for applying ML algorithms.

3.1.1. Interpolation step
Real-world data are often noisy, with incorrect or missing values.

Interpolation is a method of creating new data points within the range
of known data points, so it is a technique for filling in missing values.
The interpolation should be used where there is a trend observed in the
input data and the requirement is to fill the missing value along with
the same trend.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

4

A. Băicoianu et al.

Fig. 2. Interpolation flow diagram for 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 3.

We present the complete and detailed steps required for the inter-
polation step, applied to the datasets considered.

Substep 1: Divide the time series into 𝑚 subsets of size se-
quence_size

This step consists of splitting the given sequence into 𝑚 subsets of
length sequence_size so that the last value in subset 𝑖 is the first value
in the subset 𝑖 + 1.

As regards the way we implement this substep, there are some
remarks that are worth mentioning:

Remark 1. If the algorithm is used in strict mode, then the dataset is
divided into 𝑚 sequences with equal dimensions; otherwise, the last
subset might have a dimension between 3 and sequence_size - 1 (at
least 3 because 2 points cannot generate new intermediate points in
the interpolation process).

Remark 2. At the end of the interpolation, the subsets need to be re-
united into a unique list that contains the initial points, chronologically
and without repetitions.

Substep 2: The proposed interpolation strategies
In this section, we present three different strategies for the steps

specific to interpolation, namely Closest Hurst Strategy (CHS), Closest
Values Strategy (CVS) and Formula Strategy (FS).

We choose different strategies, firstly to obtain validation for the
results from Raubitzek and Neubauer (2021), and most importantly,
to enhance the results and obtain improved techniques. We test our
methods for both the public datasets Maize (Annual maize yields in
Austria), Shampoo Sales, Airline Passengers, Wheat (Annual wheat
yields in Austria), see details in Section 2.1, as well as the original data
set, Weather described in Section 2.1.1. As regards the latter, for all
strategies we use the data corresponding to the first week of entries (1
September 2021–8 September 2021) and we chose the data recorded
every hour, to better outline the significance of interpolation.

Fig. 2 describes the general flow of the interpolation step. While
the diagram is constructed considering a 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 of 3, note that
a particular 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 was used for implementing the proposed
methodologies. Specific details are given in the next sections for each
of the defined strategies.

The interpolation step is presented in Algorithm 1, and it is ap-
plicable for all the next proposed strategies. The description of the
parameters for the FRACTAL_INTERPOLATION procedure are:

◦ subset : subset created from original data as described in Substep
1.

◦ 𝑠𝑖: a vector of vertical scaling factors which dictate how jagged
(and fractal) will be the aspect of the generated data, in the sense
that, as its name states, it scales the points vertically.

◦ n_interpolation: the number of distinct interpolation points to be
generated between every 2 points of the original data

Algorithm 1 Pseudocode for Fractal Interpolation Computation
1: procedure fractal_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑖 , 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
2: Compute the interpolation factors 𝑎𝑖 , 𝑐𝑖 , 𝑑𝑖 s,i 𝑒𝑖 based on Equation (1)
3: Generate interpolation points based on Equation (2) until between every 2 points

from the 𝑠𝑢𝑏𝑠𝑒𝑡 there are 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 distinct interpolation points

I. Closest Hurst Strategy (CHS)
The first Strategy is similar to the one employed by Raubitzek and

Neubauer (2021). We will refer to it as Closest Hurst Strategy (CHS).
For each subset resulting from Interpolation Substep 1 with

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 10, the Algorithm 2 is performed. Note that the parame-
ters have the same signification as previously described.

Results and analysis for Closest Hurst Strategy
We present the results obtained for the considered datasets based

on CHS. Firstly, we show the outcome for the public datasets, with the
parameter 𝑠𝑖 ∈ [−1, 1] (Figs. 3–6).

However, following tests, we found that the most appropriate ver-
tical scaling factor must be chosen between 𝑠𝑖 ∈ [0, 0.2]. In this case,
the differences between the points obtained and the initial points are
limited, and the initial outlook of the graphic defined by the initial
points is conserved. We show in Figs. 7–10 the results obtained in this
case.

For our private data set, Weather, we obtain the results presented
in Figs. 11 and 12.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

5

A. Băicoianu et al.

Algorithm 2 Pseudocode of Closest Hurst Strategy
1: procedure closest_hurst_strategy(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
2: Compute the 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_ℎ𝑢𝑟𝑠𝑡, the initial Hurst exponent
3: Generate 𝑠𝑖 ∈ [−1, 1] a vector with the same value on all positions, representing the

constant vertical scaling factor for the current 𝑠𝑢𝑏𝑠𝑒𝑡
4: for 𝑘 ← 1, 15 do
5: 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡 ← fractal_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑖 , 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
6: Compute the ℎ_𝑛𝑒𝑤, the Hurst exponent for the 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡
7: if k = 1 then
8: ℎ_𝑜𝑙𝑑 ← ℎ_𝑛𝑒𝑤
9: 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡
10: else
11: if abs(ℎ_𝑛𝑒𝑤 - 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_ℎ𝑢𝑟𝑠𝑡) < abs(ℎ_𝑜𝑙𝑑 - 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_ℎ𝑢𝑟𝑠𝑡) then
12: ℎ_𝑜𝑙𝑑 ← ℎ_𝑛𝑒𝑤
13: 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡
14: else
15: Generate a new 𝑠𝑖 ∈ [−1, 1]
16: return 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑟𝑒𝑠𝑢𝑙𝑡

Fig. 3. Maize data set, CHS.

Fig. 4. Shampoo Sales data set, CHS.

Although the stop condition ensures that the Hurst exponent for
the interpolated data is close enough to the initial Hurst value, this
does not guarantee the persistence of other properties of the data. This
motivates us to define new strategies that ensure the preservation of
certain properties of the data through interpolation.

II. Optimized procedure - Closest Values Strategy (CVS)
For this type of strategy, we propose the Optuna framework, de-

scribed in Section 2.2.2.
Thus, in the current CVS strategy, for each data subset obtained

using 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 10, the steps from Algorithm 3 are performed.
Observe that Algorithm 3 defines two procedures, the first one is
the objective function that Optuna will minimize over the course

Fig. 5. Wheat data set, CHS.

Fig. 6. Air Passengers data set, CHS.

Fig. 7. Maize data set, CHS.

of 15 trials, having the new parameter 𝑜𝑝𝑡𝑢𝑛𝑎_𝑡𝑟𝑖𝑎𝑙, and the second
one is the main implementation of the strategy. Additionally, proce-
dure LINEAR_INTERPOLATION constructs a linear interpolation of the
𝑠𝑢𝑏𝑠𝑒𝑡 considering each interpolation point generated by the FRAC-
TAL_INTERPOLATION procedure, and RMSE represents the Root Mean
Square Error.

Results and analysis for Closest Values Strategy
In Figs. 13–17 there are shown the results of the proposed strategy

for all five datasets based on CVS. The parameter 𝑠𝑖 was optimized by
Optuna with a possible range set in the interval [−1, 1].

Engineering Applications of Artificial Intelligence 133 (2024) 108380

6

A. Băicoianu et al.

Fig. 8. Shampoo Sales data set, CHS.

Fig. 9. Wheat data set.

Fig. 10. Air Passengers data set.

Algorithm 3 Pseudocode of Closest Values Strategy
1: procedure closest_values_strategy_objective(𝑜𝑝𝑡𝑢𝑛𝑎_𝑡𝑟𝑖𝑎𝑙, 𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
2: Generate 𝑠𝑖 ∈ [−1, 1], a vector with the same value on all positions, representing the

constant vertical scaling factor for the current 𝑠𝑢𝑏𝑠𝑒𝑡 in the current 𝑜𝑝𝑡𝑢𝑛𝑎_𝑡𝑟𝑖𝑎𝑙 using
𝑠𝑢𝑔𝑔𝑒𝑠𝑡 API

3: 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡 ← fractal_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑖 , 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
4: 𝑙𝑖𝑛𝑒𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡 ← linear_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡)
5: return RMSE(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡, 𝑙𝑖𝑛𝑒𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡)

⊳
6: procedure closest_values_strategy(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
7: Create 𝑜𝑝𝑡𝑢𝑛𝑎_𝑠𝑡𝑢𝑑𝑦, a study with direction ’minimize’, the objective function

closest_values_strategy_objective() and 15 trials
8: 𝑠𝑖 ← best trial parameter of 𝑜𝑝𝑡𝑢𝑛𝑎_𝑠𝑡𝑢𝑑𝑦
9: return fractal_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑖 , 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

Fig. 11. Weather data set with 𝑠𝑖 ∈ [−1, 1].

Fig. 12. Weather data set with 𝑠𝑖 ∈ [0, 0.2].

Fig. 13. Maize data set, CVS.

It is noticeable that the graphics obtained using CVS resemble the
results from CHS with 𝑠𝑖 ∈ [0, 0.2]. This is because the RMSE is
minimum for the parameter 𝑠𝑖 close to the interval [0, 0.2]. This can be
observed in Fig. 18 where the evolution of the parameter 𝑠𝑖 is presented
with respect to the objective function described in the CVS context. This
result validates our choice of the parameter 𝑠𝑖 in the case of CHS.

III. Optimized strategy - Formula Strategy (FS)
For this method, we shall follow a different direction, that is to use

a formula to optimize the parameter 𝑠𝑖. Although there is no way to
determine a general optimal vertical scaling factor, there are various
approaches to optimize this parameter. We follow the ideas from Mazel

Engineering Applications of Artificial Intelligence 133 (2024) 108380

7

A. Băicoianu et al.

Fig. 14. Shampoo Sales data set, CVS.

Fig. 15. Wheat data set, CVS.

Fig. 16. Air Passengers data set, CVS.

and Hayes (1992), Manousopoulos et al. (2011) and Gowrisankar et al.
(2022).

For the data set 𝛥 = {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ {0, 1, 2,… , 𝑁}}, we choose the
parameter 𝑠𝑖 as follows:

𝑠𝑖 =
𝑦𝑖 − 𝑦𝑖−1

√

(𝑦𝑁 − 𝑦0)2 + (𝑦𝑖 − 𝑦𝑖−1)2
, (3)

for each 𝑖 ∈ {1, 2,… , 𝑁}.
However, since the denominator in Eq. (3) becomes closer to 0 when

the first and the last data in the subset are too close (the line determined
by the start point and ending point of the subset is parallel to the 𝑂𝑥

Fig. 17. Weather data set, CVS.

Fig. 18. Evolution of parameter 𝑠𝑖 with Optuna.

Fig. 19. Interpolation of 𝛤 with 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 6.

axis), then 𝑠𝑖 becomes irrelevantly big, inducing an unwanted variation
in the data. Thus, we avoid this by optimizing the current strategy. The
optimization is achieved by modifying the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 parameter such
that the difference between the two ends does not tend to zero.

To exemplify the dependence of the interpolated data on the
𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 parameter chosen, let us consider a trial data set

𝛤 = {(1, 10), (2, 14), (3, 19), (4, 26), (5, 35),

(6, 46), (7, 35), (8, 26), (9, 19), (10, 14), (11, 10)}.

In Figs. 19 and 20, there are presented the results of interpolation
with FS for two different values for 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒, 6 and 11 respectively.

Therefore, in the context of FS, the initial step is determining the
optimal value of the 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒. For this, we used the procedures
defined in Algorithm 4. Note that the optimization is computed for
the entire dataset using Optuna with 50 trials, as opposed to previous

Engineering Applications of Artificial Intelligence 133 (2024) 108380

8

A. Băicoianu et al.

Fig. 20. Interpolation of 𝛤 with 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 11.

optimization strategies where the optimization was done at the subset
level.

To determine the optimal values for 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒, we consider the
search interval [4, length(dataset)−3] and allow the fractal interpolation
algorithm to work in the non-strict mode, see Remark 1, to minimize
data loss.

Algorithm 4 Pseudocode of 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 optimization
1: procedure optimize_subset_length_objective(𝑜𝑝𝑡𝑢𝑛𝑎_𝑡𝑟𝑖𝑎𝑙, 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
2: Generate subset length 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 ∈ [4, length(𝑑𝑎𝑡𝑎𝑠𝑒𝑡) − 3] in the current

𝑜𝑝𝑡𝑢𝑛𝑎_𝑡𝑟𝑖𝑎𝑙 using 𝑠𝑢𝑔𝑔𝑒𝑠𝑡 API
3: Split 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 into 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 of length 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 as described in Substep 1 from

Section 3.1.1
4: 𝑡𝑜𝑡𝑎𝑙_𝑅𝑀𝑆𝐸 ← 0
5: for each 𝑠𝑢𝑏𝑠𝑒𝑡 in 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 do
6: 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡 ← formula_strategy(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)
7: 𝑙𝑖𝑛𝑒𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡 ← linear_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡)
8: 𝑡𝑜𝑡𝑎𝑙_𝑅𝑀𝑆𝐸 ← 𝑡𝑜𝑡𝑎𝑙_𝑅𝑀𝑆𝐸 +RMSE(𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡, 𝑙𝑖𝑛𝑒𝑎𝑟_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒𝑑_𝑠𝑢𝑏𝑠𝑒𝑡)
9: return 𝑡𝑜𝑡𝑎𝑙_𝑅𝑀𝑆𝐸

⊳
10: procedure optimize_subset_length(𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
11: Create 𝑜𝑝𝑡𝑢𝑛𝑎_𝑠𝑡𝑢𝑑𝑦, a study with direction ’minimize’, the objective function

optimize_subset_length_objective() and 50 trials
12: 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 ← best trial parameter of 𝑜𝑝𝑡𝑢𝑛𝑎_𝑠𝑡𝑢𝑑𝑦
13: return 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒

With regards to FS, for each subset of data, the procedure from
Algorithm 5 is executed.

Algorithm 5 Pseudocode of Formula Strategy
1: procedure formula_strategy(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 = 17)
2: Compute 𝑠𝑖 based on Equation (3)
3: return fractal_interpolation(𝑠𝑢𝑏𝑠𝑒𝑡, 𝑠𝑖 , 𝑛_𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛)

Let us note that for the procedure FORMULA_STRATEGY, 𝑠𝑖 is not
constant for the entire subset (as is the case for CHS and CVS), but it
varies according to each interval defined by two consecutive points in
the subset.

One of the main advantages of this strategy is that once the optimal
dimension of the subset is found, the repetitive process required to
execute the optimization routine for the previous two strategies is no
longer required.

The optimal value of 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 for each data set is presented in
Table 1.

Results and analysis for formula strategy
Applying formula (3) using the optimal 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 values from

Table 1, we obtain the interpolation results presented in Figs. 21–25.

Table 1
Optimal 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒 values for FS interpolation.

Data set 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒_𝑠𝑖𝑧𝑒

Maize 29
Shampoo Sales 10
Wheat 54
Air Passengers 141
Weather 6

Fig. 21. Maize data set, FS.

Fig. 22. Shampoo Sales data set, FS.

Fig. 23. Wheat data set, FS.

Comparison of methods and results
We proposed three strategies for the interpolation step, each with a

different approach. To obtain a better understanding of the differences

Engineering Applications of Artificial Intelligence 133 (2024) 108380

9

A. Băicoianu et al.

Fig. 24. Air Passengers data set, FS.

Fig. 25. Weather data set, FS.

Fig. 26. First 6 points.

between the three methods, we depict in Figs. 26 and 27 the interpo-
lation results for our Weather data set provided by the three strategies
on the same graphic.

We can observe that CHS (with 𝑠𝑖 ∈ [0, 0.2]) and CVS approaches
provide similar results, while the FS approach determines slightly
higher variations.

To emphasize the comparison, let us use the original Weather data
set. We extract hourly data and use the three strategies for fractal
interpolation with a number of five interpolation points (n_interpolation
= 5) to simulate 10-min data.

Fig. 27. First 25 points.

Fig. 28. MAE, CHS.

Fig. 29. MAE, CVS.

In Figs. 28–30 there are presented the results for data recorded
between 02/09/21, 22:00 and 03/09/21, 06:00 compared to the orig-
inal data for all three strategies. To obtain a better understanding of
the differences between the three strategies, we computed the Mean
Absolute Error (MAE) for each data set, which provides us with the
mean difference, in degrees, between the real and the interpolated data.

As regards the Weather data set, for CHS we obtain 𝑀𝐴𝐸 = 0.3510,
for CVS we have 𝑀𝐴𝐸 = 0.2962 and for FS we get 𝑀𝐴𝐸 = 0.4997.
Thus, we can observe that the least MAE is obtained for CVS, thus, this
strategy is the optimal one, followed by CHS and FS.

3.1.2. Normalization step
Usually, the normalization step’s objective is to convert an at-

tribute’s values to a better range. There are more strategies to normalize
data. We chose to scale the data using a method similar to the min–
max method, which performs a linear transform of the data in a given
interval.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

10

A. Băicoianu et al.

Fig. 30. MAE, FS.

More precisely, to normalize data 𝑥′ ∈ [0, 1] we use the formula

𝑥′ = 𝑥 − min 𝑥
max 𝑥 − min 𝑥

.

For data 𝑥′′ ∈ [−1, 1] the formula becomes

𝑥′′ = 2 𝑥 − min 𝑥
max 𝑥 − min 𝑥

− 1. (4)

In general, for data 𝑥′′′ ∈ [𝑎, 𝑏], where 𝑎, 𝑏 ∈ R the formula becomes

𝑥′′′ = (𝑏 − 𝑎) 𝑥 − min 𝑥
max 𝑥 − min 𝑥

+ 𝑎.

The purpose of normalization is to transform data in a way that they
are either dimensionless and/or have similar distributions. Normaliza-
tion is an essential step in data preprocessing in any ML algorithm and
model fitting. Propagated errors must not have high values, especially
in the case of recurrent neural networks (as is LSTM). Moreover,
data normalization allows comparison of the results over data with
a different configuration, thus reducing biased prioritization of some
features over others, which can be caused by providing data with
different features that have wide-scale differences to the model.

3.1.3. Stationarity in time series analysis
Stationarity is an important concept in the field of time series

analysis with tremendous influence on how the data is perceived and
predicted. It indicates whether statistical properties such as mean,
variance, and autocorrelation of a time series change over time.

To determine whether a data set must be transformed, we use the
Augmented Dicky-Fuller test which uses the coefficient that defines
the unit root, 𝑝-value. If the 𝑝-value obtained is below 0.05, then the
current data set is stationary.

For maintaining data stationarity, several transformations can be
applied to eliminate trends and seasonality of a data set. In Table 2
there are presented the p-values obtained after the three types of
transformations used for eliminating the trend: Log Transformation,
Square Root Transformation and Linear Regression Transformation.

Since for the hourly temperatures over a week, the data set is
already stationary and no transformation was required as can be seen
in Table 2, we manually created a data set composed of the daily
maximum temperature recorded.

Daily temperature extremes are more informative than the mean
value, indicating the range over this time interval, which is highly
important for interpreting its decisive influence on various processes.
The minimum temperature generally occurs at dawn, at the end of
the negative net radiation interval, when atmospheric status in the
boundary layer is rather stable. The situation is completely different
as concerns the maximum daily temperature, which arises at midday,
after the heating peak, which also induces a considerable enhancement
of thermal turbulence, causing increased air temperature variability.
Consequently, the daily maximum temperature was chosen for this
study, considering that fractal interpolation and a machine learning
approach could significantly improve its assessment.

As a result of the different dimensions of the initial and interpolated
data set, the p-values obtained are different. For comparison, we also
perform linear interpolation. We can notice from Table 2 that regardless
of the interpolation strategy employed, the p-values are close to the
value obtained for linear interpolation.

We highlight in Table 2 the transforms that are maintained for each
strategy.

As seasonality is regarded, a frequent step is the differentiation of
data. However, since fractal interpolation produces functions that are
continuous, but are not necessarily everywhere differentiable, this step
cannot be considered.

Moreover, the LSTM model has a sufficient complexity to process
non-stationary data, as is not the case for other statistic models like
Autoregressive Integrated Moving Average (ARIMA) which depends
closely on data stationarity. For the LSTM model, data normalization
is more significant.

3.2. Data splitting step

For all datasets, 70% of them are retained, while the remaining 30%
are allocated to the test data set, in chronological order.

For the Weather data set, the division of the data set is presented in
Table 3.

The current division presented in Table 3 is relevant for the Weather
data set and does not alter the predictions as in the Brasov moun-
tain region, also including the neighbouring depressionary area, the
three autumn months (September, October, November) are generally
characterized by a more stable weather regime as compared with the
symmetrical springtime interval. There are some sudden cold intervals,
especially at the end of September or the beginning of October, but
after this more dynamic period, the weather pattern shows prolonged
intervals of fine weather, favourable for mountain tourism, which is
also encountered towards the end of November in many years.

3.3. Model description

The selected prediction model uses an LSTM layer, followed by one
dense layer with dimension 1 since the datasets have only one feature
(see Fig. 31).

For each data set, the number of hidden layers in LSTM was opti-
mized using Optuna. For the Weather data set, the obtained values are
presented in Table 4.

LSTM is configured with the default parameters. The metric used for
measuring the loss in the training step is Mean Squared Error (MSE) and
for the general evaluation of the model we used RMSE.

3.3.1. Specific input structure of LSTM
To be able to feed the data to the LSTM layer, we must transform the

data set into a supervised learning format. This is achieved by sliding
a window of size input_data_points over the whole data set using a step
of 1. The obtained subsets will represent the inputs for the network. In
the case of Univariate Time Series prediction, the output for subset 𝑖
[𝑑𝑎𝑡𝑎𝑖, 𝑑𝑎𝑡𝑎i+input_data_points-1] will be 𝑑𝑎𝑡𝑎i+input_data_points.

The LSTM layer implementation in Keras - Tensorflow Keras 2.4.1,
expects the input data to be in the format of [batch_size,
input_data_points, features]. In our case, we used a batch size of 1.

Special attention is needed such that the window size
input_data_points considered must be less than 30% of the entire dataset.
Otherwise, using the testing set to evaluate the model’s performance
will not be possible, as for a single data point prediction,
input_data_points entries are required in the supervised format.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

11

A. Băicoianu et al.

Table 2
p-values obtained for the performed transformations.
Data set Interpolation strategy None Log Square Linear regression

Shampoo Sales

None 1.0000 0.9983 0.9991 0.0000
Linear 0.7860 0.8076 0.7829 0.0655
CHS 0.9655 0.8245 0.9221 0.1022
CVS 0.9755 0.9353 0.9678 0.0839
FS 0.8744 0.0423 0.7658 0.0054

Air Passengers

None 0.9919 0.4224 0.9181 0.4415
Linear 0.0934 0.2104 0.1522 0.0001
CHS 0.1250 0.2869 0.2118 0.0002
CVS 0.1334 0.2248 0.1919 0.0001
FS 0.0919 0.2018 0.1442 0.0001

Wheat

None 0.0607 0.0018 0.0122 0.9983
Linear 0.4275 0.3043 0.3704 0.8529
CHS 0.4840 0.2979 0.3924 0.9303
CVS 0.4997 0.3335 0.4207 0.9110
FS 0.6144 0.4094 0.5235 0.8590

Maize

None 0.2370 0.0207 0.1073 0.9986
Linear 0.4905 0.1421 0.3132 0.9008
CHS 0.4047 0.0497 0.1863 0.9751
CVS 0.4196 0.0820 0.2131 0.9798
FS 0.4110 0.0965 0.2446 0.9493

Hourly Temperatures Over a Week

None 0.0000 – – –
Linear 0.0000 – – –
CHS 0.0000 – – –
CVS 0.0002 – – –
FS 0.0000 – – –

Max Daily Temperature

None 0.1210 0.8297 0.1160 0.8669
Linear 0.0343 0.0772 0.0510 0.4679
CHS 0.1374 0.1942 0.1504 0.7768
CVS 0.2860 0.2697 0.3451 0.8406
FS 0.0714 0.0453 0.0655 0.5549

Table 3
Splitting of the weather data set.
Data set Train data Test data

Hourly Temperature 01/09/21, 00:00–05/09/21, 21:00 05/09/21, 21:00–08/09/21, 00:00
Daily Maximum Temperature 01/09/21–02/11/21 02/11/21–30/11/21

Fig. 31. Neural network structure.

Table 4
Number of hidden layers.

Interpolation strategy Hidden layers

None 48
CHS 39
CVS 28
FS 10

3.3.2. Model optimization
Optimization plays an important role in a machine learning solu-

tion and the step of tuning a chosen model is critical to the model’s
performance and accuracy. Hyperparameter tuning intends to find the
hyperparameters of a given machine learning algorithm that guarantee
the best performance as measured on a validation set. Saving time, but
also eliminating the chance of overfitting or underfitting influenced the
interest in hyperparameter tuning research. Thus, entire branches of

machine learning and deep learning theory have been dedicated to the
optimization of models.

In our study, we use Optuna - Optuna 2.10.0 in two key points of
our implementation:

1. optimizing the vertical scaling factor 𝑠𝑖 for the interpolation step;
2. fine-tuning LSTM network hyperparameters.

For the LSTM network model, we considered the following hyper-
parameters for optimization:

◦ units: the number of hidden layers used for the LSTM layer, which
defines the complexity of the model. There is no formula or rule
to determine this number, so it is a natural decision to pick this
hyperparameter for the optimization process search space. Our
choice is the interval [2, 64];

◦ input_data_points (timesteps): given the data structure expected by
the LSTM network, this represents the number of consecutive

Engineering Applications of Artificial Intelligence 133 (2024) 108380

12

A. Băicoianu et al.

Table 5
Model tuning and hyperparameters optimization.

Data set Linear regression Hidden layers Input data points Epochs Learning rate Train RMSE Test RMSE

Shampoo Sales

None 62 8 80 0.02 0.1717 0.4997
CHS 48 16 15 0.04 0.0859 0.0951
CVS 41 28 10 0.01 0.0607 0.0749
FS 17 1 8 0.005 0.1218 0.1264

Air Passengers

None 56 14 65 0.007 0.0947 0.1348
CHS 33 97 8 0.03 0.0285 0.0655
CVS 62 51 5 0.02 0.0288 0.0444
FS 29 93 7 0.03 0.0416 0.0619

Wheat

None 13 5 125 0.005 0.1480 0.2410
CHS 8 93 12 0.03 0.0559 0.0653
CVS 11 98 10 0.01 0.0431 0.0552
FS 51 99 12 0.01 0.0656 0.0932

Maize

None 52 3 150 0.05 0.1327 0.1766
CHS 32 82 15 0.01 0.0299 0.0304
CVS 39 1 10 0.002 0.0187 0.0273
FS 27 20 20 0.007 0.0920 0.0991

Hourly Temperatures Over a Week

None 48 8 60 0.008 0.1111 0.1383
CHS 39 22 7 0.005 0.0325 0.0414
CVS 28 34 15 0.001 0.3446 0.0389
FS 10 17 14 0.005 0.0391 0.0462

Daily Max Temperatures

None 43 5 175 0.02 0.1132 0.4944
CHS 47 84 12 0.03 0.0321 0.0523
CVS 49 11 20 0.005 0.0290 0.0692
FS 50 27 15 0.005 0.0526 0.1351

input values considered for an output value in the supervised
learning format. Since this is highly dependent on the data set
size, but also on the frequency of the desired prediction, we
considered the interval [1, 𝑚𝑖𝑛(𝑥, 30 ∗ length(dataset)∕100 − 1)],
where 𝑥 = 15 for non-interpolated datasets and 𝑥 = 100 for the
interpolated ones. This limit was necessary for the optimization
process because a large window size produces fewer predictions
which misleadingly leads to smaller cumulated errors, however,
the purpose of the model is to come up with predictions relying
on as few known values as possible.

◦ learning_rate: finding the right value for the learning rate can
significantly improve the accuracy of the model. A learning rate
too big might lead to poor performance since the algorithm makes
leaps too large while searching for the optimal value, whereas a
small learning rate slows down the execution time of the training
process. For the search space, we chose the interval [1𝑒−3, 1𝑒−1].

◦ epochs: although not specific to Recurrent neural networks
(RNNs), the number of epochs to train a model is an important
key factor. The more epochs, the better for the model, but too
many epochs can often lead to overfitting. Each model corre-
sponding to a non-interpolated data set was trained for 150
epochs, while the interpolated ones were limited to 25. The final
epoch number was hand-picked by observing the evolution of the
loss at each epoch

As described in Section 2.2.2, the suggest APIs from Optuna frame-
work are used to define the search space for each selected hyperparam-
eter. Each study ran 50 trials since no significant improvement in the
overall score was observed after that.

The objective function defined will create, compile, fit and eval-
uate the model using the training data set 5 times for each set of
considered hyperparameters. This is done to ensure that the optimized
hyperparameters produce a more stable model. After the optimization,
we obtained the configurations from Table 5 with the corresponding
scores. Mean results are again computed for 5 individual runs using
the same configuration.

We mention the fact that all optimizations were executed using the
free environment offered by Google Colab, having a GPU-accelerated
runtime, making this accessible to everybody.

We notice that for the majority of the datasets, the best results
are obtained via CVS. However, the other two strategies are also of

considerable importance. For all datasets studied, the values obtained
for CHS and CVS are rather close, while the results obtained for FS
are higher. Even so, FS is a viable strategy for its easy way of usage.
Moreover, it is worth noticing that all results obtained with the three
strategies are at least 50% better than the results obtained without any
interpolation strategy.

4. Results and discussions

We present the graphics of the predictions obtained via the LSTM
model for our Weather data set, for the three proposed strategies and
the initial data which is not interpolated. The results emphasize the
advantages brought to the predictions.

For the manufactured data set which contains the daily maximum
temperatures, the results are presented in Figs. 33–35. It can be ob-
served that for the initial data, the LSTM does not perform well enough.
However, for the interpolated datasets, the results are visibly better,
with the best result being obtained for CHS. All the strategies provide
better results and this is motivated by the fact that more training data
provides better ML solutions. Thus, the importance of the proposed
preprocessing strategies is supported and emphasized.

The results for both the maximum daily temperature (considered for
example purposes) and the hourly data set with 17 interpolation points,
see Figs. 37–39, prove that fractal interpolation brings a significant
upgrade to the model as it improves visibly the results of the predictions
when compared to the results obtained for the initial datasets (results
that are presented in Figs. 32 and 36). Even though 17 interpolation
points provide good theoretical results, we should also practically test
the predictions by considering the hourly data set with 5 interpolation
points to simulate the 10-min data recorded by the sensor.

Thus, we consider the entries from the Weather data set from
01/09/21, 00:00 to 08/09/21, 00:00. For this data set, we extract the
hourly temperatures data and use fractal interpolation with
n_interpolation = 5 according to the three strategies proposed (CHS, CVS,
FS) to simulate 10-min data.

We can observe from Table 6 that while the hourly data without
any interpolation provides visibly worse results (as expected) than the
predictions with initial 10-min data, the case is the opposite when
interpolating the hourly data set to simulate 10-min data with either of
the three strategies. Thus, it can be observed that extracting hourly data

Engineering Applications of Artificial Intelligence 133 (2024) 108380

13

A. Băicoianu et al.

Table 6
Comparison between interpolated 10-min data and original data predictions.

Data set Linear regression Hidden layers Input data points Epochs Learning rate Train RMSE Test RMSE

Hourly Temperatures Over a Week

None 48 8 60 0.008 0.1111 0.1383
CHS 30 94 15 0.03 0.0415 0.0462
CVS 61 94 10 0.02 0.0443 0.0474
FS 34 99 17 0.016 0.0488 0.0494

Temperature Every 10 min None 55 32 25 0.016 0.0523 0.0541

Fig. 32. Prediction for daily maximum data without interpolation.

Fig. 33. Prediction for daily maximum data with CHS.

Fig. 34. Prediction for daily maximum data with CVS.

Fig. 35. Prediction for daily maximum data with FS.

Fig. 36. Prediction for hourly data without interpolation.

Fig. 37. Prediction for hourly data without CHS.

Engineering Applications of Artificial Intelligence 133 (2024) 108380

14

A. Băicoianu et al.

Fig. 38. Prediction for hourly data with CVS.

Fig. 39. Prediction for hourly data with FS.

Fig. 40. Prediction for hourly data set interpolated with CHS, n_interpolation = 5.

and constructing artificial fractal interpolation points for 10-min data
is a better strategy for prediction. The result is surprising and requires
further testing on various weather datasets, but the current results
obtained for the considered data set and the consistent differences
between the test RMSE results, see Table 6, allow us to be optimistic
about the performances of our strategies on real-world data (especially
meteorological datasets) (see Figs. 40 and 41).

Artificial Neural Networks (ANN) and machine learning have
proven to be efficient tools for predicting meteorological data. These
could be significant for predicting data for smaller local areas since
some meteorological processes are too small-scale or too complex to be
explicitly included in classical numerical weather prediction models.

Fig. 41. Prediction using the original 10-min entry data set.

Thus, our study proposes a recent idea of using fractal interpolation
tools for preprocessing data before feeding the data to an ML algorithm,
in our case, an LSTM algorithm.

Without any doubt, this approach has some limitations, and there
are opportunities to improve this study.

In order to provide a comprehensive coverage of the interpolation
step, the study proposes three techniques. The persistence of certain
aspects of the data is not guaranteed by the stop condition from the CHS
method, although it assures that the Hurst exponent for the interpolated
data is sufficiently near to the original Hurst value. This inspired us to
develop novel interpolation techniques guaranteeing the preservation
of specific data features. The final approach, namely FS, similarly
focuses on maintaining these characteristics while also improving in
terms of time complexity.

Furthermore, future experiments could be completed in order to
assess the performance of the proposed strategies in relation to outliers,
but also further testing on various weather datasets from different re-
gions needs to be performed. In addition, although the LSTM modelling
obtained is sufficient for the selected datasets, a more complex model
can be developed to achieve better accuracy results.

5. Conclusions

The results obtained in this study confirm the relevance and extend
the applications of fractal interpolation as a time series augmentation
technique. The three proposed strategies involve optimizing the vertical
scaling factor and the size of the fractal interpolation subset to generate
relevant data in the context of the prediction optimization problem.
Depending on the source domain and data pattern, we were able to
identify the appropriate interpolation strategy in order to improve pre-
dictions. As a result, for all considered datasets, the current approach
improved accuracy prediction results between 50% and 89% over the
base case where the raw data was used.

By using the meteorological dataset of temperatures recorded in
Braşov, we were able to show that the three proposed strategies can
also be used independently of a prediction model in order to obtain data
simulating a higher sampling rate than the maximum capacity of the
sensor, with an average error of maximum ±0.49. Numerical weather
prediction models such as those described in Malardel (2019), based on
fluid dynamics and thermodynamic equations, could also benefit from
this data enrichment. Although they do not outperform solutions based
on artificial neural networks, these models can perform well for short
time intervals (up to 5 days) when sufficient data are available.

We have highlighted the need to use machine learning modelling
in this study. In addition, it is possible to go even further with the
results obtained so that a relevant prediction on meteorological data
also implies a focus on process optimization in precision agriculture,

Engineering Applications of Artificial Intelligence 133 (2024) 108380

15

A. Băicoianu et al.

early detection of extreme weather phenomena, and local and global
environmental understanding.

Our outcomes extend the current results existing in the literature
and contribute significantly to research dedicated to data augmentation
and data preprocessing, as well as enhancing machine learning predic-
tion models. Moreover, our results provide a significant answer to the
question of refining data prediction based on data recorded at larger
intervals.

CRediT authorship contribution statement

Alexandra Băicoianu: Conceptualization, Methodology, Software,
Validation, Formal analysis, Writing – original draft, Writing – review
& editing. Cristina Gabriela Gavrilă: Conceptualization, Methodology,
Software, Validation, Formal analysis, Visualization, Writing – original
draft, Writing – review & editing. Cristina Maria Păcurar: Conceptu-
alization, Methodology, Validation, Writing - Original Draft,Writing –
review & editing, Visualization. Victor Dan Păcurar: Conceptualiza-
tion, Validation, Resources, Writing – original draft, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Bajahzar, A., Guedri, H., 2019. Reconstruction of fingerprint shape using fractal
interpolation. Int. J. Adv. Comput. Sci. Appl. 10 (5), http://dx.doi.org/10.14569/
IJACSA.2019.0100514.

Bandara, K., Hewamalage, H., Liu, Y., Kang, Y., Bergmeir, C., 2021. Improving the
accuracy of global forecasting models using time series data augmentation. Pattern
Recognit. 120, http://dx.doi.org/10.1016/j.patcog.2021.108148.

Barnsley, M., 2012. Fractals Everywhere, third ed. Dover Publications.
Bélisle, E., Huang, Z., Le Digabel, S., Gheribi, A.E., 2015. Evaluation of machine

learning interpolation techniques for prediction of physical properties. Comput.
Mater. Sci. 98, 170–177. http://dx.doi.org/10.1016/j.commatsci.2014.10.032, URL:
https://www.sciencedirect.com/science/article/pii/S092702561400706X.

Bergmeir, C., Hyndman, R.J., Benítez, J.M., 2016. Bagging exponential smoothing
methods using STL decomposition and Box–Cox transformation. Int. J. Forecast.
32 (2), 303–312. http://dx.doi.org/10.1016/j.ijforecast.2015, URL: https://ideas.
repec.org/a/eee/intfor/v32y2016i2p303-312.html.

Bouboulis, P., Dalla, L., Drakopulos, V., 2006. Image compression using recurrent
bivariate fractal interpolation surfaces. Int. J. Bifurcation Chaos 16 (07), 2063–
2071. http://dx.doi.org/10.1142/S0218127406015908, arXiv:https://doi.org/10.
1142/S0218127406015908.

Chai, X., Tang, G., Wang, S., Lin, K., Peng, R., 2021. Deep learning for irregularly and
regularly missing 3-D data reconstruction. IEEE Trans. Geosci. Remote Sens. 59,
6244–6265, URL: https://api.semanticscholar.org/CorpusID:261340870.

Chen, C.-J., Cheng, S.-C., Huang, Y.M., 2011. The reconstruction of satellite images
based on fractal interpolation. Fractals 19 (03), 347–354. http://dx.doi.org/10.
1142/S0218348X11005385, arXiv:https://doi.org/10.1142/S0218348X11005385.

FaostatDocs, 2022. Food and agriculture data. URL: http://www.fao.org/faostat/.
(accessed 7 March 2022).

Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A., 2018. Data augmenta-
tion using synthetic data for time series classification with deep residual networks.
In: AALTD’18 Workshop in ECML/PKDD.

Forestier, G., Petitjean, F., Dau, H.A., Webb, G.I., Keogh, E., 2017. Generating synthetic
time series to augment sparse datasets. In: 2017 IEEE International Conference on
Data Mining. ICDM, pp. 865–870. http://dx.doi.org/10.1109/ICDM.2017.106.

Garcia, S., Luengo, J., Herrera, F., 2014. Data Preprocessing in Data Mining. In:
Intelligent Systems Reference Library, Springer.

Gowrisankar, A., Priyanka, T.M.C., Banerjee, S., 2022. Omicron: a mysterious variant
of concern. Eur. Phys. J. Plus 137, 100.

Guennec, A.L., Malinowski, S., Tavenard, R., 2016. Data augmentation for time
series classification using convolutional neural networks. URL: https://api.
semanticscholar.org/CorpusID:3907864.

Hutchinson, J., 1981. Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747.

Iwana, B.K., Uchida, S., 2021. An empirical survey of data augmentation for time series
classification with neural networks. PLOS ONE 16 (7), 1–32. http://dx.doi.org/10.
1371/journal.pone.0254841.

Jia, Y., Ma, J., 2017. What can machine learning do for seismic data processing?
An interpolation application. Geophysics 82, URL: https://api.semanticscholar.org/
CorpusID:67218941.

Kaggle, 2022. High-quality public datasets. URL: https://www.kaggle.com/. (accessed
7 March 2022).

Kamycki, K., Kapuscinski, T., Oszust, M., 2020. Data augmentation with suboptimal
warping for time-series classification. Sensors 20 (1), http://dx.doi.org/10.3390/
s20010098, URL: https://www.mdpi.com/1424-8220/20/1/98.

Kang, Y., Hyndman, R.J., Li, F., 2019. GRATIS: GeneRAting TIme Series with diverse
and controllable characteristics. Stat. Anal. Data Min.: ASA Data Sci. J. 13,
354–376, URL: https://api.semanticscholar.org/CorpusID:71146933.

Lee, S.W., Kim, H.Y., 2020. Stock market forecasting with super-high dimensional time-
series data using ConvLSTM, trend sampling, and specialized data augmentation.
Expert Syst. Appl. 161, 113704, URL: https://api.semanticscholar.org/CorpusID:
225041816.

Malardel, S., 2019. Weather forecasting models. URL: https://www.encyclopedie-
environnement.org/en/air-en/weather-forecasting-models/. (accessed 19 April
2022).

Manousopoulos, P., Drakopoulos, V., Theoharis, T., 2008. Curve fitting by fractal
interpolation. In: Gavrilova, M.L., Tan, C.J.K. (Eds.), Transactions on Computational
Science I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 85–103. http://dx.doi.
org/10.1007/978-3-540-79299-4_4.

Manousopoulos, P., Drakopoulos, V., Theoharis, T., 2011. Parameter identification of
1D recurrent fractal interpolation functions with applications to imaging and signal
processing. J. Math. Imaging Vision 40 (2).

May, M., 1996. Fractal image compression. Am. Sci. 84 (5).
Mazel, D., Hayes, M., 1992. Using iterated function systems to model discrete sequences.

IEEE Trans. Signal Process. 40 (7), 1724–1734. http://dx.doi.org/10.1109/78.
143444.

Meijering, E., 2002. A chronology of interpolation: from ancient astronomy to modern
signal and image processing. Proc. IEEE 90 (3), 319–342. http://dx.doi.org/10.
1109/5.993400.

Navascués, M., 2010. Reconstruction of sampled signals with fractal functions. Acta
Appl. Math. 110.

Ni, L.-P., Ni, Z.-W., Gao, Y.-Z., 2011. Stock trend prediction based on fractal feature
selection and support vector machine. Expert Syst. Appl. 38 (5), 5569–5576. http:
//dx.doi.org/10.1016/j.eswa.2010.10.079, URL: https://www.sciencedirect.com/
science/article/pii/S0957417410012236.

Oh, C., Han, S., Jeong, J., 2020. Time-series data augmentation based on interpolation.
In: FNC/MobiSPC. URL: https://api.semanticscholar.org/CorpusID:222112073.

Optuna-ReadTheDocs, 2023a. Optuna samplers - TPESampler docs. URL:
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.
samplers.TPESampler.html#optuna.samplers.TPESampler. (accessed 2 October
2023).

Optuna-ReadTheDocs, 2023b. Optuna samplers docs. URL: https://optuna.readthedocs.
io/en/stable/reference/samplers/index.html. (accessed 2 October 2023).

Păcurar, C.-M., Necula, B.-R., 2020. An analysis of COVID-19 spread based on fractal
interpolation and fractal dimension. Chaos Solitons Fractals 139, 110073. http:
//dx.doi.org/10.1016/j.chaos.2020.110073, URL: https://www.sciencedirect.com/
science/article/pii/S0960077920304707.

Raubitzek, S., Neubauer, T., 2021. A fractal interpolation approach to improve
neural network predictions for difficult time series data. Expert Syst. Appl.
169, 114474. http://dx.doi.org/10.1016/j.eswa.2020.114474, URL: https://www.
sciencedirect.com/science/article/pii/S0957417420311234.

Wang, H.-Y., Li, H., Shen, J.-Y., 2019. A novel hybrid fractal interpolation-Svm model
for forecasting stock price indexes. Fractals 27 (4), http://dx.doi.org/10.1142/
S0218348X19500555, 1950055.

Wen, Q., Sun, L., Yang, F., Song, X., Gao, J., Wang, X., Xu, H., 2021. Time series data
augmentation for deep learning: A survey. In: 30th International Joint Conference
on Artificial Intelligence. IJCAI 2021.

Wu, Y., et al., 2020. Using linear interpolation to reduce the training samples for
regression based visible light positioning system. IEEE Photonics J. 12 (2), 1–5.

Yadav, O.P., Ray, S., 2021. A novel method of preprocessing and modeling
ECG signals with Lagrange–Chebyshev interpolating polynomials. Int. J. Syst.
Assur. Eng. Manag. 12 (3), 377–390. http://dx.doi.org/10.1007/s13198-021-
01077-, URL: https://ideas.repec.org/a/spr/ijsaem/v12y2021i3d10.1007_s13198-
021-01077-z.html.

Yakuwa, F., Dote, Y., Yoneyama, M., Uzurabashi, S., 2003. Novel time series analysis
and prediction of stock trading using fractal theory and time delayed neural
network. In: SMC’03 Conference Proceedings. 2003 IEEE International Conference
on Systems, Man and Cybernetics. Conference Theme - System Security and
Assurance (Cat. No.03CH37483). Vol. 1, pp. 134–141. http://dx.doi.org/10.1109/
ICSMC.2003.1243804.

Zhai, M.-Y., Fernández-Martínez, J.L., Rector, J.W., 2011. A new fractal interpolation
algorithm and its applications to self-affine signal reconstruction. Fractals 19
(03), 355–365. http://dx.doi.org/10.1142/S0218348X11005427, arXiv:https://doi.
org/10.1142/S0218348X11005427.

Zhang, Y., Fan, Q., Bao, F., Liu, Y., Zhang, C., 2018. Single-image super-resolution based
on rational fractal interpolation. IEEE Trans. Image Process. 27 (8), 3782–3797.
http://dx.doi.org/10.1109/TIP.2018.2826139.

http://dx.doi.org/10.14569/IJACSA.2019.0100514
http://dx.doi.org/10.14569/IJACSA.2019.0100514
http://dx.doi.org/10.14569/IJACSA.2019.0100514
http://dx.doi.org/10.1016/j.patcog.2021.108148
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb3
http://dx.doi.org/10.1016/j.commatsci.2014.10.032
https://www.sciencedirect.com/science/article/pii/S092702561400706X
http://dx.doi.org/10.1016/j.ijforecast.2015
https://ideas.repec.org/a/eee/intfor/v32y2016i2p303-312.html
https://ideas.repec.org/a/eee/intfor/v32y2016i2p303-312.html
https://ideas.repec.org/a/eee/intfor/v32y2016i2p303-312.html
http://dx.doi.org/10.1142/S0218127406015908
https://doi.org/10.1142/S0218127406015908
https://doi.org/10.1142/S0218127406015908
https://doi.org/10.1142/S0218127406015908
https://api.semanticscholar.org/CorpusID:261340870
http://dx.doi.org/10.1142/S0218348X11005385
http://dx.doi.org/10.1142/S0218348X11005385
http://dx.doi.org/10.1142/S0218348X11005385
https://doi.org/10.1142/S0218348X11005385
http://www.fao.org/faostat/
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb10
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb10
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb10
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb10
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb10
http://dx.doi.org/10.1109/ICDM.2017.106
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb12
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb12
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb12
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb13
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb13
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb13
https://api.semanticscholar.org/CorpusID:3907864
https://api.semanticscholar.org/CorpusID:3907864
https://api.semanticscholar.org/CorpusID:3907864
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb15
http://dx.doi.org/10.1371/journal.pone.0254841
http://dx.doi.org/10.1371/journal.pone.0254841
http://dx.doi.org/10.1371/journal.pone.0254841
https://api.semanticscholar.org/CorpusID:67218941
https://api.semanticscholar.org/CorpusID:67218941
https://api.semanticscholar.org/CorpusID:67218941
https://www.kaggle.com/
http://dx.doi.org/10.3390/s20010098
http://dx.doi.org/10.3390/s20010098
http://dx.doi.org/10.3390/s20010098
https://www.mdpi.com/1424-8220/20/1/98
https://api.semanticscholar.org/CorpusID:71146933
https://api.semanticscholar.org/CorpusID:225041816
https://api.semanticscholar.org/CorpusID:225041816
https://api.semanticscholar.org/CorpusID:225041816
https://www.encyclopedie-environnement.org/en/air-en/weather-forecasting-models/
https://www.encyclopedie-environnement.org/en/air-en/weather-forecasting-models/
https://www.encyclopedie-environnement.org/en/air-en/weather-forecasting-models/
http://dx.doi.org/10.1007/978-3-540-79299-4_4
http://dx.doi.org/10.1007/978-3-540-79299-4_4
http://dx.doi.org/10.1007/978-3-540-79299-4_4
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb24
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb24
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb24
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb24
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb24
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb25
http://dx.doi.org/10.1109/78.143444
http://dx.doi.org/10.1109/78.143444
http://dx.doi.org/10.1109/78.143444
http://dx.doi.org/10.1109/5.993400
http://dx.doi.org/10.1109/5.993400
http://dx.doi.org/10.1109/5.993400
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb28
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb28
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb28
http://dx.doi.org/10.1016/j.eswa.2010.10.079
http://dx.doi.org/10.1016/j.eswa.2010.10.079
http://dx.doi.org/10.1016/j.eswa.2010.10.079
https://www.sciencedirect.com/science/article/pii/S0957417410012236
https://www.sciencedirect.com/science/article/pii/S0957417410012236
https://www.sciencedirect.com/science/article/pii/S0957417410012236
https://api.semanticscholar.org/CorpusID:222112073
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html#optuna.samplers.TPESampler
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html#optuna.samplers.TPESampler
https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html#optuna.samplers.TPESampler
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
https://optuna.readthedocs.io/en/stable/reference/samplers/index.html
http://dx.doi.org/10.1016/j.chaos.2020.110073
http://dx.doi.org/10.1016/j.chaos.2020.110073
http://dx.doi.org/10.1016/j.chaos.2020.110073
https://www.sciencedirect.com/science/article/pii/S0960077920304707
https://www.sciencedirect.com/science/article/pii/S0960077920304707
https://www.sciencedirect.com/science/article/pii/S0960077920304707
http://dx.doi.org/10.1016/j.eswa.2020.114474
https://www.sciencedirect.com/science/article/pii/S0957417420311234
https://www.sciencedirect.com/science/article/pii/S0957417420311234
https://www.sciencedirect.com/science/article/pii/S0957417420311234
http://dx.doi.org/10.1142/S0218348X19500555
http://dx.doi.org/10.1142/S0218348X19500555
http://dx.doi.org/10.1142/S0218348X19500555
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb36
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb36
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb36
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb36
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb36
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb37
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb37
http://refhub.elsevier.com/S0952-1976(24)00538-4/sb37
http://dx.doi.org/10.1007/s13198-021-01077-
http://dx.doi.org/10.1007/s13198-021-01077-
http://dx.doi.org/10.1007/s13198-021-01077-
https://ideas.repec.org/a/spr/ijsaem/v12y2021i3d10.1007_s13198-021-01077-z.html
https://ideas.repec.org/a/spr/ijsaem/v12y2021i3d10.1007_s13198-021-01077-z.html
https://ideas.repec.org/a/spr/ijsaem/v12y2021i3d10.1007_s13198-021-01077-z.html
http://dx.doi.org/10.1109/ICSMC.2003.1243804
http://dx.doi.org/10.1109/ICSMC.2003.1243804
http://dx.doi.org/10.1109/ICSMC.2003.1243804
http://dx.doi.org/10.1142/S0218348X11005427
https://doi.org/10.1142/S0218348X11005427
https://doi.org/10.1142/S0218348X11005427
https://doi.org/10.1142/S0218348X11005427
http://dx.doi.org/10.1109/TIP.2018.2826139

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 5510912

Multisource Remote Sensing Data Visualization
Using Machine Learning

Ioana Cristina Plajer , Alexandra Băicoianu, Luciana Majercsik, and Mihai Ivanovici , Member, IEEE

Abstract— With the availability of several remotely sensed data
sources, the problem of efficiently visualizing the information
from multisource data for improved Earth observation becomes
an intriguing and challenging subject. Multispectral (MS) and
hyperspectral (HS) images encompass a wealth of spectral data
that standard RGB monitors cannot replicate directly. Thus, it is
important to elaborate methods for accurately representing this
information on conventional displays. These images, with tens to
hundreds of spectral bands, contain relevant data about specific
wavelengths that RGB channels cannot capture. Traditional
visualization methods often use only a limited amount of the
available spectral information, resulting in a significant loss of
information. However, recent advances in artificial intelligence
models have provided superior visualization techniques. These
artificial Intelligence (AI)-based methods allow for more realistic
and visually appealing representations, which are important
for the information interpretation and direct identification of
areas of interest. The main goal of our study is to process
aggregated datasets from various sources using a fully connected
neural network (FCNN), while considering visualization as a
secondary objective. Given that our data come from a variety of
sources, a significant emphasis in our study was placed on the
preprocessing stage. In order to achieve a consistent visualization
across datasets from different sources, proper preprocessing by
standardization or normalization procedures is essential. Our
research comprises numerous experiments to demonstrate the
effectiveness of the proposed technique for image visualization.

Index Terms— Multisource, multispectral (MS) and hyperspec-
tral (HS) images, neural network, normalization, remote sensing,
standardization, visualization.

I. INTRODUCTION

THE unique spectral properties of different types of
materials determine variations in the way they absorb

light, thus giving each material a distinct spectral finger-
print. Multispectral (MS) and hyperspectral (HS) sensors are
capable of capturing a rich spectral information that can

Manuscript received 23 January 2024; accepted 25 February 2024. Date
of publication 4 March 2024; date of current version 15 March 2024. This
work was supported by the Romanian Excellence Center on Artificial Intel-
ligence on Earth Observation Data for Agriculture (AI4AGRI) Project titled
“Romanian Excellence Center on Artificial Intelligence on Earth Observation
Data for Agriculture” funded by European Union’s Horizon Europe Research
and Innovation Program under Grant 101079136. (Corresponding author:
Ioana Cristina Plajer.)

Ioana Cristina Plajer, Alexandra Băicoianu, and Luciana Majercsik are
with the Department of Mathematics and Computer Science, Faculty of
Mathematics and Computer Science, Transilvania University of Braşov,
500024 Braşov, Romania (e-mail: ioana.plajer@unitbv.ro; a.baicoianu@
unitbv.ro; luciana.carabaneanu@unitbv.ro).

Mihai Ivanovici is with the Department of Electronics and Computers,
Faculty of Electrical Engineering and Computer Science, Transilvania Univer-
sity of Braşov, 500024 Braşov, Romania (e-mail: mihai.ivanovici@unitbv.ro).

Digital Object Identifier 10.1109/TGRS.2024.3372639

cover hundreds of spectral bands, allowing them to detect
even the smallest changes in the reflectance or radiance of
objects. The resulting images produced by MS and HS sensors
include additional spectral information about the chemical
composition of objects. This additional information makes
them extremely useful in a series of applications in areas,
such as agriculture [1], [2], forestry [3], [4], environmental
monitoring and ecology [5], [6], object detection [7], land
cover classification [8], [9], as well as military and industrial
fields.

In this article, machine learning techniques allow for notable
progress in a large range of applications of remote sensing.
Examples include a Siamese Transformer Network designed
for HS image target detection [10] and some techniques
for HS image denoising and anomaly detection [11], [12],
[13], [14]. These advances highlight the growing ability of
machine learning strategies to refine the understanding and
interpretation of remote sensing data.

The first step in MS and HS interpretation is the visualiza-
tion of the data in a comprehensive manner for human users.
MS and HS images contain more spectral information than
standard RGB channels can display, providing important data
about specific wavelengths, beyond the RGB capabilities.

A realistically displayed spectral satellite image enables
direct human interpretation and identification of areas of
interest, but accurate visualization is challenging because
of the need to compress information from numerous bands
into three while preserving essential spatial and spectral
detail.

Several visualization techniques have been proposed in the
scientific literature in order to generate realistic RGB images
from spectral images. These include band selection [15], [16],
independent component analysis (ICA) [17], and principal
component analysis (PCA) [18], [19] based methods, linear
and nonlinear methods [20], and, relatively recent, machine
learning approaches [21], [22].

While the classical method based on band selection uses
a very small part of the available information, disregarding
the information available in the other unused bands, better
results of visualization with artificial intelligence (AI) models
have already been reported in recent research papers [23].
Such methods, like the proposed one, allow for a more
realistic rendering of colors and, at the same time, producing
more appealing images (vivid colors, good contrast, and large
dynamic range) while showing the color as close to the real
colors of the scene, as they would have been perceived by a
human observer.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-2666-8215
https://orcid.org/0000-0002-0803-2918

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

An accurate visualization of satellite images can facilitate a
direct human interpretation for spotting pixels or areas affected
by various degradation (e.g., in agriculture, spotting areas
affected by diseases of the agricultural crops). Moreover, satel-
lite images rendered in a more realistic manner can be used as
a first step to verify the accuracy of different approaches, such
as classification, which can be initially appreciated visually.

A major challenge in addressing different tasks on MS and
HS images is the variability of the image data (spectral range
and spatial resolution) when obtained by different sensors.
Thus the primary goal of our research, presented in this
paper, is a method of processing such aggregated datasets,
obtained from various sources, using a fully connected neural
network (FCNN). Visualization is merely a secondary goal,
as a test case specifically for this fusion.

Although research in the area of visualization is still limited,
as already described in [24] and [23], a neural network trained
on a set of MS images can be used successfully to visualize
spectral images acquired by different sensors. Challenges in
this field include limited labeled training data and spectral
variability between different sensors, as they capture informa-
tion at different spectral wavelengths. The spectral variability
can make it difficult for a neural network to extract significant
and meaningful features in a coherent manner, especially if the
training data does not cover the full range of spectral variation.

This article explores different approaches to normalization
and standardization, respectively, of the data from different
datasets and describes experiments with different preprocess-
ing approaches. Our FCNN methodology efficiently handles
both MS and HS images. It also addresses the challenges of
band selection and spectral variability, making it a versatile
and robust approach for different data settings. Furthermore,
the architecture of the network and training hyperparameters
are presented in detail.

The main advantages of our method lie in the generalization
of the approach and adaptability to data of different spectral
and spatial resolutions. Furthermore, by combining publicly-
available datasets with appropriately labeled data for network
training, we ensure a principled and accessible foundation for
model learning.

Our proposed method also has the advantage of not requir-
ing further image postprocessing of the obtained RGB image,
which leads to a more polished and refined output straight out
of the model.

In the case of FCNN processing, information aggregation
is quite beneficial, especially when public data are lim-
ited. Such aggregation increases the methodology’s efficacy
despite related limitations. The visualization results demon-
strate potential even when dealing with datasets containing
fewer bands, indicating the versatility and robustness of
our methodology across various data configurations. Such
a methodology eliminates any doubt regarding the selection
criteria of the effective bands used.

This article is organized as follows. Section II describes
different MS and HS datasets used in our experiments,
pointing out the challenges of working with multisource
data. Section III presents the data preprocessing steps and
the proposed FCNN model architecture, together with the

model training process. The visual results of our experi-
ments for different strategies used are presented and discussed
in Section IV, and their comparative quality assessment is
outlined in Section V, showing the potential of the new
approach proposed in Section IV. Finally, the conclusions of
this article and some limitations of our study, which became
apparent after the completion of the research are empha-
sized in Section VI, together with future directions for our
research.

II. MATERIALS

A. Hyperspectral and Multispectral Imaging

MS and HS images are two types of remote sensing data
that capture information about the Earth’s surface by sensing
electromagnetic radiation. As mentioned in the introduction,
they are widely used in various fields, including agriculture
and environmental monitoring. The key distinction between
MS and HS images lies in their spectral resolution. HS images
have a far higher spectral resolution, catching data in several
narrow and contiguous bands, while MS images only capture
data in a small number of discrete bands. This higher spec-
tral resolution allows for a more detailed characterization of
surface materials based on their spectral signatures. MS and
HS images offer valuable insights into the Earth’s surface, and
the choice between them depends on the specific application
requirements and the level of spectral and spatial detail needed
for analysis.

Differences in sensor types used to capture MS and HS
images can introduce specific challenges and variations in
the data. Different sensors may have varying spectral band
configurations, capturing data in different wavelength ranges
or bandwidths. Multiple sources and sensor variety can result
in inconsistency when comparing or combining data from
different sensors. It is essential to carefully account for these
differences to ensure accurate and meaningful analysis. Also,
sensors used in MS and HS imaging require calibration to
ensure the accuracy and reliability of the captured data.
However, calibration procedures can vary between sensors
and platforms. Inconsistencies in calibration methods can lead
to differences in the radiometric or spectral accuracy of the
acquired data. Proper calibration and validation techniques
must address these issues and establish reliable and consistent
datasets. Each sensor has its characteristics and limitations,
such as spectral response functions, signal-to-noise ratios,
and dynamic ranges. These characteristics can also affect the
quality and reliability of the captured data. In spectral imaging,
sensors can have different spatial resolutions, affecting the
level of detail captured in the images. Combining or comparing
red multisource sensor data with different spatial resolutions
can introduce challenges, as the spatial variability may need
to align better.

In addition, researchers and analysts should be aware of
the sensor-specific characteristics and limitations and consider
them when interpreting and comparing data from different
sources. Standardization efforts are also conducted to facilitate
cross-sensor compatibility and consistency. While multisource
sensor differences can introduce challenges and variations
in the data, proper preprocessing and understanding of the

PLAJER et al.: MULTISOURCE REMOTE SENSING DATA VISUALIZATION USING MACHINE LEARNING 5510912

sensor characteristics can be addressed to ensure accurate and
meaningful MS and HS imagery analyses.

B. Description of the Datasets

The availability of MS and HS imagery with high-resolution
spectral information has redefined our understanding of envi-
ronmental and ecosystem phenomena. These datasets are
increasingly accessible for both scientific and practical pur-
poses, and their analysis represents an initial step toward
gaining a deeper comprehension of the aforementioned phe-
nomena. Several datasets are recognized and used in this
article.

This study selected the CAVE and UGR datasets for the
model’s training due to their well-established reputation in
the literature. They offer a diverse range of colors, and the
images were captured under various environmental conditions.
Moreover, a corresponding RGB image is available for each
image in these datasets, facilitating a comprehensive analysis.

For the testing phase, three HS images were used, two
of them provided by the relatively recent PRISMA satellite
and one acquired by the Reflective Optics System Imaging
Spectrometer (ROSIS-3) over Pavia University, Pavia, Italy.

1) CAVE Dataset: The CAVE dataset [25] comprises 32 MS
images captured indoors under controlled illumination condi-
tions. Each image has a resolution of 512 × 512 pixels in the
spatial domain. The spectral range is between 400 and 700 nm,
with a sampling interval of 10 nm, resulting in a total of
31 spectral bands. A corresponding RGB image with the same
spatial resolution is provided for each MS image. This dataset
does not contain any natural scenes.

2) UGR Dataset: The UGR dataset [26] contains 14 out-
door images of urban scenes. Most of these images possess
a spatial resolution of 1000 × 900 pixels. The spectral range
spans from 400 to 1000 nm, with a sampling interval of 10 nm,
resulting in 61 spectral bands, out of which 31 fall within the
visible spectrum. In addition, each MS image is accompanied
by a corresponding RGB image, sharing the same spatial
resolution.

As can be observed from the description, the CAVE and the
UGR MS images have in common the first 31 wavelengths
from the visual domain. This makes them suitable for using
the same FCNN with 31 input neurons. From UGR images,
we thus considered only the spectral bands in the visual range,
as these are relevant for visualization.

3) PRISMA Images: The PRISMA images used for coloring
in this study are obtained from the PRISMA HS satellite
operated by the Italian Space Agency (ASI). Two specific
images were captured, one on October 18, 2022, in the
northern region of Brasov county, Romania, and the other
on March 24, 2023. The satellite’s HS sensors are capable
of capturing images within a wide wavelength range of
239 spectral bands, spanning from 400 to 2500 nm. Among
these bands, 66 falls within the visible-near infrared range
(400–1010 nm), while 173 bands reside in the short-wave
infrared range (920–2500 nm). The spectral sampling interval
for the satellite’s images is less than 12 nm. Regarding spatial
characteristics, the images possess a resolution of 1000 ×
1000 pixels, with a ground sample distance of 30 m [27].

Fig. 1. Original values of one HS pixel from the first PRISMA image (blue)
and interpolated values (orange).

The spectral bands used for the experiments are in the visible
domain, covering the range from 406 to 713 nm, with an
approximate sampling interval of 8 nm.

4) Pavia University Dataset: The Pavia University dataset
was made available by the Telecommunications and Remote
Sensing Laboratory, Pavia University, in 2001. This dataset
was acquired using the ROSIS sensor during a flight campaign
conducted over Pavia. The dataset comprises 610 × 610 pixels
and covers a wavelength range from 430 to 860 nm with
115 spectral bands. It has a spatial resolution of 1.3 m
and a spectral resolution of approximately 4 nm. However,
some samples within the image do not contain any useful
information and must be eliminated before analysis. Once the
broken bands are removed, the 103 remaining bands can be
used further in the investigation [28].

In order to test the PRISMA and the Pavia University
images on the FCNN trained on the CAVE or the UGR dataset,
it is necessary to adapt these images to the network’s input
layer. As this input is calibrated to receive pixels with the
spectral signature of CAVE images, each spectral pixel from
the test image has to be mapped on the wavelengths of a
CAVE image pixel. This has been done in this study by linear
interpolation. For each wavelength of a test image (PRISMA
or Pavia University), the value of a CAVE image channel is
interpolated from the values of the two neighboring channels
of the test image.

Fig. 1 represents the original HS pixel from a PRISMA
image together with the interpolated values of this pixel.

It can be seen from Fig. 1 that by linearly interpolating the
PRISMA HS image to fit the bands of the CAVE dataset, the
changes in the data profile are negligible, thus justifying this
approach.

C. Prerequisites

In the context of machine learning experiments, standardiza-
tion, and normalization are preprocessing techniques used to
transform input data into a specific range or distribution. These
techniques are commonly applied to improve the performance
and convergence of machine learning models [29].

Standardization (z-score normalization or feature scaling)
transforms the dataset’s features into zero mean and unit
variance. It entails dividing each data point by the standard
deviation after taking the mean value of the feature out of
each data point.

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

The formula for standardization is shown in the following
equation:

z =
x − µ

σ
(1)

where z is the standardized value, x is the original value, µ is
the mean of the feature, and σ is the standard deviation of the
feature.

Standardization ensures that each feature has a similar scale
and range, which is beneficial for algorithms that assume nor-
mally distributed data or when features have different scales.
It centers the data around 0, with a standard deviation of 1.

Normalization (min–max scaling) transforms the dataset’s
features to a standard range—typically between 0 and 1. Still,
the range depends on the specific normalization technique used
and the requirements of the dataset. It involves subtracting the
minimum value of the feature from each data point and then
dividing it by the range.

The formula for normalization is shown in the following
equation:

x ′ =
x −min(x)

max(x)−min(x)
(2)

where x ′ is the normalized value, x is the original value,
min(x) is the minimum value of the feature, and max(x) is
the maximum value of the feature.

Normalization preserves the shape of the distribution and
is suitable when the absolute values of the features are not
important but rather their relative values or ratios.

Both standardization and normalization help improve the
performance of machine learning models by ensuring that
features are on a similar scale and avoiding the dominance of
certain features due to their larger magnitudes. It is important
to note that the impact of standardization and normalization on
performance can vary depending on the dataset and the specific
machine learning algorithm used. Therefore, it is advisable to
experiment with both techniques and evaluate their impact on
the model’s performance before finalizing the preprocessing
approach.

III. METHODS AND PROCEDURES

The objective of this Section is to discuss some elements
crucial to the success of the tests conducted for this study.
For the proposed visualization to perform, it is of great
importance to comprehend the preprocessing steps and the
model employed.

A. Data Preprocessing Step

The preprocessing stage is essential to data preparation in
machine learning and data analysis. Its main objective is to
convert raw data into a format suitable for additional analysis
or modeling.

Standardization and normalization are two of the many
methods included in preprocessing. They seek to improve
the performance and efficiency of various algorithms by
bringing the data within a predictable and manageable range.
Depending on the particular dataset, the type of issue, and
the algorithms being applied, these preprocessing methods

can change. It is advisable to test several transformation
strategies and assess their effects on the model’s performance
to choose the best approach for a particular task.

In this study, various data preprocessing and transformation
variations were tried precisely to study the feasible strategies
and related results comprehensively. Thus, two strategies were
highlighted in this article.

1) A strategy involving preprocessing on each file, con-
catenation of data from all the input files, shuffle,
and separation by train subset and test subset ((3/4)

and (1/4), respectively, of all existing pixels). We will
further call this strategy individual preprocessing.

2) A strategy involving concatenation without any prepro-
cessing beforehand, shuffle, splitting into train and test
(with the exact percentages as the previous strategy),
and application on the training subset of one of the
proposed preprocessing methodologies (standardization
or normalization). After training, our learning algorithm
has learned to deal with the data in scaled form,
so we have to normalize/standardize our test data
with the normalizing/standardizing parameters used for
training data. We will further call this strategy global
preprocessing.

From a technical perspective, for both strategies, Standard-
Scaler() [30] and MinMaxScaler() [31] have been used for
standardization/normalization, respectively.

B. Proposed AI Model Architecture

The problem of consistent spectral image visualization is
of significant importance, as it enables the users to visually
interpret and understand the acquired data. For sensors like
those of Landsat or Sentinel, with a small number of spec-
tral bands overall and three bands in the visual range, the
visualization problem is straightforward, as the three bans for
red, green, and blue generate the corresponding RGB images.
With the upcome of multisource modern MS and HS sensors
with a wide range of spectral bands in the visual range,
the problem of correct and accurate visualization gets more
complex. Generally, classical methods like the ones mentioned
in the introduction, often result in low-quality images and
usually need adjustments.

Starting from the ideas in [23], an FCNNwas constructed
and trained on a set of MS images, as mentioned in [24],
in order to visualize spectral images acquired by different
sensors. Below, we provide a detailed description of the
network architecture and the hyperparameters utilized during
training.

1) Model Description: Consistently mapping n-dimensional
spectral pixel on a tridimensional RGB pixel can be considered
a regression problem, and thus, an FCNN is an appropriate
model for learning this mapping. The model, as illustrated
in Fig. 2, consists of five layers: an input, an output layer, and
three hidden layers.

The input layer consists of 31 neurons, as the number of
channels of the CAVE images is 31, all in the visual range,
and the number of spectral bands in the visual range of the
UGR images is also 31. The number of output neurons is 3,
one for each RGB color.

PLAJER et al.: MULTISOURCE REMOTE SENSING DATA VISUALIZATION USING MACHINE LEARNING 5510912

Fig. 2. Model pipeline.

In the hidden layer, the number of neurons was chosen to
decrease from the size of the input toward the size of the
output by a factor of 2. From this consideration and taking
into account the computational advantage of data structured as
the power of 2, in the first hidden layer, we used 32 neurons,
in the second 16, and in the third 8. The activation function
on the hidden layers is the exponential linear unit (ELU) [32],
as we did not want to discard negative values.

Assessing machine learning models’ performance is crucial
for evaluating their effectiveness and suitability for specific
assignments. Two commonly used loss functions are mean
squared error (MSE) and mean absolute error (MAE). As MSE
is very sensitive to outliers, while MAE reduces their impact
almost completely, we chose the HuberLoss function, which
combines both errors in an balanced way [33]. The Huber loss
is defined as follows:

Lδ(y, f (x)) =


1
2
(y − f (x))2, |y − f (x)| ≤ δ

δ

(
|y − f (x)| −

1
2
δ

)
, |y − f (x)| > δ

(3)

where y is the true value, f (x) is the predicted value, and δ

is a parameter that determines the threshold for which, in the
loss function, the MSE is replaced by MAE.

For the data points where the distance between the label
and the predicted value is small, less than the threshold δ, the
function behaves like MSE. This makes it more robust to noise.
However, for data points with larger differences, it switches to
a linear loss. This makes it less sensitive to outliers and helps
in providing a more stable estimation. If the outliers comprise
20%–30% of the data, the MAE will ignore them entirely.
However, Huber loss will create a balance if the outliers are
significant, and therefore, it is a useful choice when dealing
with datasets that may contain outliers or noise.

The selection of δ plays a crucial role. In our case, the
value δ = 10.0 parameter for the HuberLoss was selected
empirically. We considered that a difference of 10 between two
values (of a color channel) is acceptable for using the MSE,
similar to just noticeable difference (JND) corresponding to
1E = 3 in CIELab.

2) Model Training: After substantial testing, 150 epochs
for training were determined to be adequate for accurate color
mapping. The number of pixels in a batch was 2048 to shorten
training time. In the backpropagation step, a common value for

the learning rate α = 0.005 and the Adam optimizer provided
by the Pytorch library was used.

The model was trained on Intel1 Core2 i7-7700 CPU at
3.60-GHz server with eigh CPUs, and the duration of the train-
ing on 150 epochs on the UGR dataset was approximately 2 h.

The set used for training was preprocessed, as discussed
in Section IV-A2, by concatenating all the pixels from all the
images, shuffling, partitioning them into train and test sets,
and standardizing over the train set.

The training algorithm can be described as follows.
Model Training Steps
1) Load pixels from all the images of the dataset (CAVE

or UGR), shuffle the pixels, and partition into train and
test (75% versus 25%).

2) Preprocess data by standardization using scikit-learn
StandardScaler [30].

3) Split set in random batches of 2048 pixels.
4) Train the model using HuberLoss.
In order to enhance clarity and facilitate a deeper under-

standing of the proposed methodology, pseudocode has been
provided to describe key steps in detail in Algorithm 1.

Algorithm 1 Pseudocode for the Training of the FCNN
Require: path_dataset, model, lr = 0.005, epochs = 150
1: (data, labels)← load_pixels(path_dataset)
2: shu f f le(data, labels)
3: nr_train_data← (3

4) ∗ len(data)

4: nr_test_data← len(data)− nr_train_data
5: train_set ← (data.head(nr_train_data), labels.head(nr_train_data))

6: test_set ← (data.tail(nr_test_data), labels.tail(nr_test_data))

7: Initialize the StandardScaler and Standardize training data
8: Apply Scaler on test data
9: batch_si ze← 2048

10: Initialize weights of the model
11: optimizer ← AdamOptimizer(lr, weight_decay = 0.0008)

12: best_loss ← maxV alue
13: loss_ f unction← Huber Loss(10.0)

14: train_loss_vec← []
15: test_loss_vec← []
16: for epoch ∈ (1, epochs) do
17: train_loss ← 0
18: for batch, (x, y) ∈ train_set do
19: y_pred = model(x)

20: loss ← loss_ f unction(y, y_pred)

21: Backpropagation Step - backprop(loss)
22: train_loss ← train_loss + loss.i tem()

23: end for
24: train_loss ← train_loss/(batch_si ze)
25: train_loss_vec.append(train_loss)
26: if train_loss < best_loss then
27: Save current weights
28: best_loss ← train_loss
29: else
30: end if ▷ Now evaluate on test set
31: test_loss ← 0
32: for batch, (x, y) ∈ test_set do
33: y_pred ← model(x)

34: loss ← loss_ f unction(y, y_pred)

35: test_loss ← test_loss + loss.i tem()

36: end for
37: test_loss ← test_loss/(batch_si ze)
38: test_loss_vec.append(test_loss)
39: end for
40: Save current weights
41: plot (train_loss_vec, test_loss_vec)

The graphical representation of the loss decay on the
train and the test sets for the CAVE and UGR datasets are
represented in Fig. 3. It can be seen from this figure, that

1Registered trademark.
2Trademarked.

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 3. Loss decay on the train and test sets when training the model with
the CAVE dataset and UGR dataset, respectively.

Fig. 4. Visualization results of the experiments described in Section IV-A,
in which global preprocessing was done on the datasets. (a) One sample
of CAVE and UGR datasets, respectively. The other subfigures show the
results of the FCNN trained on (b) CAVE and (c) UGR, respectively, with
global normalization and on (d) CAVE and (e) UGR, respectively, with global
standardization of the training set.

on the train set, the loss decays very steeply during the first
epochs and then gets stabilized, while to achieve similar results
on the test set, the network needs more training.

IV. RESULTS FOR DIFFERENT STRATEGIES

A. Results With Global Preprocessing

In these experiments, the general strategy is that after
splitting into the train and test subsets, normalization or
standardization was performed on the entire training set, and
then, the results were applied to the test set. For inference, the
chosen method is applied to the image being colored, using
the parameters from the train.

1) Global Preprocessing With Normalization: Fig. 4(b) pre-
sented the results of the FCNN trained on the CAVE dataset,
and Fig. 4(c) presented the results when training the FCNN
on the UGR dataset, on one sample image, see Fig. 4(a), from
each of these datasets. The data was preprocessed by min–max
normalization on the respective training set using the MinMax
scaler.

The results of the FCNN trained on the CAVE and
UGR Datasets on the Pavia University image are presented
in Fig. 6(a) and (b). The results of the model on one of the
images acquired by the PRISMA Satellite in both treating

Fig. 5. Visualization results of experiments described in Section IV-B,
in which preprocessing was done on each image of the datasets separately.
(a) One sample of CAVE and UGR datasets, respectively. The other subfigures
show the results of the FCNN trained on (b) CAVE and (c) UGR, respectively,
with normalization and on (d) CAVE and (e) UGR, respectively, with
standardization on each image of the training set.

scenarios are presented in Fig. 7(a) and (b). The Pavia Uni-
versity and the PRISMA spectral images were interpolated,
to match the input spectral bands and were normalized using
the parameters obtained on the respective training sets.

2) Global Preprocessing With Standardization: The results
of the FCNN trained separately on the CAVE and the UGR
datasets, respectively, on one sample image of each of these
datasets [Fig. 4(a)] are presented in Fig. 4(d) for the CAVE and
in Fig. 4(e) for the UGR trained network. The standardization
in each case was done on the corresponding training dataset
using the standard scaler.

The results of this method on the Pavia University image
can be seen from Fig. 6(c) and (d), and the results on PRISMA
HS image are presented in Fig. 7(c) and (d).

B. Results With Individual Preprocessing

In these experiments, before concatenating all the images
and separating them into train and test subsets, each image
is taken and brought into the same range of values by
normalizing/standardizing each one according to its own
values.

1) Individual Preprocessing by Normalization: Each image
is considered separately, and then normalized according to the
min/max in the image, thus transforming all values into the
range [0, 1]. All the images are then concatenated and
the resulting pixel set is split into train and test subsets,
respectively. At inference, an image is normalized and colored
according to its associated min/max values.

Fig. 5 presented the results of the coloring using the FCNN
trained on CAVE and UGR datasets, respectively, normalizing
each image before concatenating with the others.

Fig. 6(e) and (f) presented the coloring results on Pavia
University and Fig. 7(e) and (f) those on the PRISMA image,
with the CAVE, respectively UGR-trained FCNN, normalizing
each image with respect to its own min–max values.

2) Individual Preprocessing by Standardization: In this
approach, each image is considered separately, and then stan-
dardized according to the mean/average deviation in the image,
so all values are brought into the standard range [−1, 1].
The processed images are then concatenated and the resulting
pixel set is split into train and test subsets, respectively.
At inference, an image is standardized and colored according
to the distribution of values in the image.

PLAJER et al.: MULTISOURCE REMOTE SENSING DATA VISUALIZATION USING MACHINE LEARNING 5510912

Fig. 6. Visualization of the results on the Pavia University MS image using
the FCNN trained in the described scenarios on (a) CAVE and (b) UGR,
respectively, with global normalization and using for inference the same scaler
as for the training set; on (c) CAVE and (d) UGR, respectively, with global
standardization and using for inference the same scaler as for the training set;
on (e) CAVE and (f) UGR, respectively, with normalization of each image
with respect to its own min–max values; and on (g) CAVE and (h) UGR,
respectively, with standardization of each image with respect to its own mean
and standard deviation.

Fig. 5 presented the results of the coloring using the
FCNN trained on CAVE and UGR datasets, respectively,
standardizing each image before concatenating with the others,
on samples of these datasets.

Fig. 6(g) and (h) presented the coloring results on Pavia
University and PRISMA using the CAVE- and UGR-trained
FCNN, respectively, normalizing each image with respect to
its own mean/std values. The visualization results of the FCNN
on a PRISMA HS image are presented in Fig. 7(g) and (h).

C. Different Approach

The experiments interpreted from the previous figures show
that the best coloring results on the CAVE and UGR datasets
were obtained when normalizing or standardizing the training
set (global preprocessing) and using the respective parameters
on the test set. This strategy follows the standard practice in
machine learning flows. On the other hand, the results were not
acceptable on the Pavia University and the PRISMA images.
This is not surprising, as these images are bound to.

Fig. 8 illustrated the distributions on the green channels
(650 nm) for the CAVE Fig. 8(a) and the UGR Fig. 8(b)
datasets, together with those of Pavia University Fig. 8(c)
and the first PRISMA image Fig. 8(d), both calculated after
interpolation. We selected the green channel for illustration,
but the observation is valid for any other 31 channels of the
spectral images considered.

As we aimed to obtain a model that should be able to
visualize images from different acquiring sources with differ-
ent distributions and spectral signatures, we tried following a
nonstandard approach. We considered the FCNN model, with
global preprocessing by standardization in the training stage.
After training, to visualize Pavia University and PRISMA
images, these were standardized concerning their own mean

Fig. 7. Visualization of the first PRISMA HS image using the FCNN trained
in the described scenarios on (a) CAVE and (b) UGR, respectively, with global
normalization and using for inference the same scaler as for the training set;
on (c) CAVE and (d) UGR, respectively, with global standardization and
using for inference the same scaler as for the training set; on (e) CAVE
and (f) UGR, respectively, with normalization of each image with respect to
its own min–max values; and on (g) CAVE and (h) UGR, respectively, with
standardization of each image with respect to its own mean and standard
deviation.

and standard deviation to obtain for each channel the mean
of 0 and the standard deviation of 1.

The following algorithm can express the inference step.
Visualization Algorithm
1) Interpolate image to fit CAVE spectral range.
2) Load the pixels of the interpolated image.
3) Standardize the pixels with PyTorch StandardScaler rel-

ative to their mean and variance.

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 8. Distributions on the green channel (considered at 550 nm) for CAVE
and UGR datasets and for Pavia University and PRISMA spectral images.
(a) Distribution for CAVE. (b) Distribution for UGR. (c) Distribution for
Pavia University. (d) Distribution for PRISMA.

Fig. 9. Visualization of the results on Pavia University (a), first PRISMA
image (b) and second PRISMA image (c) when standardizing those images
according to their own distribution using the CAVE trained FCNN. Visualiza-
tion of the results on Pavia University (d), first PRISMA image (e) and second
PRISMA image (f) when standardizing those images according to their own
distribution using the UGR trained FCNN.

4) Use the model to predict the corresponding (R, G, B)

triplet for each interpolated image pixel.
5) Construct the RGB image with respect to the original

size of the input image.
To enhance clarity and promote a thorough understanding of

the proposed methodology, we have incorporated pseudocode
of Algorithm 2 to provide detailed descriptions of inference
step.

Algorithm 2 Pseudocode for Visualization using the FCNN
Require: path_ms_image, model, input_ f req, target_ f req
1: image← load(path_ms_image)
2: inter polated ← Interpolate(image, input_ f req, target_ f req)
3: Scale inter polated with StandardScaler
4: predicted ← model(inter polated)

5: Make RGB image from predicted

The results of this approach are presented as follows:
for the Pavia University image in Fig. 9(a) (CAVE-trained

Fig. 10. Illustrations of the artifacts in the PRISMA image in a region
of interest. (a) Region from the image in Fig. 7(g). (b) Region from image
in Fig. 7(h).

FCNN) and 9(d) (UGR-trained FCNN), for the first PRISMA
image in Fig. 9(b) (CAVE-trained FCNN) and 9(e) and
for the second PRISMA image in Fig. 9(c) and (f),
respectively.

V. DISCUSSION AND COMPARISONS

Various experiments have been carried out in this study,
all aiming to better visualize the considered spectral images.
And since we want to determine which of the discussed
approaches is better, a variety of data from different types
of sensors were used.

All the results to be commented on are presented from
Figs. 4–13. We will comment on each experiment, in the same
order in which they were performed.

Fig. 4 shows the results of the experiments in the case of
global preprocessing by normalization over the whole training
set. As can be noticed, visually, the results are quite similar in
terms of colors. However, on closer inspection, it can be seen
that there are also pairs with better contrast, in the sense that
the coloring of an UGR image works better with a network
trained with UGR images and similarly for CAVE images.

Fig. 5 shows the results of the experiments when each
image is normalized/standardized according to its own values.
As can be seen, normalization works better than standardiza-
tion, which makes sense because during the preprocessing by
normalization each feature undergoes a transformation to fit
within a new range, while preserving its original relationships
with the other features in the data, meaning that all the
relational properties within the data remain intact [34].

Following these tests, this type of preprocessing with nor-
malization seems to be a consistent option. The alternative
with standardization is not plausible because this transforma-
tion step tends to change the relationships between colors,
which leads to artifacts, especially for images that are not part
of the training dataset, see Fig. 10(a) and (b).

Figs. 6 and 7 represent the results of tests performed on
images obtained from different types of sensors and having
different characteristics than the images in the training sets.
To use the network on images such as Pavia University image
or the images acquired by PRISMA, a mandatory step was
the interpolation one, which is necessary to map the spectral
bands of those images on the input with 31 channels of the
model.

PLAJER et al.: MULTISOURCE REMOTE SENSING DATA VISUALIZATION USING MACHINE LEARNING 5510912

Fig. 11. Selection of neurons with highest absolute values on the first layer.

Regardless of the training dataset, CAVE or UGR, if we
normalize or standardize over the whole training set and at the
inference step we use the scaler/properties from the training
stage, the results for the images taken from other sensors are
very bad in terms of brightness and contrast, on Pavia even
worse than on PRISMA [see Fig. 6(d)—standardization on
UGR versus Fig. 7(d)].

Normalization on each image yields good results on
Pavia [Fig. 6(e) and (f)] and acceptable on PRISMA
[Fig. 7(e) and (f)]. In contrast, standardization on each
image generates significant artifacts, see Figs. 6(g) and 7(g)
for the standardization on each image in CAVE, and
Figs. 6(h) and 7(h) for the standardization on each image in
UGR. These artifacts can be seen more clearly on a selected
region in PRISMA image, as illustrated in Fig. 10.

In Fig. 9, we presented different experiments for visualiza-
tion of spectral images by means of a FCNN. As could be seen
from all previous figures compared with Fig. 9, the best results
on images that were acquired by other sensors than those used
for the images in the training set and with another spectral
signature, were obtained by using global preprocessing in the
training step, but standardizing these images according to their
own mean and standard deviation at inference.

We also compared our results with some conventional
methods of spectral image visualization namely band selec-
tion and XY Z space [35] as well as two other methods:
decolorization-based HSI visualization [36] and multichannel
pulse-coupled neural network (MPCNN)-based HSI visual-
ization [37]. Figs. 12 and 13 displayed the results of the
visualization of the first PRISMA image and the second
PRISMA image, respectively, using these methods.

Moreover, we studied if our method favors certain wave-
lengths with respect to others, as is the case for band selection.
By plotting the weights between the input and the first hidden
layer, we found out, that all the bands contribute in a balanced
manner to the final results. Fig. 11 displayed a selection of
these weights. Each color represents the weights of one input
neuron to the neurons on the next layer, while each input
neuron corresponds to one wavelength.

In conclusion, the results of our tests are better than the
results of conventional methods, at least on PRISMA, our use
case, regardless of how the preprocessing stage is performed.
Given the fact that the standardization for other types of
images is done relative to their mean and variance, we believe
that a network that has been trained on images with a good
distribution of light and contrast will tend to produce images

Fig. 12. Comparative results of classic and advanced visualization tech-
niques with the new approach for the first PRISMA image. (a) Band
selection. (b) Coloring with XY Z space. (c) Decolorization-based visual-
ization. (d) MPCNN visualization. (e) Results with CAVE-trained FCNN.
(f) UGR-trained FCNN.

with good contrast and light, even if the original images are
affected by the atmospheric conditions. These results justify
using this type of approach in the case of satellite images.

A. Comparative Quality Assessment

In order to perform a numerical quality comparison between
the results presented in Figs. 12 and 13, some no-reference
image quality assessments [38], [39] like entropy, which
estimates information quantity, fractal dimension, which esti-
mates the complexity and standard deviation, which estimates
nonuniformity, were used. These values were calculated using
adequate scripts offered by Ivanovici and Richard [40] for
entropy and Ivanovici [41] and Caliman et al. [42] for fractal
dimension, and the MATLAB std2 function for the standard
deviation of an image. The PRISMA images were correspond-
ingly scaled as the scripts were calibrated for 256 × 256. For
calculating the fractal dimension, the parameters used were
LMAX ∈ {41, 71, 101}, representing the maximum size of
the hypercubes and a threshold of 0.00001 for the standard
deviation [43].

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 13. Comparative results of classic and advanced visualization tech-
niques with the new approach for the second PRISMA image. (a) Band
selection. (b) Coloring with XY Z space. (c) Decolorization-based visual-
ization. (d) MPCNN visualization. (e) Results with CAVE-trained FCNN.
(f) UGR-trained FCNN.

It is important to note that the actual entropy values of color
images will depend on the specific content and distribution
of pixel intensities in the image. Images with complex color
patterns, a wide range of intensities, and diverse color distribu-
tions are likely to have higher entropy values. Hence, a higher
value of the entropy indicates a higher informational content,
and a higher value of the fractal dimension indicates higher
complexity of the scene and is directly correlated with the
contrast of the image. A larger variance is also characteristic
of images with a larger variety, thus greater informational
content.

When satellite land cover images include agricultural areas,
as well as urban and nonagricultural surfaces, as seen in
the PRISMA images presented in this study, we expect a
consistent visualization to exhibit large values for the entropy,
the fractal dimension, and the variance.

The processed values for these measures in the case of
the visualizations presented in Figs. 12 and 13 are displayed
in Tables I and II. It can be observed that the largest
values for entropy and variance are obtained in the case
of the MPCNN method, closely followed by the results

TABLE I
COMPARATIVE QUALITY ASSESSMENT FOR THE FIRST PRISMA IMAGE

TABLE II
COMPARATIVE QUALITY ASSESSMENT FOR THE SECOND PRISMA IMAGE

provided by our FCNN. As the visualization results presented
in Figs. 12(d) and 13(d), the MPCNN method provides images
with large variability, but with completely unnatural colors,
being thus unusable in the case of the PRISMA images. Thus,
the visualizations obtained by our method, exhibit the best
visual results and almost the best quantitative ones. Conse-
quently, it is evident that the FCNN visualizations yield the
best results for all the measures, with slightly greater contrast
for the CAVE-trained FCNN. These quantitative results further
justify the approach proposed in this article.

VI. CONCLUSION

Processing multisource spectral images is still challenging
as more satellites with different sensor characteristics are
launched, and their products are freely available for scientists
and other users. This article aims to resolve part of the
problems posed by a consistent and qualitative visualization
of such images, using an FCNN trained on two of the most
known public spectral datasets appropriate for this purpose.

Furthermore, we studied and performed several prepro-
cessing procedures, which are very important in this FCNN
approach to visualize multisource images exhibiting different
spectral signatures.

The results we obtained were evaluated both visually and by
conventional measures of information content. This evaluation
has shown that the images generated by our method can
provide a deeper understanding of various aspects, such as
identifying agricultural patches and urban centers.

The visual and quantitative results indicate that the proposed
methodology is a promising direction for a consistent and qual-
itative multisource spectral image visualization. There are still
some limitations of this approach. For example, in cases where
the source image exhibits minor variance, the application
of standardization may compromise the realism of coloring.

PLAJER et al.: MULTISOURCE REMOTE SENSING DATA VISUALIZATION USING MACHINE LEARNING 5510912

The reliance on labeled data for training limits our dataset
choices to those that are annotated and publicly accessible.
This limitation could affect the diversity and representativeness
of the training data; hence, further research is needed to
address these issues. In addition, when combining datasets,
we must either interpolate or truncate information to balance
the dataset differences, each option having its trade-offs.

Our future research efforts will be based on addressing
some of these limitations. This preliminary work can prepare
the ground for our next objective that is interpreting the
data through the perspective of vegetation indices and other
elements relevant to the agricultural sector, thus increasing the
usefulness of our approach in this sector.

ACKNOWLEDGMENT

The hyperspectral images from the PRISMA satellite pre-
sented in this article were kindly provided by the Italian Space
Agency (ASI), Rome, Italy.

REFERENCES

[1] M. Weiss, F. Jacob, and G. Duveiller, “Remote sensing for agricul-
tural applications: A meta-review,” Remote Sens. Environ., vol. 236,
Jan. 2020, Art. no. 111402.

[2] T. Adão et al., “Hyperspectral imaging: A review on UAV-based sensors,
data processing and applications for agriculture and forestry,” Remote
Sens., vol. 9, no. 11, p. 1110, Oct. 2017.

[3] P. Rodríguez-Veiga et al., “Forest biomass retrieval approaches from
Earth observation in different biomes,” Int. J. Appl. Earth Observ.
Geoinf., vol. 77, pp. 53–68, May 2019.

[4] E. Vangi et al., “The new hyperspectral satellite PRISMA: Imagery
for forest types discrimination,” Sensors, vol. 21, no. 4, p. 1182,
Feb. 2021.

[5] L. Du et al., “A comprehensive drought monitoring method integrating
MODIS and TRMM data,” Int. J. Appl. Earth Observ. Geoinf., vol. 23,
pp. 245–253, Aug. 2013.

[6] Y.-T. Chan, S.-J. Wang, and C.-H. Tsai, “Real-time foreground detection
approach based on adaptive ensemble learning with arbitrary algo-
rithms for changing environments,” Inf. Fusion, vol. 39, pp. 154–167,
Jan. 2018.

[7] X. Kang, X. Zhang, S. Li, K. Li, J. Li, and J. A. Benediktsson, “Hyper-
spectral anomaly detection with attribute and edge-preserving filters,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5600–5611,
Oct. 2017.

[8] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp. 1865–1883, Oct. 2017.

[9] M. Mehmood, A. Shahzad, B. Zafar, A. Shabbir, and N. Ali, “Remote
sensing image classification: A comprehensive review and applications,”
Math. Problems Eng., vol. 2022, pp. 1–24, Aug. 2022.

[10] W. Rao, L. Gao, Y. Qu, X. Sun, B. Zhang, and J. Chanussot, “Siamese
transformer network for hyperspectral image target detection,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5526419.

[11] L. Zhuang, L. Gao, B. Zhang, X. Fu, and J. M. Bioucas-Dias, “Hyper-
spectral image denoising and anomaly detection based on low-rank and
sparse representations,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2020, Art. no. 5500117.

[12] L. Gao, D. Wang, L. Zhuang, X. Sun, M. Huang, and A. Plaza,
“BS3LNet: A new blind-spot self-supervised learning network for hyper-
spectral anomaly detection,” IEEE Trans. Geosci. Remote Sens., vol. 61,
2023, Art. no. 5504218.

[13] L. Gao, X. Sun, X. Sun, L. Zhuang, Q. Du, and B. Zhang, “Hyperspectral
anomaly detection based on chessboard topology,” IEEE Trans. Geosci.
Remote Sens., vol. 61, 2023, Art. no. 5505016.

[14] X. Sun, L. Zhuang, L. Gao, H. Gao, X. Sun, and B. Zhang, “Infor-
mation retrieval with chessboard-shaped topology for hyperspectral
target detection,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5514515.

[15] S. Le Moan, A. Mansouri, Y. Voisin, and J. Y. Hardeberg, “A constrained
band selection method based on information measures for spectral image
color visualization,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 12,
pp. 5104–5115, Dec. 2011.

[16] H. Su, Q. Du, and P. Du, “Hyperspectral image visualization using band
selection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7,
no. 6, pp. 2647–2658, Jun. 2014.

[17] Y. Zhu, P. K. Varshney, and H. Chen, “Evaluation of ICA based fusion
of hyperspectral images for color display,” in Proc. 10th Int. Conf. Inf.
Fusion, Jul. 2007, pp. 1–7.

[18] V. Tsagaris, V. Anastassopoulos, and G. A. Lampropoulos, “Fusion
of hyperspectral data using segmented PCT for color representation
and classification,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 10,
pp. 2365–2375, Oct. 2005.

[19] H. A. Khan, M. M. Khan, K. Khurshid, and J. Chanussot, “Saliency
based visualization of hyper-spectral images,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp. (IGARSS), Jul. 2015, pp. 1096–1099.

[20] D. Liao, S. Chen, and Y. Qian, “Visualization of hyperspectral images
using moving least squares,” in Proc. 24th Int. Conf. Pattern Recognit.
(ICPR), Aug. 2018, pp. 2851–2856.

[21] P. Duan, X. Kang, and S. Li, “Convolutional neural network for natural
color visualization of hyperspectral images,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., Jul. 2019, pp. 3372–3375.

[22] R. Tang, H. Liu, J. Wei, and W. Tang, “Supervised learning with
convolutional neural networks for hyperspectral visualization,” Remote
Sens. Lett., vol. 11, no. 4, pp. 363–372, Apr. 2020.

[23] R.-M. Coliban, M. Marincağ, C. Hatfaludi, and M. Ivanovici, “Linear
and non-linear models for remotely-sensed hyperspectral image visual-
ization,” Remote Sens., vol. 12, no. 15, p. 2479, Aug. 2020. [Online].
Available: https://www.mdpi.com/2072-4292/12/15/2479

[24] I. C. Plajer, A. Baicoianu, and L. Majercsik, “AI-based visualization of
remotely-sensed spectral images,” in Proc. Int. Symp. Signals, Circuits
Syst. (ISSCS), Jul. 2023, pp. 1–4.

[25] F. Yasuma, T. Mitsunaga, D. Iso, and S. K. Nayar, “Generalized assorted
pixel camera: Postcapture control of resolution, dynamic range, and
spectrum,” IEEE Trans. Image Process., vol. 19, no. 9, pp. 2241–2253,
Sep. 2010.

[26] J. Eckhard, T. Eckhard, E. M. Valero, J. L. Nieves, and E. G. Contreras,
“Outdoor scene reflectance measurements using a Bragg-grating-
based hyperspectral imager,” Appl. Opt., vol. 54, no. 13, pp. 15–24,
2015.

[27] ASI. (Mar. 2020). Prisma Products Specification Document Issue 2.3.
[Online]. Available: https://prisma.asi.it/missionselect/docs/PRISMA
%20Product%20Specifications_Is2_3.pdf

[28] M. Garana, M. A. Veganzones, and B. Ayerdi. (May 3, 2023).
Hyperspectral Remote Sensing Scenes. [Online]. Available: https://www.
ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

[29] S. Ozdemir and D. Susarla, Feature Engineering Made Easy: Identify
Unique Features From Your Dataset in Order To Build Powerful Machine
Learning Systems. Birmingham, U.K.: Packt Publishing, 2018.

[30] (Jun. 2023). Standard Scaler. [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html

[31] (May 2023). MinMax Scaler. [Online]. Available: https://scikit-learn.
org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

[32] S. Singh. (Feb. 2023). ELU As an Activation Function in Neural
Networks. [Online]. Available: https://deeplearninguniversity.com/elu-
as-an-activation-function-in-neural-networks/

[33] A. Jung, Machine Learning: The Basics. Berlin, Germany:
Springer, 2022. [Online]. Available: https://books.google.com/books/
about/Machine_Learning.html?hl=it&id=1IBaEAAAQBAJ

[34] G. Aksu, C. O. Güzeller, and M. T. Eser, “The effect of the normalization
method used in different sample sizes on the success of artificial
neural network model,” Int. J. Assessment Tools Educ., vol. 6, no. 2,
pp. 170–192, Jul. 2019.

[35] M. Magnusson, J. Sigurdsson, S. E. Armansson, M. O. Ulfarsson,
H. Deborah, and J. R. Sveinsson, “Creating RGB images from hyper-
spectral images using a color matching function,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Sep. 2020, pp. 2045–2048.

[36] X. Kang, P. Duan, S. Li, and J. A. Benediktsson, “Decolorization-based
hyperspectral image visualization,” IEEE Trans. Geosci. Remote Sens.,
vol. 56, no. 8, pp. 4346–4360, Aug. 2018.

[37] P. Duan, X. Kang, S. Li, and P. Ghamisi, “Multichannel pulse-
coupled neural network-based hyperspectral image visualization,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2444–2456,
Apr. 2020.

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error visibility to structural sim-
ilarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

[39] S. Winkler, “Vision models and quality metrics for image process-
ing applications,” Ph.D. dissertation, Ecole Politechnique Federale de
Lausanne, Lausanne, Switzerland, 2001.

5510912 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

[40] M. Ivanovici and N. Richard, “Entropy versus fractal complexity for
computer-generated color fractal images,” in Proc. 4th CIE Expert
Symp. Colour Vis. Appearance, Prague, Czech Republic, 2016, pp. 6–7.

[41] M. Ivanovici, “Fractal dimension of color fractal images with cor-
related color components,” IEEE Trans. Image Process., vol. 29,
pp. 8069–8082, 2020.

[42] A. Caliman, M. Ivanovici, and N. Richard, “Colour fractal dimension for
psoriasis image analysis,” in Proc. Signal Process. Appl. Math. Electron.
Commun. (SPAMEC), EURASIP, Session VI, Aug. 2021, pp. 113–116.

[43] M. Ivanovici and N. Richard, “Fractal dimension of color fractal
images,” IEEE Trans. Image Process., vol. 20, no. 1, pp. 227–235,
Jan. 2011.

Ioana Cristina Plajer received the B.E. and
M.S. degrees in computer science from the Uni-
versity of Bucharest, Bucharest, Romania, in 1997
and 1998, respectively, and the Ph.D. degree in
computer science from the Transilvania University
of Braşov, Braşov, Romania, in 2011.

She is currently a Lecturer with the Faculty of
Mathematics and Computer Sciences, Transilvania
University. She is also a member of the Depart-
ment’s Machine Learning Research Group, founded
in 2018 and part of the Project Artificial Intelligence

and Earth Observation for Romania’s Agriculture (AI4AGRI). Her research
interests include machine learning, image processing, spectral imaging and
remote sensing, formal languages, algorithms, and data structures.

Alexandra Băicoianu received the Ph.D. degree
from Babes Bolyai University, Cluj-Napoca,
Romania, in 2016.

She has been a Lecturer with the Transilvania
University of Braşov, Braşov, since 2017, teaching
various courses and seminars. She is currently a
Research Engineer in informatics. She authored
or coauthored more than 30 scientific articles
and is the coauthor of six books. Also, she has
supervised tens of graduation and dissertations
thesis, programming training courses, programming

Summer Schools, and code/tech Camps, some of them in collaboration
with IT companies. She is also a member of the Department’s Machine
Learning Research Group, founded in 2018. She was part of various
scientific projects, among them it is important to mention Advanced
Technologies for Intelligent Urban Electric Vehicles, Powerful Advanced
N-level Digital Architecture (PANDA), Intelligent Motion Control under
Industry4.E (IMOCO4E), Artificial intelligence and Earth observation for
Romania’s agriculture (AI4AGRI), Digital Technologies and Artificial
Intelligence (AI) solutions projects (DiTArtIS), and New modular Electrical
Architecture and Digital Platform to Optimise Large Battery Systems on
SHIPs (NEMOSHIP). Her research interests and expertise are in the field
of machine learning, formal languages and compilers, algorithms, remote
sensing and Earth observation data, autonomous driving, and electric and
hybrid vehicles.

Luciana Majercsik received the B.S. degree in
mathematics from the University of Bucharest,
Bucharest, Romania, in 1998. She is currently
pursuing the Ph.D. in computer science with the
Transilvania University of Braşov, Braşov, Romania.

Her research interests include machine learning,
multi-/hyperspectral image analysis and visualiza-
tion, and graph-based methods in remote sensing.

Mihai Ivanovici (Member, IEEE) received the
Ph.D. degree in electronics and telecommunications
from Politehnica University, Bucharest, România, in
2006.

He was an Invited Researcher in 2008, 2010,
and 2014; and a Visiting Professor with the Univer-
sity of Poitiers, Poitiers, France, in 2018, University
Toulouse 3 Paul Sabatier, Toulouse, France, in 2019,
and Technical University of Moldova, Chişinău,
Moldova, in 2023. He is currently a Full Professor
with the Electronics and Computers Department,

Transilvania University of Braşov, Braşov, România. He is also the Head of
Multispectral Imaging and Vision Research Laboratory. His research interests
include in the field of algorithms and electronic system design for signal
and data acquisition, processing, and analysis—including color, multi- and
hyperspectral images, remote sensing, and Earth observation data, as well
as data from particle detectors in the ATLAS Experiment, CERN, Geneva,
Switzerland.

Dr. Ivanovici has been a member of the IEEE Signal Processing Society
since 2008 and the IEEE Geoscience and Remote Sensing Society since 2018.

Heliyon 9 (2023) e18402

Available online 22 July 2023
2405-8440/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Medical emergency department triage data processing using a

machine-learning solution

Andreea Vântu a, Anca Vasilescu b,∗, Alexandra Băicoianu b

a Faculty of Mathematics and Computer Science, Transilvania University of Braşov, Romania
b Department of Mathematics and Computer Science, Transilvania University of Braşov, Romania

A R T I C L E I N F O A B S T R A C T

Keywords:

Emergency medicine
Triage

Clinical decision support
Patient medical record
Medical data processing
Machine learning
Supervised learning algorithms

Over the years, artificial intelligence has demonstrated its ability to overcome many challenges
in our day-to-day life. The evolution of it inquired more studies about Machine Learning possible
solutions for different domains, including health care. The increasing demand for artificial
intelligence solutions has brought accessibility to loads of data, including clinical data. The
availability of medical records facilitates new opportunities to explore Machine Learning models
and their abilities to process a significant amount of data and to identify patterns with the
purpose of solving a medical problem. Understanding the applicability of artificial intelligence
on this type of data has to be a compelling aim for emergency medicine clinicians. This paper
focuses on the general clinical problem of the complex correlation between medical records and
later diagnosis and, especially, on the process of emergency department triage which uses the
Emergency Severity Index (ESI) as triage protocol. This study presents a comparison between
three different Machine Learning models, such as Logistic Regression, Random Forest Tree and
NN-Sequentail, with the purpose of classifying patients with an emergency code. We conducted
four experiments because of imbalanced data. A web-based application was developed to improve
the triage process after our theoretical and exploratory results. Overall, in all experiments, the
NN-Sequential model had better results, having, in the first experiment, a ROC-AUC score for each
ESI emergency code of: 0.59%, 0.76%, 0.71%, 0.78% 0.64%. After applying methods to balance
the data, the model yielded a ROC-AUC score for each emergency code of 0.72%, 0.75%, 0.69%,
0.74%, 0.78%. In the last experiment consisting of a three-class classification problem, the NN-
Sequential and Random Forest Tree models had similar metric outcomes, and the NN-Sequential
algorithm had a ROC-AUC score for each emergency code of: 0.76%, 0.72%, 0.84%. Without any
doubt, our research results presented in this paper endorse this tremendous curiosity in Machine
Learning applications to enrich aspects of emergency medical care by applying specific methods
for processing both medical data and medical records.

1. Introduction

From a theoretical point of view, Machine Learning provides various learning algorithms for different types of problems [1],
[2], but practical solutions emerge to increase Machine Learning involvement and impact on quality of life. Artificial Intelligence

* Corresponding author.
E-mail addresses: andreea.vantu@unitbv.ro (A. Vântu), avasilescu@unitbv.ro (A. Vasilescu), a.baicoianu@unitbv.ro (A. Băicoianu).

https://doi.org/10.1016/j.heliyon.2023.e18402

Received 11 January 2023; Received in revised form 17 July 2023; Accepted 17 July 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:andreea.vantu@unitbv.ro
mailto:avasilescu@unitbv.ro
mailto:a.baicoianu@unitbv.ro
https://doi.org/10.1016/j.heliyon.2023.e18402
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e18402&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e18402
http://creativecommons.org/licenses/by-nc-nd/4.0/

Heliyon 9 (2023) e18402

2

A. Vântu, A. Vasilescu and A. Băicoianu

has many real-life applications, from solutions for renewable energy system [3] to Emergency Department improvements [4] [5]
[6]. Over the last two decades, many research papers about the applications of Machine Learning in medicine and health care were
published; for example, from [7] in 2001 to [8] in 2022, specific medical data processing methods were revealed. Part of them
focuses on medically diagnosing a patient with a specific disease, like predicting diabetes [9] or trying to improve the Emergency
Department flow with technology [10]. It is important to accumulate and recall the individuals’ medical records efficiently and,
therefore, accurately evaluate and classify symptoms in emergency medicine and services, which can be consistently improved by
implementing Machine Learning algorithms. In papers like [10] or [11], predicting the admission of a patient after the Emergency
Department triage and also predicting the emergency levels using the Machine Learning approaches are covered in various contexts.
The admission of a patient represents a binary problem with a simple output as Admit or Discharge.

This study aims to research supervised Machine Learning models applied to a multi-class classification problem, such as predicting
an emergency code to one individual in the specific context of the Romanian emergency medical system. This research focuses on a
Machine Learning approach to the Emergency Room (ER) or an Emergency Department (ED) triage and follows the ideas from [12]
and [13] that refer to a software web-based application developed to enhance the emergency triage process. For that particular work,
information and data were collected from the local pediatric hospital, along with the demands and needs addressed by the hospital
management team. The project was developed to digitize the workflow. That software covered three main aspects: (1) showing a
waiting list according to every patient’s assigned emergency code, (2) after having symptoms as input, the application made an
emergency code suggestion, and (3) creating the patient file that could run on smart devices.

The demand for Machine Learning algorithms applied to emergency data has increased over the years [4]. However, there are
still gaps in the literature, and more studies need to be conducted on this subject. By presenting this study, we want to evaluate
Machine Learning models on classifying patients with an emergency severity index [14]. The proposed solution is based on medical
records processing in order to classify patients on one of the 5-level ESI emergency codes [15] using supervised learning algorithms
and also having a basic web interface for the clinicians as end-users to early monitor those patients. The better an AI-based prediction
application is, the more convincing it could be, and eventually, clinicians could rely on the accuracy of a Machine Learning algorithm
[16]. It yields that the research has to provide materials and methods, models and metrics, and computational experiments, which are
significant from clinicians’ perspectives. The next sections of our paper successively follow these topics. Three classifying supervised
Machine Learning models and also four dataset approaches are chosen, and appropriate experiments are developed in order to
provide patient classification emergency code as accurately as possible.

2. Materials and methods

The solution proposed by this research is meant to solve a multi-class classification problem where the dependent variable consists
of 5 classes identified by numbers from 1 to 5. All necessary processes and the implementation were done using Python programming
language (Python 3.10.6 version) and its corresponding packages [17].

2.1. Problem analysis

The Emergency Department is one of the most important decision points in a health care system. It is developed using a triage
algorithm which prioritizes emergencies. This triage algorithm differs from country to country. In Romania, the triage protocol
is based on ESI algorithm. ESI stood for Emergency Severity Index and was initially developed in 1999 [15]. It consists of 5-level
emergency codes. Level 1, the red one, is the most critical level, and the intervention should occur immediately because the patient
is in a life-or-death situation. The second level, or the yellow one, means that the patient has a high risk of deterioration, but the
patient can wait up to 10 minutes. Level 3, the green level, means the patient needs urgent care, but they can wait up to 30 minutes
without risking their lives. Level 4, or the blue one, represents a patient with a stable health status who requires one resource, and
it is considered a non-urgent situation so that the patient can wait up to one hour. The last level, the white one, is also considered
non-urgent, and here the patient can wait even two hours. Each patient follows the triage protocol represented here in Fig. 1, and
the triage clinician decides to assign an emergency code out of all 5 codes based on specific rules (chief complaints, age, past medical
history, triage vital signs, present treatment etc.) following the triage questions.

Overcrowding is the main issue of the Emergency Department. The ESI triage protocol is meant to be as accurate as possible, but
it is prone to human error, especially when the medical staff is facing a large number of people at a time. Due to these issues, the
health status of a patient can be easily overestimated or underestimated. Overestimation means using more medical resources, but
underestimation could result in negative outcomes such as deaths [19].

2.2. Data preparation and preprocessing

The dataset used for this research [20] included adult ED visits within two years, specifically March 2014 and July 2017. The
data were collected from three emergency departments. The initial paper [21] used this dataset to predict the admission outcome of
a patient, but the features are suited to study emergency levels classification.

This dataset contains 972 features and 560486 entries. All information was gathered in a 1.32 GB CSV file. All these features can
be grouped, and they determine separate bigger categories such as demographics, past medical history, historical vitals, triage vital
signs, outpatient medication, chief complaints, historical labs, imaging, and hospital usage.

Heliyon 9 (2023) e18402

3

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 1. ESI triage protocol [18].

Table 1

Data analysis.
Category Attribute Data type
Response variable esi Categorical

Past medical history From 2sndarymalig to
whtblooddx

Categorical

Demographics age

gender

arrivalmode

previousdispo

Numeric

Categorical

Categorical

Categorical

Triage Vital Signs triage_vital_hr

triage_vital_rr

triage_vital_sbp

triage_vital_dbp

triage_vital_o2

triage_vital_temp

Numeric

Numeric

Numeric

Numeric

Numeric

Numeric

Chief Complaints From cc_abdominalcramping
to cc_wristpain

Categorical

This study does not include all the information provided by this dataset. We have structured and removed the irrelevant features,
and we only kept these categories: demographics, past medical history, triage vital signs and chief complaints. This selection is
represented in Table 1, keeping those attributes which are more suitable for the Romanian ER patient file, with the intention of
further work to fitting that medical system care. Therefore, only 409 features were selected for this research, and all the entries were
kept. The resulting dataset is a mix of numerical, binary and text values. For a good workflow, the data types were determined.

The first step in this problem was to understand the variables, assess them and do some basic exploratory data analysis. The
starting point consists of plotting the correlation matrix of the trained dataset and using the correlation coefficient’s warnings and
implications. The response variable is also called the dependent variable because the outcome of it depends on the other attributes.
In this case, the esi response depends on the symptoms of the patient, for example.

One can evaluate the relationship between each target label and different features using correlations and selecting those features
that have the strongest values. For this study, we started analyzing the relationships with triage vital signs, past medical history and
chief complaints. The corresponding correlation coefficients with triage vital signs can be seen in Fig. 2.

Next, we scanned the results while looking at past medical history and chief complaints. Because there were plenty of features in
the dataset, we selected only ten features for each category (see Fig. 3 and Fig. 4).

Chief complaints represent the symptoms which patients describe when they arrive at the emergency room or department. Back
pain, rash and sore throat are the closest ones to 1. The very purpose of the data preprocessing phase is to turn the raw data
into a more understandable, useful and efficient format for ML models. Such as, after all the necessary information regarding the
classification of one of the 5 emergency codes was gathered from the original data frame, the dataset was split into training and
test set. This step was accomplished using sklearn library within Python. The training set represents 80% of the data, and the rest of
20% represents the test set. Both training and test sets were preprocessed. The preprocessing step included: handling missing values,
scaling the data, and handling text attributes.

Heliyon 9 (2023) e18402

4

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 2. ESI - Vital Triage Signs Correlation Matrix.

Firstly, it is important to see if the dataset has any missing values and the amount of them because some models do not know
how to handle them, and the performance of the algorithms could be affected accordingly. There are many options to treat this case,
as explained in [22].

The dataset in this study had missing values for the following features: esi, age, arrivalmode, vital_triage_hr, vital_triage_rr, vi-
tal_triage_sbp, vital_triage_dbp, vital_triage_o2, vital_triage_temp, plus some chief complaints attributes. For the esi attribute, we decided to
drop all the entries with missing values because imputing the NaN value for this Categorical variable to the most frequent or median,
does not necessarily represent the actual truth which would lead to a false reality. The records which had missing values on esi level
had missing values on the other columns listed above. Hence, dropping those records fixed the NaN problem on the other features.
The remaining missing values on the age column were treated in the same way because there were a few records, and it would not
affect the outcome of the model’s prediction in a significant way. The missing values presented by the triage vital signs were imputed
with the median using the class SimpleImputer from Python sklearn.impute package. We chose median because these are continuous
numeric attributes.

Then all the Numeric attributes were scaled using the sklearn object StandardScaler(). Scaling the data is not mandatory, but
having big differences between the values could cost the performance of the model. Many Machine Learning models would have a
better performance if scaling numerical input has been done before [23]. The dataset contains 7 Numeric features with values starting
from 18 and going up to 105, and all the other features are Categorical having binary values such as 0, 1. We tested the given dataset
with the feature selection, and we imputed the missing values, but the data was not scaled, so the model started to perform poorly.
Therefore, in order to have a good or decent model performance, the scale was necessary.

Our dataset has three columns with Categorical values of type String. These columns are: gender, arrivalmode and previousdispo.
We used the OneHotEncoder class to handle these categorical text features transforming them into Numeric ones. It will derive the
category based on the unique values in each feature. For example, gender feature has only two possible and unique values: male
and female. Using OneHotEncoder this column will be transformed into two columns with the names: gender_male and gender_female.
These two new columns will be filled with 0 and 1 according to the values on the original column. The same will happen with the
other text columns, each unique value being a new feature in the dataset.

The missing values within arrivalmode were treated with SimpleImputer class but with the most frequent strategy that can be used
with both string and numeric types. The median strategy works only with numeric attributes.

3. Models development and evaluation

Since this research project focuses on a multi-class classification problem, namely predicting the patient’s emergency code, it has
been important to choose the model that suits the problem and has a good predicting score. Until then, one has to test different
algorithms to see which one has a better performance. Supervised learning represents those types of Machine Learning in which
machines are trained using well-labelled training data. This type of learning implies already-known output data.

For this study, we chose three classifying supervised Machine Learning models, particularly: Neural Network Models (i.e. NN Se-
quential Model), Decision Trees (i.e. Random Forest Tree Algorithm) and Regression Algorithms (i.e. Logistic Regression Algorithm).

Neural Networks models are designed and named after human biological neurons. They work using a defined number of layers,
and each layer contains a precise number of neurons. They are applied to numerous real-world problems, from classifying to facial
recognition. Random Forest Tree models represent groups of many individual decision trees that work together to predict the outcome

Heliyon 9 (2023) e18402

5

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 3. ESI - Past Medical History Correlation Matrix.

of the input. The logic behind them is simple as it consists in evaluating nodes of a tree. Regression algorithms are used to assess the
relationship between features and dependent variables, and they have applicability in fields such as forecasting, trend analysis and
so on. We chose Logistic Regression for this study because it is a regression algorithm that can be used for classifying problems.

Usually, Logistic Regression is good for the first guess, it is a simple way to give some results, and it is a popular approach among
medical data processing [24] [25] [26]. In addition, Random Forest Tree is a cheap variant, they tend to learn too well, so you
usually need a comparative model to contrast them. In particular, one of the advantages offered by a decision tree algorithm is a
lower prediction error due to its ability to recognise effects between a predictor and target variable [27]. The NN-Sequential model
is sufficient for exploring the given data.

Once the models are chosen, one should take care of the measurements. When we think about a Machine Learning model and
its prediction performance, most of the time, we think about accuracy. Accuracy is not necessarily the ultimate metric which tells if
the model is good or bad, it is important to explore other metrics to give conclusions. A model could give amazing results evaluating
one metric such as the accuracy score, but it could act poorly when it comes to another measurement like F1-score, which could give
relevant insights about the dataset and about the problem in the first place.

This study, as we previously mentioned, treats a multi-class classification problem so that, for each model, the ROC (Receiver
Operating Characteristic)-AUC (Area Under the ROC curve) score, precision, recall, confusion matrix and specificity were evaluated. These
metrics prove to be suitable for medical data showing relevant results towards this direction, and besides, they provide clinicians with
compelling insight. Some studies only measure the ROC-AUC score, but working with medical data should imply more metrics than
this one [28]. The ROC-AUC score is a performance measurement telling how much a model is capable of distinguishing the classes.
To make an analogy with medical data, a high score after evaluating this metric means the model is well performing at distinguishing
patients who have a disease from the ones who are healthy, for instance, or distinguishing patients who were admitted to the hospital
from patients who were not [21].

Heliyon 9 (2023) e18402

6

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 4. ESI - Chief Complaints Correlation Matrix.

Considering the usual definitions for the outcomes TP as True Positive, FP as False Positive, TN as True Negative, and FN as False
Negative and respectively True Positive Rate and False Positive Rate as in equation (1).

𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
and 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝐹𝑁
(1)

the ROC curve maps TPR versus FPR for different classification thresholds, and AUC evaluates the area under the ROC curve between
the thresholds corresponding points (0,0) and (1,1) [1]. If AUC yields a high score, then the model performs well at predicting false
as false and true as true. An AUC score close to 0 means a poor performance by the model.

All of the metrics offer important details about the performance of the model. For a binary classification problem, it would be
easier to pay more attention to a certain metric like recall. The admission of a patient could be a binary classification problem if
the model has to predict whether the patient was admitted or discharged. Recall would show which patients were discharged when
they actually needed admission. In our case, the question was not that simple, so we were interested to see all the chosen metrics.
It was our target to see how many patients were predicted to have a Level 3 emergency code, how many were classified on a higher
level and also what amount of patients was underestimated, for example. Nevertheless, the ROC-AUC score gives an overview of how
accurate the model would be in the future [29]. From a medical perspective, precision, recall and specificity metrics explain more than
the performance of the model. All of these three metrics can be calculated using the confusion matrix. A confusion matrix consists of
rows which represent the predicted classes and columns which are the true classes. Then, each cell represents the predicted output
for each class. Table 2 represents a confusion matrix of our approach.

Considering Level 2 as an example, the TP, FP, TN, and FN can be applied in a multi-class classification as follows. TP represents
the cases predicted as Level 2, and the actual output was Level 2; its corresponding value following the confusion matrix is TP = 5.
FP represents the cases predicted as Level 2, and the actual output represents other levels; its corresponding value is FP = 8 + 7 +
3 + 0 = 18. TN represents the cases predicted not as Level 2 and the actual output was not Level 2; its corresponding value is TN =
9 + 3 + 2 + 4 + 8 + 1 + 2 + 4 + 10 + 15 + 1 + 2 + 3 + 4 = 68. FN represents the cases predicted not as Level 2, and the actual
output was Level 2; its corresponding value is FN = 6 + 4 + 3 + 1 = 14.

Heliyon 9 (2023) e18402

7

A. Vântu, A. Vasilescu and A. Băicoianu

Table 2

Confusion matrix.
Level 1 Level 2 Level 3 Level 4 Level 5

Level 1 15 6 3 4 0

Level 2 0 5 8 7 3

Level 3 1 4 9 3 2

Level 4 0 3 4 8 1

Level 5 2 1 2 4 10

Precision and recall metrics are also useful when it comes to evaluating the performance of a model in a medical scenario [30]
[16]. We understand precision as the capability of an algorithm to identify only samples of interest and recall as the ability of a
classification model to identify all relevant examples. The corresponding evaluations are given by the formulas from equation (2).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

A model that has a very high recall has very less precision.
In other words, recall describes our TPs from the predicted results, whereas precision indicates our TPs from the actual results.

Also, recall is the equivalent of the TPR parameter of the ROC curve. If we are interested to see the recall score, we should ask
the right question: out of everything predicted, what is the ratio of missing Level 2 patients? Same with precision: out of all Level 2
patients, we predicted what is the ratio of Level 2 patients when they did not represent a Level 2 risk. A low precision means overuse
of resources and also overcrowding. A low recall means that a patient should have been classified with a Level 2 emergency code,
but another code was assigned to them. Now, overestimating the health status does not necessarily imply a tremendous negative
outcome, but again it will lead to overusing resources. Instead, if the patient’s health condition is underestimated and a lower code
is assigned, this could increase the mortality of the patient. In addition, precision and recall are better for highly imbalanced datasets
[31].

In the medical world, any test for diagnosing people with a disease or not should recognize sensitivity and specificity metrics.
Sensitivity measures how often people who have the disease get the result positive, and specificity measures the ability to detect
negative results for cases which indeed have negative results. We know how bad the first scenario is, with no need for further
explanations. In the second case, people who do not have the disease will undergo unnecessary testing or even treatments [32] [28].
In binary classification, recall is called sensitivity.

Specificity is another metric which can be calculated using the confusion matrix values, by the formula from equation (3).

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦= 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(3)

4. Computational experiments and results

For this study, we used an NN-Sequential Model, a Random Forest Tree and a Logistic Regression Algorithm to test the results
and choose the one with good performance from the medical point of view. We have evaluated the performance of the models on
the given set of data in three ways: using the imbalanced data, handling imbalanced and reducing the volume of the original data.
For handling imbalanced data, we did two experiments using two different sampling techniques: SMOTE and ADASYN.

Each Machine Learning model uses different hyper-parameters tuned after an empirical analysis. We conducted many experiments
by tuning hyper-parameters, following the concept of trial and error. The final hyperparameters are presented in Table 3. The
Logistic Regression algorithm required a ‘multinomial’ option and ‘lbfgs’ solver due to the multi-class classification problem. For the
NN-Sequential model, we used ‘categorical_crossentropy’ as a loss function. For the optimizer parameter, we chose an SGD object
initialized with the following values: lr = 0.01, decay=1e-6, momentum=0.9, nesterov=True. The model was trained on 100
epochs and used a batch size of 128 together with a callback parameter that monitored the accuracy. The network had 4 hidden
layers, one input layer and one output layer. The first fifth layers had a relu activation function and 30 nodes, and the output layer
used a softmax activation function and 5 nodes. The input layer received the features’ number. For the last algorithm, we chose 50
estimators, meaning there would be 50 decision trees.

In terms of time and space complexity, the Logistic Regression model has a train time complexity of 𝑂(𝑛 ∗ 𝑚), the test time
complexity is 𝑂(𝑚), and the space complexity of the algorithm is 𝑂(𝑚), where 𝑛 is the number of training data and 𝑚 is the number
of features from the considered dataset.

For the Random Forest Tree approach, we have a training time complexity of 𝑂(𝑘 ∗ 𝑛 ∗ log𝑛 ∗ 𝑚), the test time complexity is
𝑂(𝑚 ∗ 𝑘), and space complexity is 𝑂(𝑘 ∗ 𝑑𝑒𝑝𝑡ℎ𝑂𝑓𝑇 𝑟𝑒𝑒), where 𝑛 is the number of training examples, 𝑚 is the number of features from
the considered dataset, and 𝑘 is the number of decision trees. Random Forest is comparatively faster than other algorithms.

For NN Sequential model, we used the in-build Sequential() API from Keras library. This is a feed-forward neural network that
transfers the data from one layer to another until all sequential steps are finished. The space memory should be equal to the sum
of all weights created by the network and batch normalization parameters or other specified hyper-parameters. The total number of
parameters used by a neural network could be easily found using the function summary(), as we did. Overall, the neural network used
in this paper has 12780 parameters after the input layer, the next fourth hidden layers have 930 parameters, and the output layer
has 155 parameters. As long as the algorithm is coming from standard libraries, the time complexity of it is difficult to calculate,
and, moreover, the result could be inaccurate.

Heliyon 9 (2023) e18402

8

A. Vântu, A. Vasilescu and A. Băicoianu

Table 3

Models hyper-parameters.
Model Hyper-parameter Value

Logistic Regression

multi_class multinomial

solver lbfgs

C 10

NN-Sequential

loss categorical_crossentropy

optimizer SGD

metrics accuracy

epochs 100

batch_size 128

callback EarlyStopping

Random Fores Tree n_estimators 50

Fig. 5. The distribution of target classes.

The software and libraries used for the following experiments are Python 3.10.6, Jupyter 1.0.0, pandas 2.0.0, numpy 1.23.5,
sklearn 0.0.post1, keras 2.12.0, imblearn 0.0.

4.1. Imbalanced data

The distribution of examples across the classes reveals the skewed levels, and they are represented in Fig. 5. Imbalanced data may
affect the performance of a Machine Learning model, making a poor prediction. Imbalanced data represent a challenge, especially
when it comes to a multi-class classification problem, because the model is prone to perform poorly on the majority class, trying to
have better results on minority class [33].

The majority class of our model is represented by Level 3 emergency code, and the values are decreasing for the other classes.
The large amount of examples for Level 3 is normal because in real life, statistically, Level 3 is the most frequent emergency code.
Here are the numbers for each of the classes: (1.0, 4265), (2.0, 130121), (3.0, 188245), (4.0, 99525), (5.0, 22197). The number of
Level 3 is huge compared to the number of examples of Level 1. Level 2 is closer to Level 3, and, sometimes, a given object may be a
borderline between these two classes.

Further, the performance of the models is explained starting with the imbalanced dataset and maintaining the same 80%-20%
ratio for the train-test split during the experimental evaluations. Our Experiment 1 is the Neural Network approach that uses a
Sequential model with 6 layers provided by Keras library. Each of them used, as described at the beginning of Section 4, a Relu
activation function except the last layer, which used SoftMax as an activation function because the target variable has more than one
class. Python SGD class was used as an optimizer, and the metric was accuracy. We trained the model using 100 epochs but also used
a callback function to stop the training when the accuracy was dropping. The model stopped training after 41 epochs, having a loss
of 0.76 and an accuracy of 0.67.

Fig. 6 displays the confusion matrix after the model was trained and the test set was predicted. The specific results for the
Experiment 1 are outlined in Table 4. Level 1 has a low recall (0.18), which means the FN rate is high. A low recall means that 794
patients who needed to be assigned to a Level 1 emergency code were classified on the lower levels, and only 183 were classified
correctly. On the other hand, the precision is high (0.71). If the precision is high, the FP rate is lower. Hence, out of all Level 1
predictions, 0.71 were indeed Level 1. The specificity for Level 1 is almost 0.99. Therefore, the patients who did not need to be
assigned on Level 1 were correctly assigned to other levels. Level 2, 3 and 4 have the best scores for precision and recall.

Heliyon 9 (2023) e18402

9

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 6. NN Sequential Model - Confusion Matrix.

Table 4

NN Sequential Model - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.18 0.71 0.99 0.59

Level 2 0.65 0.69 0.92 0.76

Level 3 0.71 0.65 0.72 0.71

Level 4 0.67 0.65 0.89 0.78

Level 5 0.29 0.54 0.97 0.64

Fig. 7. RFT - Confusion Matrix.

Table 5

RFT - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.18 0.42 0.99 0.59

Level 2 0.61 0.63 0.85 0.73

Level 3 0.68 0.62 0.69 0.69

Level 4 0.61 0.62 0.89 0.75

Level 5 0.23 0.48 0.98 0.61

Although Level 3 has good precision and recall scores, the specificity is not that high. The algorithm is best at distinguishing
emergency codes of type 4 with a score of 0.78. Level 2, 3, and 4 again have the best scores overall. The confusion matrix shows that
Level 2 and Level 3 are easily confused.

For our Experiment 2 involving the Random Forest Tree classifier, we have used the Python GridSearchCV function to find the best
estimators, and the result was to use 50 estimators. An estimator is a decision tree in the forest. The confusion matrix after training
this Random Forest Tree model is presented in Fig. 7.

The specific values from Table 5 yield that this model is not performing as well as the previous one. The recall for Level 1 is
still 0.18, but the precision is 0.42. There are lower precision and recall scores for each class compared with the Neural Network
measurements.

Heliyon 9 (2023) e18402

10

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 8. LR - Confusion Matrix.

Table 6

LR - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.18 0.68 0.99 0.59

Level 2 0.64 0.67 0.87 0.75

Level 3 0.68 0.64 0.78 0.70

Level 4 0.69 0.62 0.89 0.78

Level 5 0.14 0.55 0.99 0.56

Looking only at the specificity, one would say that this model is very good, but in fact, it is misleading. The ROC-AUC curve is
also lower compared to the first measurements. For Level 3, the specificity is lower, so the model falsely assigns patients on Level 3.
Looking back to Table 4, we conclude that NN Sequential Model had better scores.

Our Experiment 3 represents the last model we have considered here. It uses the Logistic Regression algorithm for which we set
the parameter multi_class to multinomial because of the nature of the problem, and we have used lbfgs as a solver that handles L2 or no
penalty. L2 represents regularization added to the algorithm to prevent overfitting. The corresponding confusion matrix is presented
in Fig. 8 and we can notice in Table 6 the performance of the model.

Out of all three models, the Level 4 class has the lowest recall score using this particular model, whereas the others are slightly
changed. The ROC-AUC curve is similar to the one produced by the Random Forest Tree classifier, and the precision score is one
percent less than the one produced by the Neural Network. The overall average per measurement is slightly behind the overall
measurements from the first model except the specificity with an average of 0.9. The NN model had the best results.

The recall score for the emergency code of type Level 1 is always the same (0.18). All three classifiers failed in assigning this type
of emergency code to a large number of patients who really needed it. Level 1 class represents the minority class therefore the low
recall. Both this metric and precision are better to be studied for highly imbalanced datasets [31].

4.2. SMOTE for imbalanced data

Imbalanced data is a great challenge for building a model with considerable performance. The distribution of classes is important,
and the difference between them affects the outcome of the algorithm. Following the data provided in the previous section in Fig. 5,
the target classes are distributed as percentages in this way: 1% for Level 1, 29,% for Level 2, 42% for Level 3, 23% for Level 4 and 5%
for Level 5. It follows that Level 1 and Level 5 are missing enough information, and the distribution is skewed. Usually, imbalanced
data is given, but having a multi-class classification with imbalanced data is even more daunting.

A popular way to treat this unequal distribution of classes is using SMOTE (Synthetic Minority Over-sampling Technique) [34]. Of
course, there are other approaches, like under-sampling the majority class, but in this case, the model may lack useful examples.
One can choose to use random over-sampling, but this strategy comes with its drawbacks. Random over-sampling simply recreates
examples for the minority class without adding variety or useful information about those new objects, but it will increase the
likelihood of the model overfitting. At the same time, SMOTE adds new samples in the minority class generating synthetic data.

The algorithm behind SMOTE implies searching for K-nearest neighbours of each minority item, then one of these neighbours
will be randomly selected and, using linear interpolation, a new minority instance is produced.

SMOTE will target the minority class to generate synthetic points to almost match the number of data points in the majority
class. Now as the synthetic data being generated is chosen from lines connecting the existing points (feature data) so we are basically
incorporating less noise. Thus reducing the chances of overfitting. Generally, SMOTE is used to overcome the problem of overfitting,
but it might also lead to overfitting as it is synthetic data and not real data.

The technique specified by SMOTE can be easily applied to a multi-class problem because the algorithm identifies the minority
class against the remaining ones with the approach One-versus-All. Python has a support library for SMOTE algorithm, but the
drawback is that it can be used only with continuous features, whereas the dataset used in this study is a mix of categorical and

Heliyon 9 (2023) e18402

11

A. Vântu, A. Vasilescu and A. Băicoianu

Table 7

LR- SMOTE - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.42 0.08 0.95 0.69

Level 2 0.55 0.65 0.87 0.71

Level 3 0.59 0.67 0.79 0.69

Level 4 0.64 0.59 0.87 0.75

Level 5 0.42 0.24 0.97 0.67

Table 8

NN Sequential - SMOTE - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.35 0.14 0.98 0.66

Level 2 0.65 0.66 0.96 0.75

Level 3 0.63 0.68 0.78 0.70

Level 4 0.67 0.62 0.89 0.78

Level 5 0.39 0.33 0.95 0.67

Table 9

RFT - SMOTE - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.24 0.16 0.98 0.61

Level 2 0.60 0.58 0.74 0.71

Level 3 0.57 0.63 0.75 0.66

Level 4 0.61 0.54 0.85 0.73

Level 5 0.29 0.31 0.96 0.63

continuous attributes. Thus, we have used SMOTE-NC (SMOTE for Nominal and Continuous features) instead, and we have specified
which are the Categorical features so that the SMOTE algorithm would resample these values instead of generating synthetic data.
After synthetic samples were produced, the distribution was completely changed, and the amount of data was substantially increased
to 188242 for each level.

All three models were re-evaluated using the same metrics to have an overview and to continue the study because we wanted to
see how the models performed with the new samples. All the hyper-parameters were kept constant.

Again, the Neural Network model had a better performance in terms of ROC-AUC score than the previous Neural Network
(Table 4), with an average of 0.71. The recall and precision of Level 2, 3 and 4 were close like usual. The confusion matrix showed
that most patients who were classified as non Level 2 when they should have been assigned with that code were on Level 3 and 4. For
Level 3, many patients were spread on Level 2 and Level 4.

Out of all three models, Levels 1,3,4 and 5 had the lowest recall score using Random Forest Tree model. Also, the ROC-AUC scores
were lower than the previous ones depicted in Table 5. If we calculate the average on the recall metric, the result is the same as the
one from the other RFT classifier.

In the end, according to Logistic Regression measurements, there was a higher recall for Level 1 and Level 5 comparing the results
to the ones from Table 6. This time, a lot of patients were misclassified as high-risk (Level 1) patients. The ROC-AUC score was better
than the previous Logistic Regression model using imbalanced data, but the recall and precision were lower.

In Machine Learning, more data usually means better predictions, but in the previous tests, it is clear that the differences are
not that significant. Hence, we further check if we can get better predictions by augmenting the given dataset and we organize the
results in Table 7, Table 8, and Table 9, respectively.

4.3. ADASYN for imbalanced data

ADASYN (Adaptive Synthetic) is an improved sampling technique than SMOTE, by reducing the bias of skewed data and sampling
more data for the highly imbalanced classes that can be tough to learn by a model [35].

After we applied the ADASYN method to our imbalanced data, the number of samples was increased on each emergency level,
but there were some minor differences between them as described in Fig. 9. In SMOTE case, the number of samples was the same for
each class.

We evaluated all three models using that new dataset. The results were not far from the SMOTE experiment but slightly better.
Based on the results from Table 10, using the Logistic Regression model as in the case of SMOTE experiment, for Level 1 and Level

5 the emergency codes still had a high recall and a low precision, meaning the predictions were incorrect for this class.

Heliyon 9 (2023) e18402

12

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 9. ADASYN SAMPLING.

Table 10

LR- ADASYN - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.73 0.05 0.89 0.81

Level 2 0.49 0.60 0.86 0.68

Level 3 0.52 0.71 0.84 0.68

Level 4 0.53 0.62 0.90 0.72

Level 5 0.68 0.23 0.88 0.78

Table 11

NN Sequential - ADASYN - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.47 0.14 0.92 0.72

Level 2 0.66 0.64 0.84 0.75

Level 3 0.55 0.71 0.83 0.69

Level 4 0.58 0.62 0.89 0.74

Level 5 0.65 0.26 0.90 0.78

Table 12

RFT - ADASYN - measurements per classes.
Classes Recall Precision Specificity ROC-AUC

Level 1 0.25 0.27 0.99 0.62

Level 2 0.62 0.59 0.81 0.72

Level 3 0.61 0.62 0.73 0.67

Level 4 0.59 0.59 0.88 0.73

Level 5 0.31 0.41 0.97 0.64

In the case of the NN Sequential Model (see Table 11), there was an improved score of ROC-AUC, precision and recall for levels
2, 3, and 4. However, the specificity was lower.

After evaluating the Random Forest Tree model, we observe in Table 12 that ROC-AUC for levels 2, 3, and 4 was even lower,
meaning the model was not capable of distinguishing between classes correctly.

4.4. The simplified problem

In search of even better predictions, another approach is considered here. Instead of having a 5-level classification, we have
assumed a 3-level classification problem. We simplified the problem to the point where the model would predict only three emergency
situations by grouping Level 1 and Level 2 into one class called Critical, Level 3 standing to represent the Urgent class and grouping
again Level 4 and Level 5 as Non-urgent class. Basically, everything above Level 3 (higher levels) represents a critical situation which,

Heliyon 9 (2023) e18402

13

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 10. Simplified problem - models - confusion matrix.

indeed, has to have maximum priority, and what is below this level (lower levels) represents a non-urgent case. In this manner, the
classes were distributed naturally, following the organic meaning. The distribution of the new target features resulted as follows:
Critical - 30%, Urgent - 43%, Non-urgent - 27%.

For the interest of this study, we kept the previous three models and the metrics as well for experiments in order to see how
this perspective changes the algorithms’ performance. The corresponding confusion matrix is resumed in Fig. 10 for all models, and
Table 13 outlines the related measurements for the selected metrics.

Experiment 1 was an NN-Sequential approach providing that, for patients with an urgent emergency, the number of TP is 33158,
whereas 13711 were wrongly assigned to another class. The amount of FN is pretty high. Looking at the measurements presented
in Table 13, the recall of the Urgent class is slightly better than Critical one, but there is a lot of confusion between these two
classes. The Non-urgent class has the best recall, followed by the Urgent one, which is the majority class. Although the Critical

Heliyon 9 (2023) e18402

14

A. Vântu, A. Vasilescu and A. Băicoianu

Table 13

Simplified problem - measurements per classes.
Model Class Recall Precision Specificity ROC-AUC

NN-Sequential Critical 0.63 0.73 0.89 0.76

Urgent 0.70 0.66 0.73 0.72

Non-urgent 0.78 0.75 0.90 0.84

Random Forest Tree Critical 0.55 0.70 0.89 0.72

Urgent 0.75 0.58 0.61 0.67

Non-urgent 0.62 0.78 0.93 0.77

Logistic Regression Critical 0.29 0.21 0.51 0.40

Urgent 0.19 0.28 0.63 0.41

Non-urgent 0.76 0.73 0.69 0.83

class has the lowest recall, the precision is high. The ROC-AUC shows that the model is performing very well when predicting the
Non-urgent class. The model predicted 78% of patients to be assigned on the Non-urgent class with a precision of 75% and
predicted 90% as true negatives.

Experiment 2 applies the Random Forest Tree algorithm with the same number of estimators. In this case, the Urgent class has
a better TP value than the one generated by the NN-Sequential, but the values for the other two classes decreased. The recall is
higher for the Urgent class than the others, but the precision and specificity are low, even if the ROC-AUC shows the model is not
distinguishing very well this class in this case. The others have low recall but better results for the other metrics. We may conclude
that the Neural Network for the simplified problem has better scores overall.

The last one, Experiment 3, is again based on the Logistic Regression model. Its confusion matrix included in Fig. 10 indicates a
lot of FNs and TPs for the first two classes. Looking also at Table 13, this approach has the lowest scores, and it is performing poorly
compared to the other two algorithms. Even if the Non-urgent class has good scores here, the highest risk class, the Critical
one, for example, is more important and has the lowest scores.

Considering all of these measurements made using the given dataset with different distributions of classes shows that sometimes
a specific model is performing well and other times not. Analysing different measurements, the dataset should have more significant
examples so the models can better distinguish the defined classes Critical, Urgent and Non-urgent, which are easily confused.
Looking only at the recall score, the NN-Sequential algorithm performed best in all cases.

Emergency care is an important decision point in a hospital, and the solutions provided by Artificial Intelligence could solve many
challenges [4]. This is the reason there are papers in the literature that use different strategies or other Machine Learning algorithms
applied in emergency departments [36]. For example, the aim of paper [11] (KTAS) was to analyse different models on predicting
“Korean Triage and Acuity Scale [11]” levels. In that paper, Logistic Regression, Random Forest Tree and XGBoost algorithms were
evaluated both on clinical data and text data using NLP (Natural Language Processing). The authors also integrated NLP in [14]
(KATE) for achieving better prediction values, and in this particular study, only XGBoost algorithm was evaluated. Another approach
to the emergency room department is to predict the patient’s admission like researchers of this paper [21] (ED-Admission) did.

For the purpose of creating a context, the models used in this study are compared with the ones used in the papers mentioned
above. To have a diversity of techniques, the models trained on the simplified problems were used for this comparison, calculating
an average on each metric, with the claim that this study is notated as eUPU. For KTAS we chose the measurements evaluated on
all data as well for KATE (“pediatric and adult patients in the gold set [14]” were used in the latter case). The ED-Admission paper
studied a binary problem, and we chose the evaluation of the models on all data. The diversity of algorithms and metrics, as well as
scores, is represented in Table 14.

The classification performance and inferences of Machine Learning models could be improved by applying other methods and
approaches, such as information on hyper-parameter calibration to make models more extensible and different methods to identify
predictors that could affect the triage workflow. Modelling this problem is not the most complex and therefore, more powerful
models can be proposed for this study (e.g. XGBoost [11], [14]). Also, uncertainty handling methods would be of interest in this
particular case.

4.5. Memory and CPU usage

When dealing with Machine Learning algorithms, memory and CPU usage need to be evaluated. Although the accuracy of a model
requires the main focus, execution time and memory increment should be also considered and evaluated.

For this topic, we utilized specific Python commands that are built into IPyhton that runs on Jupyter Notebook. To evaluate the
CPU usage of fit and predict we used the command %%time, and to evaluate the memory usage, we used %%memit, which required
a specific package, memory_profiler.

According to Fig. 11 and Fig. 12, on one hand, Logistic Regression used on samples made by SMOTE technique had a significant
memory increment when fitting the training data. On the other hand, the NN-Sequential model required more CPU usage than the
others. In that particular case, the dataset resulting from ADASYN technique had the highest execution time. When the predict was
executed, models did not require as much memory and the execution time was fast.

Heliyon 9 (2023) e18402

15

A. Vântu, A. Vasilescu and A. Băicoianu

Table 14

Models and metrics comparison.
Study Model Metric Score

eUPU

NN-Sequential

ROC-AUC 0.76

Precsion 0.70

Recall 0.69

Specificity 0.84

Logistic Regression

ROC-AUC 0.54

Precision 0.65

Recall 0.41

Specificity 0.61

Random Forest Tree

ROC-AUC 0.72

Precision 0.68

Recall 0.64

Specificity 0.81

KTAS

Logistic Regression

Precision 0.71

Recall 0.70

F1-score 0.70

AUROC 0.90

Random forest

Precision 0.73

Recall 0.73

F1-score 0.70

AUROC 0.92

XGBoost

Precision 0.75

Recall 0.75

F1-score 0.74

AUROC 0.92

KATE XGBoost

AUC 0.84

F1-score 0.73

Sensitivity 0.69

Precision 0.80

ED-Admission

Logistic Regression

AUC 0.90

Sensitivity 0.80

Specificity 0.85

PPV 0.69

NPV 0.91

XGBoost

AUC 0.92

Sensitivity 0.83

Specificity 0.85

PPV 0.70

NPV 0.92

DNN

AUC 0.92

Sensitivity 0.82

Specificity 0.85

PPV 0.70

NPV 0.92

5. Interfacing by the web-based application

The challenging research for finding a Machine Learning model well performing in emergency department triage flow led us to
develop an interface between the model and the clinician as the end-user. A series of software resources have been selected for this
approach, successfully guided by the Python [17] ability to export the Machine Learning model as an API (Application Programming

Heliyon 9 (2023) e18402

16

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 11. Fitting data - Memory and CPU usage.

Interface) using Flask [37]. The end-user interface was built with React technology [38] for getting the predictions of the trained
model using the API provided by Flask, following the application architecture represented in Fig. 13.

The Machine Learning model was saved using the Python joblib package and imported as an instance in Flask app. We chose to
integrate the NN-Sequantial model trained on the simplified problem due to average scores described in Table 14. The same prepro-
cessing transformers described in Section 3 and Section 4 have been applied and after the appropriate dataset was preprocessed, the
imported classifier would make predictions. Both the simple data flow and the user-friendly interface facilitate the interaction with
clinicians, keeping the main focus on the performance of the used Machine Learning algorithm.

Making the ML-based application available and applicable to the various domains allows people with high expertise in those
domains, here medical care, to accept the IT tools for supporting a more reliable clinical decision.

6. Discussion and conclusions

This research study focuses on a Machine Learning approach to assign emergency codes to each patient after triage. We demon-
strated the potential of an automatic classification system using supervised models to enhance early medical diagnosis and facilitate
medical record processing. AI applications could significantly enhance the efficiency of the emergency triage process. Emergencies
need to be prioritized, so studying these models in real-time and evaluating the dynamic power of machine learning for classifying
which emergency code should a patient receive is entirely justified.

Both the Machine Learning algorithms and the medical domain turned out to be more challenging than expected. Medical data is
not easy to find, and it has to be customized by country, e.g. Romanian patient file differs from the one used in the USA. Therefore,
we also targeted to adjust the dataset to the Romanian medical care system. Also, we had to take care of missing data, and we were
surprised to see how imbalanced the classes were, but the aim was to study the dataset and see how it could be applied in this

Heliyon 9 (2023) e18402

17

A. Vântu, A. Vasilescu and A. Băicoianu

Fig. 12. Predicting data - Memory and CPU usage.

Fig. 13. Application Architecture.

environment. Eventually, we simplified the problem due to imbalanced data and kept the algorithm with the best results. After our
research, the experimental results demonstrated that the NN-Sequential algorithm performed better on the simplified problem.

Without any doubt, there are opportunities to improve this study, and there is further work to do, but for this, more data needs
to be collected. Besides this, good quality feedback from experts in that particular domain is needed, and this can be achieved by our
web application, where we use the best classifier as an API. The tool itself proves easy to use as an interface for patient overview and
early monitoring, and our findings indicate that clinicians were able to reliably use the tool. In the end, having impressive accuracy
in predicting emergency codes, a digital smart patient file could be created.

Ethics statement

We hereby confirm that our study complies with all regulations and we correspondingly cited as [21] the source of our dataset
with respect to the original source [20] that mentions: We provide the de-identified dataset and 𝑅 scripts for the paper “Predicting hospital
admission at emergency department triage using machine learning”. All processing scripts in the Scripts/𝑅/ subdirectory take as input .csv
files extracted from the enterprise data warehouse using 𝑆𝑄𝐿 queries. The analysis scripts in the main directory take as input the de-identified

Heliyon 9 (2023) e18402

18

A. Vântu, A. Vasilescu and A. Băicoianu

dataset provided in this repository. The working directory should be set to the main directory with the analysis scripts. All research using this
dataset should cite the original paper. “Hong WS, Haimovich AD, Taylor RA (2018) Predicting hospital admission at emergency department
triage using machine learning. PLoS ONE 13(7): e0201016.”.

CRediT authorship contribution statement

Andreea Vantu: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Con-
tributed reagents, materials, analysis tools or data; Wrote the paper.

Anca Vasilescu: Conceived and designed the experiments; Performed the experiments; Contributed reagents, materials, analysis
tools or data; Wrote the paper.

Alexandra Baicoianu: Conceived and designed the experiments; Analyzed and interpreted the data; Contributed reagents, mate-
rials, analysis tools or data; Wrote the paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data included in article/supp.material/referenced in article.

References

[1] E. Alpaydin, Introduction to Machine Learning, fourth edition, Adaptive Computation and Machine Learning Series, MIT Press, 2020.
[2] J. Alzubi, A. Nayyar, A. Kumar, Machine learning from theory to algorithms: an overview, in: Second National Conference on Computational Intelligence, NCCI

2018, 5 December 2018, Bangalore, India, J. Phys. Conf. Ser. 1142 (012012) (2018), https://doi .org /10 .1088 /1742 -6596 /1142 /1 /012012.
[3] P. Sharma, Z. Said, A. Kumar, S. Nizetic, A. Pandey, A. Hoang, Z. Huang, A. Afzal, C. Li, T. Le Anh, X.P. Nguyen, V. Tran, Recent advances in machine learning

research for nanofluid-based heat transfer in renewable energy system, Energy Fuels 36 (13) (2022) 6626–6658, https://doi .org /10 .1021 /acs .energyfuels .
2c01006.

[4] Kenneth Jian Wei Tang, Candice Ke En Ang, T. Constantinides, V. Rajinikanth, U. Rajendra Acharya, K.H. Cheong, Artificial intelligence and machine learning
in emergency medicine, Biocybern. Biomed. Eng. 41 (1) (2021) 156–172, https://doi .org /10 .1016 /j .bbe .2020 .12 .002.

[5] R. Sánchez-Salmerón, J.L. Gómez-Urquiza, L. Albendín-García, M. Correa-Rodríguez, M.B. Martos-Cabrera, A. Velando-Soriano, N. Suleiman-Martos, Machine
learning methods applied to triage in emergency services: a systematic review, Int. Emerg. Nurs. 60 (2022) 101109, https://doi .org /10 .1016 /j .ienj .2021 .101109.

[6] C.K. Wee, X. Zhou, R. Sun, R. Gururajan, X. Tao, Y. Li, N. Wee, Triaging medical referrals based on clinical prioritisation criteria using machine learning
techniques, Int. J. Environ. Res. Public Health 19 (12) (2022) 7384, https://doi .org /10 .3390 /ijerph19127384.

[7] G.D. Magoulas, A. Prentza, Machine learning in medical applications, in: G. Paliouras, V. Karkaletsis, C.D. Spyropoulos (Eds.), Machine Learning and Its
Applications, ACAI 1999, in: Lecture Notes in Computer Science, vol. 2049, Springer, Berlin, Heidelberg, 2001.

[8] M. Shehab, L. Abualigah, et al., Machine learning in medical applications: a review of state-of-the-art methods, Comput. Biol. Med. 145 (June 2022), https://
doi .org /10 .1016 /j .compbiomed .2022 .105458, 2022.

[9] A. Mujumdar, V. Vaidehi, Diabetes prediction using machine learning algorithms, Proc. Comput. Sci. 165 (1) (2019) 292–299, https://doi .org /10 .1016 /j .procs .
2020 .01 .047.

[10] S. Levin, M. Toerper, et al., Machine-learning-based electronic triage more accurately differentiates patients with respect to clinical outcomes compared with
the emergency severity index, Ann. Emerg. Med. 71 (5) (September 2017), https://doi .org /10 .1016 /j .annemergmed .2017 .08 .005, 2017.

[11] S.W. Choi, T. Ko, K.J. Hong, K.H. Kim, Machine learning-based prediction of Korean triage and acuity scale level in emergency department patients, J. Phys.
Conf. Ser. 25 (4) (2019) 305–312, https://doi .org /10 .4258 /hir .2019 .25 .4 .305.

[12] A. Vântu, Using technology to improve the emergency room triage, Bachelor Thesis supported by Siemens Romania SRL under the contract BCT
25101/10.04.2017, Transilvania University of Braşov, Romania, June 2018.

[13] A. Vântu, A. Vasilescu, e-UPU: using technology to improve the emergency room triage, in: Poster Session, 7th ACM Celebration of Women in Computing:
womENcourage 2020, ADA University, Baku, Azerbaijan, 24-27 September 2020, also Available Online, 2020.

[14] O. Ivanov, L. Wolf, D. Brecher, E. Lewis, K. Masek, K. Montgomery, Y. Andrieiev, M. McLaughlin, S. Liu, R. Dunne, K. Klauer, C. Reilly, Improving ED
emergency severity index acuity assignment using machine learning and clinical natural language processing, J. Emerg. Nurs. 47 (2) (2021) 265–278, https://
doi .org /10 .1016 /j .jen .2020 .11 .001.

[15] N. Gilboy, et al., Emergency Severity Index (ESI) - a Triage Tool for Emergency Department Care, Implementation Handbook, Version 4, ENA Emergency Nurses
Association, available online (2020).

[16] H. Harvey, How data scientists can convince doctors that AI works, available online.
[17] Python 3.9.1 documentation, https://docs .python .org /release /3 .9 .1/. (Accessed 26 August 2022).
[18] D.N. Lipe, S.S. Bourenane, M.K. Wattana, S. Gaeta, P. Chaftari, M.T. Cruz Carreras, J.-G. Manzano, C. Reyes-Gibby, A modified emergency severity index level

is associated with outcomes in cancer patients with COVID-19, Am. J. Emerg. Med. 54 (2022) 111–116, https://doi .org /10 .1016 /j .ajem .2022 .02 .002.
[19] M.H. Yarmohammadian, F. Rezaei, A. Haghshenas, N. Tavakoli, Overcrowding in emergency departments: a review of strategies to decrease future challenges,

J. Res. Med. Sci. 22 (2017) 23, https://doi .org /10 .4103 /1735 -1995 .200277.
[20] W.S. Hong, A.D. Haimovich, A.R. Taylor, Predicting hospital admission at emergency department triage using machine learning, https://github .com /yaleemmlc /

admissionprediction, dataset available from 6 Sep 2018.
[21] W.S. Hong, A.D. Haimovich, R.A. Taylor, Predicting hospital admission at emergency department triage using machine learning, PLoS ONE 07 (13) (2018) 1–13,

https://doi .org /10 .1371 /journal .pone .0201016.
[22] A. Géron, Hands on Machine Learning with Scikit-Learn, Keras, and TensorFlow, second edition, O’Reilly Media Inc., USA, 2019.
[23] scikit-learn Homepage, available online (Accessed 26 August 2022).
[24] E.C. Zabor, C.A. Reddy, R.D. Tendulkar, S. Patil, Logistic regression in clinical studies, Int. J. Radiat. Oncol. Biol. Phys. 112 (2) (2022) 271–277, https://

doi .org /10 .1016 /j .ijrobp .2021 .08 .007.

http://refhub.elsevier.com/S2405-8440(23)05610-4/bib6F9AF85D8C467EBAAF4D62EB07E9443Ds1
https://doi.org/10.1088/1742-6596/1142/1/012012
https://doi.org/10.1021/acs.energyfuels.2c01006
https://doi.org/10.1021/acs.energyfuels.2c01006
https://doi.org/10.1016/j.bbe.2020.12.002
https://doi.org/10.1016/j.ienj.2021.101109
https://doi.org/10.3390/ijerph19127384
http://refhub.elsevier.com/S2405-8440(23)05610-4/bib4A55A44FB4ECD336741CCBB20DC44636s1
http://refhub.elsevier.com/S2405-8440(23)05610-4/bib4A55A44FB4ECD336741CCBB20DC44636s1
https://doi.org/10.1016/j.compbiomed.2022.105458
https://doi.org/10.1016/j.compbiomed.2022.105458
https://doi.org/10.1016/j.procs.2020.01.047
https://doi.org/10.1016/j.procs.2020.01.047
https://doi.org/10.1016/j.annemergmed.2017.08.005
https://doi.org/10.4258/hir.2019.25.4.305
http://refhub.elsevier.com/S2405-8440(23)05610-4/bib9EA0CED81FBA04DE0EDF074E6577F9E5s1
http://refhub.elsevier.com/S2405-8440(23)05610-4/bib9EA0CED81FBA04DE0EDF074E6577F9E5s1
http://refhub.elsevier.com/S2405-8440(23)05610-4/bibEF609F2DB843DD27C6FFCC6C7E61D43Cs1
http://refhub.elsevier.com/S2405-8440(23)05610-4/bibEF609F2DB843DD27C6FFCC6C7E61D43Cs1
https://doi.org/10.1016/j.jen.2020.11.001
https://doi.org/10.1016/j.jen.2020.11.001
https://docs.python.org/release/3.9.1/
https://doi.org/10.1016/j.ajem.2022.02.002
https://doi.org/10.4103/1735-1995.200277
https://github.com/yaleemmlc/admissionprediction
https://github.com/yaleemmlc/admissionprediction
https://doi.org/10.1371/journal.pone.0201016
http://refhub.elsevier.com/S2405-8440(23)05610-4/bibA544131C50F1FC6483DCE7C40D75508Cs1
https://doi.org/10.1016/j.ijrobp.2021.08.007
https://doi.org/10.1016/j.ijrobp.2021.08.007

Heliyon 9 (2023) e18402

19

A. Vântu, A. Vasilescu and A. Băicoianu

[25] E. Boateng, D. Abaye, A review of the logistic regression model with emphasis on medical research, J. Data Anal. Inf. Process. 7 (2019) 190–207, https://
doi .org /10 .4236 /jdaip .2019 .74012.

[26] S. Dreiseitl, L. Ohno-Machado, Logistic regression and artificial neural network classification models: a methodology review, J. Biomed. Inform. 35 (5–6) (2002)
352–359, https://doi .org /10 .1016 /S1532 -0464(03)00034 -0.

[27] M. Fernandez-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds of classifiers to solve real world classification problems?, J. Mach. Learn. Res.
15 (2014) 3133–3181, https://dl .acm .org /doi /10 .5555 /2627435 .2697065.

[28] A. Lekhtman, Data Science in Medicine — Precision & Recall or Specificity & Sensitivity? Available online (Accessed 26 August 2022).
[29] D.G. Levy, In Machine Learning Predictions for Health Care the Confusion Matrix is a Matrix of Confusion, available online (Accessed 26 August 2022).
[30] B. Bowers, Triage to AI: a Machine Learning Approach to Hospital Admissions Classification, available online (Accessed 26 August 2022).
[31] S.E. Awan, M. Bennamoun, F. Sohel, F.M. Sanfilippo, G. Dwivedi, Machine learning-based prediction of heart failure readmission or death: implications of

choosing the right model and the right metrics, ESC Heart Fail. 6 (2) (2019) 428–435, https://doi .org /10 .1002 /ehf2 .12419.
[32] Understanding medical tests: sensitivity, specificity, and positive predictive value, available online (Accessed 16 January 2021).
[33] B. Krawczyk, Learning from imbalanced data: open challenges and future directions, Prog. Artif. Intell. 5 (4) (2016) 221–232, https://doi .org /10 .1007 /s13748 -

016 -0094 -0.
[34] A. Fernández, S. Garcia, F. Herrera, N.V. Chawla, SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary, J. Artif.

Intell. Res. 61 (1) (January 2018) 863–905, https://doi .org /10 .1613 /jair .1 .11192, 2018.
[35] H. He, Y. Bai, E.A. Garcia, S. Li, ADASYN: adaptive synthetic sampling approach for imbalanced learning, in: 2008 IEEE International Joint Conference on Neural

Networks (IEEE World Congress on Computational Intelligence), Hong Kong, 2008, pp. 1322–1328, https://doi .org /10 .1109 /IJCNN .2008 .4633969, 2008.
[36] B. Wang, W. Li, et al., Improving triaging from primary care into secondary care using heterogeneous data-driven hybrid machine learning, Decision Support

Systems 166, https://doi .org /10 .1016 /j .dss .2022 .113899, 2023.
[37] Flask’s documentation, https://flask .palletsprojects .com /en /2 .2 .x/. (Accessed 26 August 2022).
[38] React Getting Started, https://reactjs .org /docs /getting -started .html. (Accessed 26 August 2022).

https://doi.org/10.4236/jdaip.2019.74012
https://doi.org/10.4236/jdaip.2019.74012
https://doi.org/10.1016/S1532-0464(03)00034-0
https://dl.acm.org/doi/10.5555/2627435.2697065
https://doi.org/10.1002/ehf2.12419
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1007/s13748-016-0094-0
https://doi.org/10.1613/jair.1.11192
https://doi.org/10.1109/IJCNN.2008.4633969
https://doi.org/10.1016/j.dss.2022.113899
https://flask.palletsprojects.com/en/2.2.x/
https://reactjs.org/docs/getting-started.html

mathematics

Article

A Concretization of an Approximation Method for Non-Affine
Fractal Interpolation Functions

Alexandra Băicoianu 1, Cristina Maria Păcurar 1 and Marius Păun 2,*

����������
�������

Citation: Băicoianu, A.; Păcurar,

C.M.; Păun, M. A Concretization of

an Approximation Method for

Non-Affine Fractal Interpolation

Functions. Mathematics 2021, 9, 767.

https://doi.org/10.3390/math9070767

Received: 10 March 2021

Accepted: 28 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Computer Science, Faculty of Mathematics and Computer Science,
Transilvania University of Braşov 50, Iuliu Maniu Str., 500090 Braşov, Romania; a.baicoianu@unitbv.ro (A.B.);
cristina.pacurar@unitbv.ro (C.M.P.)

2 Department of Forest Engineering, Forest Management Planing and Terrestrial Measurements,
Faculty of Silviculture and Forest Engineering, Transilvania University of Braşov, 1 Şirul Beethoven,
500123 Braşov, Romania

* Correspondence: m.paun@unitbv.ro

Abstract: The present paper concretizes the models proposed by S. Ri and N. Secelean. S. Ri proposed
the construction of the fractal interpolation function (FIF) considering finite systems consisting
of Rakotch contractions, but produced no concretization of the model. N. Secelean considered
countable systems of Banach contractions to produce the fractal interpolation function. Based on the
abovementioned results, in this paper, we propose two different algorithms to produce the fractal
interpolation functions both in the affine and non-affine cases. The theoretical context we were
working in suppose a countable set of starting points and a countable system of Rakotch contractions.
Due to the computational restrictions, the algorithms constructed in the applications have the
weakness that they use a finite set of starting points and a finite system of Rakotch contractions. In
this respect, the attractor obtained is a two-step approximation. The large number of points used in
the computations and the graphical results lead us to the conclusion that the attractor obtained is a
good approximation of the fractal interpolation function in both cases, affine and non-affine FIFs. In
this way, we also provide a concretization of the scheme presented by C.M. Păcurar.

Keywords: fractal interpolation function; non-affine FIFs; countable affine probabilistic scheme;
countable affine deterministic scheme; countable non-linear probabilistic scheme; countable deter-
ministic non-linear scheme

MSC: Primary 28A80; 41A05; Secondary 26A18; 37C25; 37C70

1. Introduction

The notion of fractal interpolation has been introduced by Barnesley in [1] (see also [2])
and it represents a different interpolation method, which results in functions that are
continuous, but not necessarily differentiable at every point. The fractal interpolation
function (FIF) is a continuous function with real values, which interpolates a given set
of data

{(xi, yi) ∈ [x0, xN]×R, i = {0, . . . , N − 1}}

(i.e., f (xi) = yi for all i ∈ {0, . . . , N − 1}), where xi are sorted in an ascending order such
that its graph is the attractor of an iterated function system.

The significance of FIFs is emphasized by the numerous research directions that have
been broadly studied ever since they were introduced. Among these directions, we mention
the hidden variable fractal interpolation, which was introduced by Barnsley et al. (see [3])
and generates functions which are not self-referential; thus, being much more less restrictive
(see [4–6]), the extension to a countable iterated function systems (a notion introduced
in [7–9]) to obtain the corresponding FIFs (see [10,11]) and the replacement of the fixed

Mathematics 2021, 9, 767. https://doi.org/10.3390/math9070767 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2195-8694
https://doi.org/10.3390/math9070767
https://doi.org/10.3390/math9070767
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9070767
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/7/767?type=check_update&version=2

Mathematics 2021, 9, 767 2 of 12

point result (Banach fixed point theorem), which guarantees the existence of the FIF with
different fixed point results (see [12–15]).

Among the different types of FIFs existing in the literature, there were studied affine
FIFs (see [1]), but also non-affine FIFs (see [16]). However, if for the affine case, there have
been studies undertaken towards the computational part (see [17–21]), as far as we know,
there have not yet been any studies related to non-affine FIFs in this respect.

The aim of the present paper is to offer a concretization of an approximation method
for non-affine fractal interpolation functions. Starting from the results in [8,12], in this
paper, we propose two different algorithms to produce the fractal interpolation functions in
both cases affine and non-affine FIFs. The theoretical context we were working in, suppose
a countable set of starting points and a countable system of Rakotch contractions. Due
to the computational restrictions the built algorithms, in applications, have the weakness
that they uses a finite set of starting points and a finite system of Rakotch contractions.
With this respect, the attractor obtained is a two-step approximation. The big amount of
points used in the computations and the graphical results lead us to the conclusion that
the attractor obtained is a good approximation of the fractal interpolation function in both
affine and non-affine cases. In this way, we also provide a concretization of the scheme
presented by C.M. Păcurar (see [15]).

In this study, we want to solve also the problem of viewing a big set of data, generated
by the iterations schemes mentioned above, in order to better understand the theoretical
knowledge in the function plotting field. We study the nature of data plotting in C++
regarding its pros and cons (limitations). The scope of the application is to generate graphs
for various functions and to observe the steps taken by the algorithm in order to obtain the
correct plotting. Using C++ (one of the fastest and most memory efficient languages) and
Qt (a C++ cross-platform framework for GUI - Graphical User Interface), we developed
an application that puts into use most of the modern features offered by C++ (especially,
C++11 issues).

2. Mathematical Preliminaries

Let (X, d) be a metric space.

Definition 1. The map f : X → X is called a Picard operator if f has a unique fixed point x∗ ∈ X
(i.e., f (x∗) = x∗) and

lim
n→∞

f [n](x) = x∗,

for every x ∈ X, where f [n] denotes the n-times composition of f with itself.

Definition 2. 1. A map f : X → X is called Lipschitz if there exists a real non-negative C
such that

d(f (x), f (y)) ≤ Cd(x, y),

for every x, y ∈ X. The smallest C in the above definition is called Lipschitz constant and it is
defined as

lip(f) = sup
x 6=y

d(f (x), f (y))
d(x, y)

2. A map f : X → X is called Banach contraction if there exists C ∈ (0, 1) such that

d(f (x), f (y)) ≤ Cd(x, y),

for every x, y ∈ X.
3. A map f : X → X is called ϕ-contraction if there exists a function ϕ : [0, ∞)→ [0, ∞) such

that
d(f (x), f (y)) ≤ ϕ(d(x, y)),

for every x, y ∈ X.

Mathematics 2021, 9, 767 3 of 12

4. A map f : X → X is called Matkowski contraction if it is a ϕ-contraction where ϕ : [0, ∞)→
[0, ∞) is non-decreasing and lim

n→∞
ϕ[n](t) = 0 for all t > 0.

5. A map f : X → X is called Rakotch contraction if it is a ϕ-contraction where ϕ : [0, ∞)→
[0, ∞) is such that the function t→ ϕ(t)

t is non-increasing for every t > 0 and ϕ(t)
t < 1 for

every t ∈ (0, ∞).

Remark 1. 1. Every Banach contraction is Lipschitz where the Lipschitz constant is smaller
than 1.

2. Every Banach contraction is a ϕ-contraction, for

ϕ(t) = C · t,

for every t > 0.
3. Every Rakotch contraction is a Matkowski contraction.

In [22], the following fixed point result was proved.

Theorem 1. Every Matkowski contraction on a complete metric space is a Picard operator.

2.1. Iterated Function Systems

Hutchinson introduced the notion of iterated function systems in [23]. Secelean
extended the notion to countable iterated function systems, composed of a countable
number of constitutive functions (see [8]).

Definition 3. Let (X, d) be a compact metric space and the continuous functions fn : X → X.
The system of all functions fn is called a countable iterated function system (CIFS), which will be
denoted by S = {(fn)n≥0}

Let Pcp(X) be the class of all non-empty compact subsets of X.
The fractal operator associated to S is the map FS : Pcp(X)→ Pcp(X) defined as

FS (K) =
⋃

n≥1

fn(K)

for every K ∈ Pcp(X).
If the functions fn are Matkowski contractions (or Rakotch contractions, or

ϕ-contractions, or Banach contractions), the fractal operator associated to the CIFS S
is a Picard operator and its unique fixed point is called the attractor of S , which will be
denoted by AS .

2.2. Countable FIFs

Let (Y, d) be a compact metric space and the countable system of data

{(xn, yn) ∈ [x0, m]×Y, n ≥ 0}, (1)

where the sequence (xn)n≥0 is strictly increasing and bounded and m = lim
n→∞

xn, and the

sequence (yn)n≥0 is convergent. We make the notation M = lim
n→∞

yn.

Definition 4. An interpolation function for the system of data (1) is a continuous function
f : [x0, m]→ Y such that f (m) = M and f (xn) = yn for all n ≥ 0.

Let us recall from [15], the way we can construct a family of functions associated to
the system of data (1):

Let ln : [x0, m]→ [xn, xn+1] be a family of contractive homeomorphisms such that

Mathematics 2021, 9, 767 4 of 12

(i) there exists Cn ∈ [0, 1) such that

|ln(x)− ln(x′)| ≤ Cn|x− x′|

for every x, x′ ∈ [x0, m];
(ii)

ln(x0) = xn−1 and ln(m) = xn;

(iii)
sup
n≥1

Cn < 1.

By diam(A) we denote the diameter of A.
Let Fn : [x0, m]×Y → Y be continuous functions such that

(j)
Fn(x0, y0) = yn−1 and Fn(m, M) = yn;

(jj) lim
n→∞

diam(Im Fn) = 0.

We can now define the family of functions (fn)n≥0

fn : [x0, m]×Y → [x0, m]×Y

associated to the system of data (1) as

fn(x, y) = (ln(x), Fn(x, y)),

for every x ∈ [x0, m] and y ∈ Y.
Let

F ([x0, m]) = { f : [x0, m]→ Y| f (x0) = y0, f (m) = M, f - continuous}

endowed with the uniform metric dF ([x0,m]).

Remark 2. (see Theorems 3.2 and 3.3 from [15])

1. If the functions Fn are Lipschitz with respect to the first variable and Rakotch contractions
with respect to the second variable, then the functions fn are Rakotch contractions with respect
to dθ , where

dθ((x, y), (x′, y′)) := |x− x′|+ θd(y, y′)

for all (x, y), (x′, y′) ∈ [x0, m]×Y, where θ =
1−sup

n≥1
Cn

2(C+1) ∈ (0, 1).

2. Given the same aforementioned framework, there exists an interpolation function f∗ cor-
responding to the system of data (1) such that its graph is the attractor of the CIFS
S = (([x0, m]×Y, dθ), (fn)n≥1).

In the particular case that Y is a compact real interval, Y ⊂ (0, ∞), we can choose the
non-affine functions fn as follows (see [15]):

fn(x, y) =
(

xn − xn−1

m− x0
x +

mxn−1 − x0xn

m− x0
,(

yn − yn−1

m− x0
− 1

m− x0

(
M

1 + nM
− m

1 + nm

))
x +

y
1 + ny

+yn−1 − x0
yn − yn−1

m− x0
+

x0

m− x0

M
1 + nM

− m
m− x0

m
1 + nm

)
.

Mathematics 2021, 9, 767 5 of 12

For the affine case, when Y is a compact real interval, one can choose the functions fn
as follows (see [10]):

fn(x, y) =
(

xn − xn−1

b− a
x +

bxn−1 − axn

b− a
,(

yn − yn−1

b− a
− dn

M−m
b− a

)
x + dny +

byn−1 − ayn

b− a
− dn

bm− aM
b− a

)
.

3. Computational Background
3.1. Applied Technologies. Motivation (Pros)

Qt is a widget toolkit for creating graphical user interfaces as well as cross-platform
applications that run on various software and hardware platforms such as Linux, Windows,
macOS, Android or embedded systems with little or no change in the underlying codebase,
while still being a native application with native capabilities and speed. Qt Creator is
a cross-platform C++, JavaScript and QML integrated development environment which
simplifies Graphical User Interface (GUI) application development. It includes a visual
debugger and an integrated WYSIWYG (What You See Is What You Get) GUI layout and
forms the designer. The editor has features such as syntax highlighting and autocompletion.

One of the main problems encountered during development was using user-input
flexible functions, that is why we prioritised adding a fairly robust mathematics parsing
engine written in C++. We chose CmathParser (https://github.com/NTDLS/CMathParser,
accessed on 15 February 2021) that provides a robust collection of functions and structures
that give users the ability to parse and evaluate various types of expressions. Although it is
fairly lightweight, CMathParser can interpret a various list of mathematical functions and
operations and its performance is convenient in relation to the advantages that this engine
brings. The mathematical functions used need to follow a specific syntax (for example,

√
x

is SQRT(x)), this is why we found it useful to read our functions from a file. We opted for
reading from an XML (Extended Markup Language) file because we can use the tags in
our advantage and clearly define every function and every parameter for that function.

Below, Listing 1, is an example for an XML file accepted by the application:

Listing 1: Example for an XML file.
1 <?xml version=" 1 . 0 " ?>
2

3 <funct ion>
4 <Xn>SQRT(n) /(1+SQRT(n)) </Xn>
5 <Yn>SIN (n) /SQRT(1+n) </Yn>
6 <FnX> (((XN) −(XN−1)) *X+b * (XN−1)−a * (XN)) /(b−a) </FnX>
7 <FnY> ((YN) −(YN−1) −(DN) * ((M) −m)) *X/(b−a) +(DN) *Y+(b * (YN−1)−a * (YN) −(DN) * (b *m−a * (

M))) /(b−a) </FnY>
8 <a>0
9 1

10 <m>0</m>
11 <M>0</M>
12 <dn> 0 . 4 </dn>
13 </funct ion>

QcustomPlot (https://www.qcustomplot.com/, accessed on 15 February 2021) is a
Qt C++ widget for plotting and data visualization. It has no further dependencies and
is well documented. This plotting library focuses on making good looking, publication-
quality 2D plots, graphs and charts, as well as offering high performance for real time
data visualization applications.

3.2. Technical Notes on Performance

Our target regarding the application’s performance focused around optimising the
algorithm in a way that it brings up the graphs as soon as possible. To increase the
performance, we used multithreading: we use all the available threads on the CPU and
developed the algorithm in a way that favors concurrency. The algorithm finds out how

https://github.com/NTDLS/CMathParser
https://www.qcustomplot.com/

Mathematics 2021, 9, 767 6 of 12

many threads are available and uses them (for a CPU with 4 threads, the algorithm will
use a maximum of 4 threads on max load) although it is possible to start any number of
threads (the OS scheduler will put them in a priority queue). A program that starts 100
threads for 100 tasks on a 4 threaded CPU will be less performant than the same program
that splits those 100 tasks in a way that the CPU takes 4 tasks at a time.

This, Listing 2, is a threading code snippet that spawns as many threads as available
to generate points:

Listing 2: Multithreading.
1 i n t numberThread ;
2

3 i f (s td : : thread : : hardware_concurrency () > 0)
4 numberThread = std : : thread : : hardware_concurrency () ;
5 e lse
6 numberThread = 4 ;
7

8 auto spawnThreads = [&] ()
9 {

10 std : : vector <std : : thread > threads ;
11 for (i n t index = 1 ; index < numberThread ; index ++)
12 {
13 threads . push_back (std : : thread (generate , 0 , numberPoint / numberThread ,
14 " . . / / . / / QtExample\\Step1\\ f i l e " + std : : t o _ s t r i n g (index) + " . t x t ")) ;
15 }
16 threads . push_back (std : : thread (generate , 0 , numberPoint − numberPoint /

↪→ numberThread *
17 (numberThread − 1) , " . . / / . / / QtExample\\Step1\\ f i l e

" + std : : t o _ s t r i n g (numberThread) + " . t x t ")) ;
18

19 for (auto& th : threads)
20 {
21 th . j o i n () ;
22 }
23 } ;

The number of used threads impacts performance, and overall, the quality and
time; see Figure 1. It can also be seen that as the number of points increases, the dif-
ference between the time associated with running with 8 threads versus 16 threads
increases considerably.

Figure 1. Threads impact on performance.

3.3. Limitations (Constraints)

At the present time, the only known limit of the application is the time required to
generate and plot the points when they are billions or even more in number. The next
examples were run on a i7-7700HQ with 8 threads. RAM memory is not really relevant
because the algorithm is very CPU heavy.

Mathematics 2021, 9, 767 7 of 12

For the probabilistic scheme, generating and plotting 100,000 points are made in
approximately 2–3 s, and for every p ∗ 100,000 (p is a signed integer), the time will be
approximately p ∗ x, where x ∈ [2, 3].

For the deterministic scheme, things become challenging. At a low level, the time
for generating and plotting points will be the same as for Step 1. The difference occurs
in the number of points the scheme generates for parameters k, n, p. leading to run time
fluctuations and may occur due to the insertion and processing of points in the files.

4. Main Results
4.1. Countable Fractal Non-Affine Interpolation Schemes

We start the study producing an approximation for the fractal countable non-affine
interpolation scheme in two different ways. Let us consider the positive, increasing, con-
vergent sequence (xn)n∈N, the convergent sequence (yn)n∈N defined by (xn)n∈N, (yn)n∈N
given by the following:

xn =
3
√

n + 1√
n + 1

, yn =

∣∣∣∣sin
(

180 · n
π

)∣∣∣∣+ 1
√

n + 1

and the sequence of non-affine functions given by the following:

fn(x, y) =
(

xn − xn−1

m− x0
x +

mxn−1 − x0xn

m− x0
,(

yn − yn−1

m− x0
− 1

m− x0

(
M

1 + nM
− m

1 + nm

))
x +

y
1 + ny

+yn−1 − x0
yn − yn−1

m− x0
+

x0

m− x0

M
1 + nM

− m
m− x0

m
1 + nm

)
.

for all (x, y) ∈ [x0, m]× Y . The argument of the function sinus we used when defining
yn was imposed by the fact that the Mathematical Function Library demands us to work
in radians.

The absolute value of sinus in the definition of yn was imposeed by the fact that every
second coordinate of the points obtained in the process must be positive in order to have a
Rakotch contraction. The result obtained is an approximation of the countable non-affine
interpolation schemes. For the desired approximation, we take the following subsets

XP = {xn | n ≤ 100}, YP = {yn | n ≤ 100}, FP = { fn | n ≤ 100}

The two schemes we used are the probabilistic interpolation scheme and the deter-
ministic interpolation scheme. The probabilistic scheme is described in Algorithm 1.

The deterministic scheme we are triyng to apply is given by the Algorithm 2.
The probabilistic scheme (Algorithm 1), after 100,000 steps, leads us to the result

shown in Figure 2.

Mathematics 2021, 9, 767 8 of 12

Algorithm 1: The Probabilistic scheme.

1. Consider an empty set of points P ∈ R2 and p a signifiant big signed
positive integer.

2. Generate an arbitrary point (xa, ya) ∈ [0, 1]× [0, 1].
3. Determine P ⋃ {(xa, ya)}.
4. Generate a random signed integer 0 < k ≤ 100.
5. Compute (xa, ya) = fk(xa, ya).
6. Repeat steps 3, 4, 5 p times
7. Sort the elements of the set P in ascending order regarding the first component of

the elements.
8. Plot the function passing through all the points of the set P .

Algorithm 2: The Deterministic Scheme.
1. Consider k the number of the initial points, n the number of functions involved,

p the number of steps and define an empty set of points P ∈ R2.
2. Generate randomly a set K0 of k points in [0, 1]× [0, 1].
3. Determine P ⋃

K0.
4. Compute P = f1(P)

⋃
f2(P)

⋃
..
⋃

fn(P)
5. Repeat step 4 for p times
6. Sort the elements of the set P in ascending order regarding the first component

of the elements.
7. Plot the function passing through all the points of the set P .

Figure 2. Non-affine probabilistic interpolation scheme (approximation with 100,000 points).

The time spent to generate the points of the scheme was 1.039 s and the plotting time
1.3 s.

Using Algorithm 2, in the initial conditions of the probabilistic scheme, for the deter-
ministic scheme taking k = 100, n = 100 and p = 3, we obtain the graph given in Figure 3.
The scheme generated 100,000,000 points and the total duration of computing and plotting
was 1474.477 s.

Mathematics 2021, 9, 767 9 of 12

Figure 3. Non-affine deterministic interpolation scheme (approximation with 100,000,000 points).

In Figure 4, a graph with the plotting of the interpolation function in every step of the
algorithm is shown.

Figure 4. Non-affine deterministic interpolation scheme (approximation with 100,000,000 points),
plotting the graph of every step in the algorithm.

4.2. Countable Fractal Affine Interpolation Schemes

We made the study producing an approximation for the fractal countable affine
interpolation scheme in the same two ways as for the non-affine case. Let us consider
the positive, increasing, convergent sequence (xn)n∈N, the convergent sequence (yn)n∈N
defined by

xn =
3
√

n + 1√
n + 1

, yn =

cos
(

180 · n
π

)
+ 1

√
n + 1

and the affine sequence of functions (fn(x, y))n∈N

Mathematics 2021, 9, 767 10 of 12

fn(x, y) =
(

xn − xn−1

b− a
x +

bxn−1 − axn

b− a
,(

yn − yn−1

b− a
− dn

M−m
b− a

)
x + dny +

byn−1 − ayn

b− a
− dn

bm− aM
b− a

)
.

for all (x, y) ∈ [x0, m]×Y . The argument of the function cosinus we used when defining
yn was imposed by the fact that the Mathematical Function Library demands us to work
in radians.

For the desired approximation, we take the following subsets

XP = {xn | n ≤ 100}, YP = {yn | n ≤ 100}, FP = { fn | n ≤ 100}

The probabilistic scheme (Algorithm 1), after 100,000 steps, leads us to the result
shown in Figure 5.

The deterministic scheme produces, for k = 100 , n = 100 and p = 3, the graph in
Figure 6.

The time for obtaining the points in these conditions was 595.631 s and the time for
plotting the function was 1594.470 s. The graph with the plotting of the interpolation
function in every step of the algorithm is given in Figure 7.

The red graph is for the function given by the random generated 100 points. Graph 2
is the function for 10,000 thousand points (step for p = 1), graph 3 is for the function after
step p = 2 (1,000,000 points) and the yellow graph is the final one—the same as in Figure 7.

Figure 5. Affine probabilistic interpolation scheme (approximation with 100,000 points).

Mathematics 2021, 9, 767 11 of 12

Figure 6. Affine deterministic interpolation scheme (approximation with 100,000,000 points).

Figure 7. Affine deterministic interpolation scheme (approximation with 100,000,000 points, step
by step).

5. Conclusions

The main conclusion of this study is that the algorithms presented give similar approx-
imations of the FIFs for both schemes, affine and non-affine. For the probabilistic scheme
(Algorithm 1), significant results are obtained for more than 10,000 steps and the time
elapsed to plot the graph is less than two seconds. The deterministic scheme (Algorithm 2)
permits the study of the variation of FIFs, step by step, but, in order to obtain significant
results one must perform more than three steps. The time elapsed in this case is more than
1000 s. In the applications presented, both algorithms have an imposed number of steps.

Further studies are to be made in order to obtain a condition for stopping the algo-
rithms if some conditions are fulfilled .

Besides the two algorithms, the computer application is a useful tool for plotting big
sets of data generated by the iteration schemes described above through functions made in
C++. It truly shows the capabilities of this programming language and it pushes it to the
maximum using threading and modern programming techniques.

Author Contributions: Conceptualization: M.P.; introduction and preliminaries: C.M.P. and M.P.;
methodology: M.P. and A.B.; visualization: A.B.; original draft preparation: M.P.; C.M.P. and A.B.;
review, editing, validation, and formal analysis: M.P., C.M.P. and A.B. All authors have read and
agreed to the published version of the manuscript.

Mathematics 2021, 9, 767 12 of 12

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors want to express their gratitude for the reviewers. Their observations
were very useful to improve the scientific value of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [CrossRef]
2. Barnsley, M. Fractals Everywhere; Academic Press: New York, NY, USA, 1988.
3. Barnsley, M.F.; Elton, J.; Hardin, D.; Massopust, P. Hidden variable fractal interpolation functions. SIAM J. Math. Anal. 1989, 20,

1218–1242. [CrossRef]
4. Mazel, D.S.; Hayes, M.H. Hidden-variable fractal interpolation of discrete sequences. In ICASSP 91: 1991 International Conference

on Acoustics, Speech, and Signal Processing; IEEE Computer Society: Toronto, ON, Canada, 1991.
5. Chand, A.K.B.; Kapoor, G.P. Hidden variable bivariate fractal interpolation surfaces. Fractals 2003, 11, 277–288. [CrossRef]
6. Bouboulis, P.; Dalla, L. Hidden variable vector valued fractal interpolation functions. Fractals 2005, 13, 227–232. [CrossRef]
7. Fernau, H. Infinite iterated function systems. Math. Nachrichten 1994, 170, 79–91. [CrossRef]
8. Secelean, N. Countable Iterated Fuction Systems. Far East J. Dym. Syst. 2001, 3, 149–167.
9. Secelean, N. Countable Iterated Function Systems; LAP Lambert Academic Publishing: Saarbrueken, Germany, 2013.
10. Secelean, N. The fractal interpolation for countable systems of data. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2003, 14, 11–19.

[CrossRef]
11. Secelean, N. Fractal countable interpolation scheme: Existence and affine invariance. Math. Rep. (Bucur.) 2011, 13, 75–87.
12. Ri, S. A new idea to construct the fractal interpolation function. Indag. Math. 2018, 29, 962–971. [CrossRef]
13. Kim, J.; Kim, H.; Mun, H. Nonlinear fractal interpolation curves with function vertical scaling factors. Indian J. Pure Appl. Math.

2020, 51, 483–499. [CrossRef]
14. Ri, S.; Drakopoulos, V. How Are Fractal Interpolation Functions Related to Several Contractions? In Mathematical Theorems—

Boundary Value Problems and Approximations; Alexeyeva, L., Ed.; IntechOpen: London, UK, 2020.
15. Pacurar, C.M. A countable fractal interpolation scheme involving Rakotch contractions. arXiv 2021, arXiv:2102.09855.
16. Dalla, L.; Drakopoulos, V.; Prodromou, M. On the box dimension for a class of non-affine fractal interpolation functions. Anal.

Theory Appl. 2003, 19, 220–233. [CrossRef]
17. de Amo, E.; Chiţescu, I.; Diaz Carrillo, M.; Secelean, N.A. A new approximation procedure for fractals. J. Comput. Appl. 2003, 151,

355–370. [CrossRef]
18. Dubuc, S.; Elqortobi, A. Approximations of fractal sets. J. Comput. Appl. Math. 1990, 29, 79–89. [CrossRef]
19. Chiţescu, I.; Miculescu, R. Approximation of fractals generated by Fredholm integral equations. J. Comput. Anal. Appl. 2009, 11,

286–293.
20. Chiţescu, I.; Georgescu, H.; Miculescu, R. Approximation of infinite dimensional fractals generated by integral equations. J.

Comput. Appl. Math. 2010, 234, 1417–1425. [CrossRef]
21. Miculescu, R.; Mihail, A.; Urziceanu, S.-A. A new algorithm that generates the image of the attractor of a generalized iterated

function system. Numer. Algorithms 2020, 83, 1399–1413. [CrossRef]
22. Matkowski, J. Integrable solutions of functional equations. Dissertationes Math. 1975, 127, 68.
23. Hutchinson, J. Fractals and self similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [CrossRef]

http://doi.org/10.1007/BF01893434
http://dx.doi.org/10.1137/0520080
http://dx.doi.org/10.1142/S0218348X03002129
http://dx.doi.org/10.1142/S0218348X05002854
http://dx.doi.org/10.1002/mana.19941700107
http://dx.doi.org/10.2298/PETF0314011S
http://dx.doi.org/10.1016/j.indag.2018.03.001
http://dx.doi.org/10.1007/s13226-020-0412-x
http://dx.doi.org/10.1007/BF02835281
http://dx.doi.org/10.1016/S0377-0427(02)00752-5
http://dx.doi.org/10.1016/0377-0427(90)90197-8
http://dx.doi.org/10.1016/j.cam.2010.02.017
http://dx.doi.org/10.1007/s11075-019-00730-w
http://dx.doi.org/10.1512/iumj.1981.30.30055

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Learning about Growing Neural Cellular
Automata
SORANA CATRINA2, MIRELA CATRINA2, ALEXANDRA BĂICOIANU1, IOANA CRISTINA
PLAJER1
1Department of Mathematics and Computer Science, Transilvania University of Brasov, Romania (e-mail: a.baicoianu@unitbv.ro)
2Faculty of Mathematics and Computer Science, Transilvania University of Brasov)

Corresponding author: Alexandra Băicoianu (e-mail: a.baicoianu@unitbv.ro).

ABSTRACT Neural cellular automata have been proven effective in simulating morphogenetic processes.
Developing such automata has been applied in 2D and 3D processes related to creating and regenerating
complex structures and enabling their behaviors. However, neural cellular automata are inherently uncon-
trollable after the training process. Starting from a neural cellular automaton trained to generate a given
shape from one living cell, this paper aims to gain insight into the behavior of the automaton, and to
analyze the influence of the different image characteristics on the training and stabilization process and
its shortcomings in different scenarios. For each considered shape, the automaton is trained on one RGB
image of size 72 × 72 pixels containing the shape on an uniform white background, in which each pixel
represents a cell. The evolution of the automaton starts from one living cell, employing a shallow neural
network for the update rule, followed by backpropagation after a variable number of evolutionary steps. We
studied the behavior of the automaton and the way in which different components like symmetry, orientation
and colours of the shape influence its growth and alteration after a number of epochs and discussed this
thoroughly in the experimental section of the paper. We further discuss a pooling strategy, used to stabilize
the model and illustrate the influence of this pooling on the training process. The benefits of this strategy are
compared to the original model and the behavior of the automaton during its evolution is studied in detail.
Finally, we compare the results of models using different filters in the first stage of feature selection.
The main results of our study are the insights gained into how the neural cellular automaton works, what it
is actually learning, and what influence this learning, as there are observable result differences depending
on the characteristics of the input images and the filters used in the model.

INDEX TERMS Neural cellular automaton, cell state, pooling strategy, stabilizing strategy, image
characteristics

I. INTRODUCTION AND BACKGROUND

W ITHIN the domain of computational models, the in-
tersection of regenerating models and cellular au-

tomata presents a compelling perspective on adaptive sys-
tems and emergent behaviors. Regenerating models within
machine learning are designed to continuously evolve and
enhance their performance over time, dynamically adjusting
to fluctuations in data distributions. Simultaneously, cellular
automata, a category of discrete dynamical systems, manifest
self-regeneration through iterative update rules governing the
states of individual cells. This convergence of concepts opens
avenues for investigating the adaptability of computational
models inspired by the inherent regenerative characteristics
observed in cellular automata. A deeper exploration into the

parallel principles of evolution in both domains promises
valuable insights into the potential synergy between regener-
ating models and the self-organizing dynamics exhibited by
cellular automata.

Cells are the basic building blocks of all living entities.
Any multi-cellular organism evolves from one singular cell
that knows how to divide, when to divide, and holds all
useful information necessary for the organisms’ growth and,
sometimes, regeneration. Cells group and regroup, decide
what tissue or organ to form and when to stop the growing
process. All these complex behaviors are being built on
cells that only know their own information and that of their
neighbours.

Cellular automata have been developed to simulate cell
behavior and to emulate some of the properties of real-world

VOLUME 4, 2016 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

organisms, like local behavior, parallelism, or self-replication
[1]. One of their strengths is the capacity of modeling com-
plex systems by simple local update rules, especially when
combined with learning automata [2]. A cellular automaton is
a dynamic system consisting of a grid of cells. Each cell holds
useful information and a state that updates each time unit.
This update is based on a predefined rule: given the current
state, st and the neighboring cells states, this rule will output
st+1 [3], [4]. There are multiple types of cellular automata,
varying in complexity and purpose. However, for this paper,
we will separate them into two categories: regular cellular
automata and neural cellular automata (NCA), based on how
the update rule is defined manually or neural network-based
[2], [5].

An elementary cellular automaton’s cells have two possi-
ble states referred to as dead/alive, 0/1, white/black, etc. The
first type of cellular automaton that has been studied was the
one-dimensional elementary cellular automaton (ECA) [6].
The evolution in tn discrete time units of such an automaton
can be displayed as a grid, where the top row represents the
cells’ states at the start time (t0) and each i-th row represents
the states of the cells at the given time ti. For these ECA a
cell’s state update is based on three values: its current state,
the state of the cell on the left and the state of the cell on
the right. This leads to a total of 28 possible rules, defined as
f : {0, 1}3 → {0, 1},

state(ci,t+1) = f(state(ci−1,t), state(ci,t), state(ci+1,t))).

Despite their seemingly straightforward rules, multiple
studies have been conducted in order to analyze and cate-
gorize their behaviors and use-cases [7], [8].

As time progressed, an interest in cellular automata and
their applications grew. This led to the development of bidi-
mensional cellular automata - automata displayed as a grid
where each cell’s update rule is based on the state of its
neighboring cells, the difference consisting of the type of
neighbourhood chosen. The most common neighborhoods to
be considered are Moore Neighbourhood (8 neighbors), and
Von Neumann Neighbourhood (4 neighbors) [1], even though
other types still exist [9], [10]. These rules allowed for more
complexity, yet not enough, given the hand-written rules. The
introduction of neural networks (NNs) in cellular automata
allowed for complex update rules that can be learned. This
type of CA has started to emerge and be introduced in
different areas such as texture generation and regeneration
[11], [12], 2D or 3D models growth and regeneration [13],
[14], [15], [16], areas that were impossible to tackle with
hand-written rules.

This paper analyzes the behavior of a cellular automaton
built for growing and maintaining a 2D model. The NCA is
trained on a given image and expected to form that image
starting from one living cell, representing a seed. Considering
the NCA architecture presented in [14], our study aims to
analyze the evolution and learning process of this NCA on
different images. We also compare the results obtained from
these different targets and extract traits that affected them.

Moreover, we also analyze the results on a stabilized model,
i.e., one that is able to hold its shape after growing, a task that
is not achieved in the initial model.

The experiments in this study were motivated by the inte-
rest in discovering, how and what such an automaton learns
in the training phase and what image characteristics influence
its evolution. These findings are explained and detailed in the
experimental part of the paper. Throughout our experimental
investigations, diverse behaviors have emerged, motivating
our ongoing efforts to pursue specific objectives. One key
objective is understanding the factors underlying an image’s
susceptibility to self-destruction following NCA processing.
Furthermore, our focus extends to delineating the primary
features that shape an image’s evolution during the NCA
expansion.

II. MODEL ARCHITECTURE AND TRAINING DETAILS
Motivated by the methodology from [14], we chose to test
an NCA designed for image generation. The update rule,
which determines how each cell changes depending on its
neighbors, will now be learned by a NN. Before delving into
the NN, we will thoroughly go over the steps involved in
NCA training, with an emphasis on cellular automata.

A. CELL STATE
As stated before, a cellular automaton is a collection of cells
arranged in a grid with a particular form, each of which has a
predefined set of rules that it follows and changes state based
on its neighbors’ states.

Generally speaking, a cell’s state is seen as binary, with
0 denoting death and 1 denoting life. However, since a NN
performs best with continuous values, the interval [0, 1] was
used in place of the binary-defined state of the cellular au-
tomaton, and a threshold ls = 0.1, stating that if alpha ≥ ls
the cell is alive, and if alpha < ls the cell is dead [14].

The features of a cell have to be well-defined and compat-
ible with our NN in order to create a final updating rule. We
therefore used the following approach, in which the state of
each cell is represented as a vector of 16 values (α and 15
extra attributes), determining thus an input image gird with
16 channels. Each feature vector has:

• on positions [1-3]: the RGB values of the pixel, each
value being between 0 and 1;

• on position 4: the alpha channel; this is the value that
determines if the cell is considered alive, dead, or in the
growing phase (meaning α = 0 = the cell is dead, α =
1 = the cell is fully developed, all other values greater
than 0.1 (ls) are considered growing state);

• on positions [5, 16]: supplementary channels required
by the NN in order to develop complex local rules.

Examples of the values encoded in such a cell of the
snowflake emoticon are represented in Figure 1. The first
3 values correspond to the RGB channels, the 4th element
is the alpha value (indicating if the cell is alive) and the
remaining values offer additional information, learned during

2 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 1. Encoding strategy.

the iterations. The top figure illustrates the feature vector of
the cell highlighted by a yellow border at the beginning of the
iterations. All the values of the array are at that point equal to
0. The middle figure shows the values for the given cell after
10 iterations, and the bottom figure shows the values for the
given cell after 30 iterations. In the beginning, all the pixels
except the seed pixel have all the values of the feature array
equal to 0. The seed pixel has on the first 3 channels the RGB
values normalized in the interval [0,1], and the alpha channel
is equal to 1, as it is the only alive pixel. The other channels
are also set initially to 0. Although dead pixels initially have
RGB values equal to 0, which encodes black, these cells are
displayed as white background pixels.

B. UPDATE RULE
The update rule for each living cell takes as input the current
cells value and the values of its neighbours (states) and
outputs a number representing the update value, i.e. how
much the cell’s values (features and state) modify. This value
is a number to add/subtract from the current value, thus
updating the current cell. It is worth noting that the outputs
of the update rule are applied simultaneously on all the cells,
as the entire image is passed through the NN at once. After
the pass, the resulting living cells and their neighbours are
selected, and processed according to the update rules, and
so forth. Thus, the image evolves by iterating this update
process. One such update iteration implies passing the feature
array of the cell grid through a NN.

The first stage of the network implies convolving classical
filter masks of size 3×3 with each channel of the input. These
filters operate with the Moore Neighborhood of each cell.

The filter masks considered are:
• Sobelx: a high-pass filter that considers 6 of the neigh-

boring cells situated on the left and right.
• Sobely: a high-pass filter considering 6 top-bottom

neighbours of the current cell.
• Identity: ensures that the current cell value is taken into

consideration and influences the update rule
The role of a NN is to learn important input features. An
image’s most relevant features are edges, especially when
the image represents one or more objects on a uniform back-
ground. The Sobel filter is a classical filter for edge finding,
which also considers the edge’s orientation. The Sobelx
filter predominantly finds vertical edges, while the Sobely
the horizontal ones. Complementary to these filters, which
are the ones used in [14], in this study, we also explored
filters with other orientations, like the diagonal Sobel and the

isotropic Laplace filter. The results of these experiments are
detailed in the experiment section. A description of all these
filters is provided by [17].

Each filter is applied to each channel of the input image
and generates a 72×72×16 array. The three arrays obtained
thus are concatenated into the network’s input feature array of
size 72×72×48. Although we could have experimented with
extended variations of the neighborhoods, considering the
subsequent filters, this would have gone against the cellular
automaton’s basic tenet that a cell only knows its neighbors.

C. THE NEURAL NETWORK
The neural network, as shown in Figure 2, comprises a
perception layer followed by two convolutional layers. The
perception layer receives an image of shape 72x72x16, repre-
senting the current state of the NCA, and applies hardcoded
3x3 filters (in this case Identity, Sobelx and Sobely), out-
putting a tensor of shape 72x72x48. The first convolutional
layer filters this tensor with 128 kernels of size 1×1, utilizing
ReLu activation. Following this, the second one employs 16
1×1 kernels. The network output is therefore a 72×72×16-
dimensional array representing the updated values, which
are added to the original values of the considered cells. To
offer a comprehensive understanding of the NN’s architecture
utilized in our study, Table 1 presents explicit details regard-
ing the layer-wise dimensions and filter sizes and Figure 3
graphically illustrates the described network.

TABLE 1. Explicit details about the Neural Network.

Type Kernel Output Shape Params
Depthwise List of given g

3x3 kernels (eg.
Identity, Sobelx,
Sobely , Laplacian,
etc)

(72,72, g*16) 0

Conv2d (1x1) (72, 72, 128) (g*16+1)*128
Conv2d (1x1) (72, 72, 16) 2064

A single cell perceives its neighbourhood through the first
depthwise layer. This is the layer that contains the filters we
explained earlier (Sobelx, Sobely , Identity). We can see
from the output shape that each cell ends up with g*16 values
encompassing their representation of the 3×3 neighbourhood
they are in, where g represents the number of filters, in our
case 3. After this, the NCA is employed in understanding
how the cell should process the information and therefore
evolve for that one time step. The outcome from the third
layer precisely provides the adjustments that need to be
implemented across all channels (in our case, 16 channels)
for every cell.

This process is synthesized explicitly by Algorithm 1 and
represented graphically in Figure 2. In Algorithm 1, the
function apply_perception_filters applies the two Sobel
filters and the identity filter on the current cell and returns the
concatenated feature array. The function forward passes the
feature array through the two neuron layers and returns the
array, containing the the update values for all the cells. The
function get_living_mask selects the cells that are alive and

VOLUME 4, 2016 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 2. Neural Cellular Automaton model.

FIGURE 3. Network architecture.

their neighbors, in order to determine the cells which will be
updated.

If we consider n the number of cells (in our specific case,
72 × 72) the complexity of Algorithm 1 is influenced by the
selection of alive cells and their neighbors, which is linear in
n, the application of the 3 filters on each cell, which is linear
in n and the forward pass of the filtering result, which is a
array of size n × 48. During a forward pass for one cell, p
multiplications are performed, where p, which is determined
by the number of learnable weights, is approximately 8000.
Therefore, the overall complexity of the algorithm is within
an upper limit proportional to p · n.

Algorithm 1 The application of the update rule.
Input: Current state of the automaton (the image)
Output: The updated state of the automaton after one step

function APPLY_UPDATE_RULE(state_nca)
cells_to_update← get_living_mask(state_nca)
features_vector ← apply_perception_filters(state_nca)
cell_update_values← forward(features_vector)
for cell ∈ cells_to_update do

state_nca[cell]← state_nca[cell] + cell_update_values[cell]
end for
return state_nca

end function

Complexity proportional with p · n

During the training step of our experiments, the weights of
the NN are not adjusted directly after one update iteration, but
after evolving the NCA during a number of steps, i.e., several
concatenations of the model in Figure 2. Such an evolution is
described by Algorithm 2, in which the variable num_steps
is a value between 64 and 96, as recommended in [14]. The

complexity is proportional by the number of steps with the
complexity of Algorithm 1.

It can be observed by experiments, that this provides a
good time interval for the NN to learn. The NN is responsible
for the update rule, and it is the one that receives the specified
input and calculates the values that modify the cell’s features
and state. The NN’s weights and biases are refined once a
cycle is finished, i.e., once the update rule has been applied
for 64-96 times, by backpropagation, considering the L2 loss
between the RGB channels of the result of the evolved NCA
and the RGB channels of the target image.

Algorithm 2 Evolution of the NCA.
Input: The automaton (nca), number of steps to evolve (num_steps)
Output The evolved nca

function EVOLUTION_OF_THE_NCA(nca)
for steps← 1; steps ≤ num_steps do

nca← apply_update_rule(nca) ▷ Apply update for each living cell
end for
return nca

end function

Complexity proportional with num_steps · A1, where A1 is the estimated
complexity of first algorithm, Algorithm 1

D. TRAINING OF THE NCA
Once the training is finished, we will simulate a lifetime of
an NCA similarly: we start from a single living cell and use
the trained NN to apply the update rule for all living cells and
their neighbours at each point in time. This process can be ap-
plied infinitely, as we do not know, how long it has to evolve
until it reaches the desired output. In our experiment, we let it

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

run a maximum of 2000 iterations. During the experiments,
we observed that after approximately 300 iterations the im-
ages are distorted and the behavior of the automaton does
not drastically change, resulting in the further destruction of
the image based on similar behaviors observed in previous
iterations, see Figure 9. This is a problem which has to be
solved in order to obtain a stable result and will be addressed
in the following sections.

The model presented above was trained using algorithm 3
on a number of 8000 steps. Each step includes the following
iterations:

1) Get the seed image: all white illustrated pixels are
background (RGB values set to 0) with α = 0 (dead)
except the one pixel in the middle with alpha set to
1. Notice that a cell is considered living if its alpha
channel value exceeds 0.1; the update rule applies to
all living cells and their neighbours. The living cell is
usually centered, except the cases where the figure in
the image does not have values in its center.

2) Let the NCA live for several iterations, which implies
applying the update rule for each alive cell and its
neighbors. We choose the number of iterations ran-
domly between 64 and 96.

3) Calculate the loss, in our case with L2 function, and
adjust the NN’s weights.

Algorithm 3 Training of the NCA.
Input the nca, representing the seed image, and the target image
Output the trained nca

function TRAIN_NCA(nca, target)
for iteration ∈ range(0, number_of_epochs) do

num_steps← random select a number
of steps in range(64, 96)
nca← evolution_of_the_nca(nca, num_steps)
loss← L2(nca, target)
update weights by backpropagation

end for
return trained_nca

end function

Complexity proportional with number_of_epochs · (A2 + A1 + n), where
A2 is the estimated complexity of the second algorithm, Algorithm 2

The complexity of Algorithm 3 is proportional to the
complexity of Algorithm 2 and the complexity of the back-
propagation, which is similar to that of the forward pass
falling within the linear complexity class of type p · n, where
p ≈ 8000. Note that we considered a total of 8000 epochs.

This training strategy led us to the compelling results,
detailed in the III-A section, and loss plots similar to Figures
4 and 5 for all trained images. Each NCA is trained to
recognize and evolve one type of image. For example, if we
want our NCA to grow the spider web image, this image
serves as the training data for the model during the training
process. After the initial image of a single alive cell is passed
the number of decided steps through the NCA, the output
image is then compared against the preselected target image.

FIGURE 4. Loss history of spiderweb images.

FIGURE 5. Loss history of caterpillar images.

E. STABILIZING TRAINING STRATEGY
The training described in the above approach produced in-
teresting but unsatisfactory outcomes. When the automaton
reaches the intended state, which is the image it was trained
for, it continues to expand. Moreover, its growing behavior
cannot be predicted (one cannot conclude if the image will
continually expand, disappear, suffer few alterations, stabi-
lize, etc.). Therefore, the stabilisation goal still needs to be
reached.

To solve this problem, two solutions could be imple-
mented:
• A proposed idea was to let the one iteration in the

training step to run longer, forcing the NCA also to learn
how to remain stable once it reached the desired state.

• A pooling strategy (presented by the original paper
[14]).

We followed the second approach in choosing the solution,
since training on our machines takes considerable time. This
strategy is illustrated in Algorithm 4. How the strategy is
applied for one epoch is further depicted in Figure 6.

The complexity of Algorithm 4 is upper bounded in the
same way as Algorithm 3, as it only means to apply the pass
through the NCA of batch_size = 8 individuals selected
from the training pool for a number of epochs.

For these experiments, the training set is represented by
the pool of images the cellular automatas is trained on. In our
experiments, the size of this pool is 1024. In the beginning,
this is composed of 1024 images of the single alive cell.
At each step, 8 (or batch_size) images are chosen randomly
from this pool. The one with the highest loss value is then
replaced by a new image of a single alive cell. This is done in

VOLUME 4, 2016 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 6. Pooling strategy depicted for one epoch.

Algorithm 4 Pooling strategy.
Input the pool of current organisms nca, the target image, the
number_of_epochs, and batch_size representing the number of individuals that
will be chosen
Output the updated pool of organisms

function APPLY_POOLING STRATEGY(nca, number_of_epochs,
batch_size)

for iteration ∈ range(0, number_of_epochs) do
individuals← random pick batch_size individuals
worst_cell← cell_with_highest_loss(individuals)
worst_cell← seed_image
num_steps← randomselect a number of steps in range(60, 90)
for individual ∈ individuals do

individual← evolution_of_the_nca(individual, num_steps)
end for
loss← L2(individuals, target)
update weights by backpropagation
updated_pool← replace updated individuals back in the pool

end for
return updated_pool

end function

Complexity proportional with A3, where A3 is the estimated complexity of the
third algorithm, Algorithm 3

order to preserve the capacity of evolving from a single alive
cell, as this behavior would be forgotten if we trained only
on partially evolved images. After evolving the images from
this batch by passing them through the NCA for a number of
steps, they are put back into the updated pool, meaning that,
the evolved images from the initial batch replace the original
images in the pool.

The pooling strategy which replaces the worst individual
in the pool can be compared to a simplified genetic algorithm
[18], a comparison presented in Table 2.

Similar to NCA, genetic algorithms start with a randomly

TABLE 2. NCA and genetic algorithms comparison.

Training step Genetic algorithm
specifics

Generate a number of seed images (this will
be the pool)

First generation cre-
ation

For each step, randomly select a batch Selection method
Calculate accuracy for each chosen image Fitness function
Discard the lowest-scoring one and replace
it with a seed image

-

Let NCA evolve images Mutation
Replace the old images with the new,
evolved images in the pool

New generation cre-
ation

generated population, akin to how the automaton begins with
a pool of images and uses the update rules also randomly
generated. In genetic algorithms, individuals are represented
by chromosomes or genes, a string of information influencing
how an individual performs a specific task. Afterward, the ge-
netic algorithm selects a batch of individuals for each step to
help create a new generation. Usually, in genetic algorithms,
a fitness function is then applied to determine the best-
performing individuals with a higher chance of combining
their genes to create new individuals for the next generation.
After this process, sometimes a mutation is applied in order
for the genes not to converge and still add some differences
among individuals. We can see the resemblance with the
aforementioned strategy since this algorithm also selects the
best-trained individuals and discards the lowest-scored ones,
here with the scope of training the update rule to recognize
when the image is starting to destroy itself. In contrast with
the classic genetic algorithm, we observe no crossover step
- it is not applicable here. Given this training strategy, we

6 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 7. Loss history of spiderweb image.

FIGURE 8. Pool of images observed to be in different stages of training.

obtained loss plots similar to Figure 7 for all trained images.
Now, let’s further analyze the process of pooling-based

training by examining images extracted in different stages of
this process. In Figure 8 we sampled 42 pictures from our
pool during the training process for the spiderweb image.
Therefore we can observe the base idea put in practice:
organisms in different stages of evolution will be sampled
at a given time. The NN will randomly choose a batch of
8 images from this pool, evolve them according to their
learned behavior, and put them back in the pool. Since images
are chosen randomly, we reach the desired result: the NN
will train on seed/very low evolved images (4th row, 4th
column), mildly evolved images (2nd row, 1st column) and
more advanced organisms (almost completed images). We
can also see its flaws during training, such as duplication
(4th and 5th rows, 6th column), disappearing (empty, dead
images), or noise (3rd row, 6th column), facts also observed
during the late stages of training.

The term evolve here is essential, since the update rules
needed for the model to reach the desired target image are
practically learned during the training of the NCA. After
training, when these updated rules are fixed, we want to
apply them on a new single living cell and see how the NCA

FIGURE 9. Expansion behaviors for figures in the 1st column exhibiting
different symmetry properties, after 300, 500, 600 and 800 iterations.

behaves. As a consequence, from now on, we will name
the process of applying the NCA in multiple steps on these
evolved images letting the image evolve.

III. EXPERIMENTS AND DISCUSSIONS
The main focus of this paper is twofold. Firstly, it aims
to understand the dynamics of the expanding NCA and the
inherent characteristics of the target images, which influence
both model growth and stabilization. Secondly, it investigates
the effect o filters with varying orientations on the learning
and growth processes, highlighting their impact within the
model. Therefore, we conducted the following experiments
on images with different symmetry and color properties:

Experiment 1: The NCA evolves without having any
strategy in-place for the stabilization of the model, as
in Algorithm 3, characterized by always training from
the seed image. This leads to an unpredictable behavior,
which was analyzed on multiple target images. Exam-
ples are illustrated in Figure 9.
Experiment 2: The same NCA model is trained using a
strategy characterized by pooling as presented in Algo-
rithm 4. This determines the cellular automaton to reach
its goal and stop expanding the shape at this point.
Experiment 3: In the model the initial Sobelx and
Sobely , used to select the features which are then passed
to the trainable layers, are replaced by other high-pass
filters and the behavior of the NCA is then studied. From
this experiment, it results, that in this model directional
filters are necessary in order to obtain a consistent
growing of the figures, while using the isotropic Laplace
filter does not produce any usable result. Nevertheless,
combining the directional Sobel filters with Laplace,
enhances the results.

VOLUME 4, 2016 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Experiment 1 aimed to train the neuronal cellular automa-
ton to learn to grow specific images. However, once this
purpose was reached after a number of iterations, we ob-
served that in the following iterations, the NCA continued to
expand the figure abnormally, exhibiting different expansion
behaviors for different train images. Thus, the experiments
continued to study how different image features influence
this expansion behavior. The features studied are symmetry,
orientation, and contour of the figure in the training images.
Section III-B details this experiment’s purposes.

The second experiment is set to fix the first experiment’s
shortcomings, more precisely, to stabilize the model. The
NCA has to learn to also keep the image it evolved, no matter
how many iterations follow, and to this effect, the pooling
training strategy described in Algorithm 3 was used. This
experiment and its results are detailed in Section III-C.

In the first experiment, we observed, that the specific
properties of the evolved image, influence in a different way
the growth and alteration of the image during the different
iterations. In the NCA model, a first feature selection is done
by combining the outputs of the directional high-pass Sobel
masks with the identity mask. As discussed, the Sobelx and
Sobely masks have maximum response for vertical respec-
tively horizontal edges. This led us to the assumption, that fil-
ter orientation might influence the output of the NCA. Thus,
the third experiment was devoted, to analyze the influence
of different filter masks on the evolution of the model. This
experiment and its results are detailed in Section III-D.

As for the implementation, PyTorch was used to train and
evaluate the NCA. The simulations shown in our experiments
were done by employing the trained network and starting
from a single image with a single alive cell at the center.
This image was then fed to the trained NCA for the number
of steps we wanted the evolution to take place (each step
represents one pass through the network).

A. THE SIMPLIFIED PROBLEM: GROWING NCA
Our first experiment was to train the NCA to learn to grow
specific images. The implementation of this plain method
as proposed by [14] was presented in Section II, and even
though the results yielded did not meet our first expectations,
we found them to reveal some interesting insights into how
and what the NCA is actually learning, and therefor was
worth analyzing.

Our first training image was the spiderweb (Figure 9 1st
column), and the parameters used for this training, together
with the hardware configurations, are present in Table 3. The
same parameters were used for the training with four other
shapes, for which the results are also presented and discussed.
In order to check if the NN indeed learns to develop from a
single seed, we fed it such an image and let it run for multiple
iterations, using the rules already learned during training.
Intuitively, we can think of this as letting the seed develop
using the same set of learned rules for each time step. The
results for the five shapes analyzed in this paper are presented
in Figure 9. The original images are on the first row, and

the following rows present the respective evolved CA after
300, 500, 600 and 800 iterations. It can be seen that for each
image, after a certain number of iterations, by continuing to
evolve, the CA ruins the target image. The interesting fact is
how the different shapes are affected.

B. EXPERIMENTAL ANALYSIS OF VARIOUS SHAPES
Various shapes were chosen for testing in order to run as
complete an experiment as possible. The very fact that they
were chosen diversely underlines our final ideas.

Spiderweb: The first image we trained on was the spider-
web, Figure 9 - 1st column. The behavior displayed in this
image is interesting and relevant since the manner in which it
grows shows the following important observation. Once in a
while, the new cells created by overgrowing will become and
act similar to seeds, displaying a repetitive pattern.

These new seeds are highlighted by red squares in the
1st column and 4th row of Figure 9. Another interesting
observation is the visual interpretation that diagonal lines
seem to be preferred over other lines, similar to how gliders
go through Conway’s Game Of Life.

Ticket: The symmetric way of development cannot be
observed in the growth of the ticket emoticon. We can ob-
serve that here, the model destroys itself by reproducing, but
individual seeds cannot be observed (Figure 9, column 2).
This can also be due to the uniformity and repeatability of
the image.

Alien: The same phenomenon described for the spiderweb
can also be seen in the training of the alien head, in which the
image ruins itself completely by iteration 600, but multiple
instances of the alien can be spotted to have been grown out
of the border of the initial alien (Figure 9, column 3).

This also displays an interesting, slightly different behav-
ior to the spiderweb and the ticket: it ruins itself later, with
the inside of the alien’s head remaining stable until iteration
300. On the one hand, this could be explained by the size of
the image. However, this cannot be the only reason since, for
example, the ticket and the sleigh are similar in size, while
their behavior is entirely different.

Sleigh: The sleigh emoticon (Figure 9, column 4) displays,
however, surprising results, behaving differently than the
other images. Once evolved, the image does not ruin itself.
Instead, it grows diagonal extensions at the bottom, which
grow and multiply during the following iterations, similar to
how gliders travel in the Game Of Life.

Caterpillar: The last image we trained our NCA on was
the caterpillar. This is an interesting image since it is the only
one we trained on that was destroying itself after evolving
the NCA during multiple iterations. We can see that around
iteration 300, the head and tail start to disappear.

We wondered why these emoticons behaved differently
and eventually self-destructed after going through the NCA.
Our first hypothesis was that an important criterion has to
do with how symmetric the image is, since the caterpillar
and the sleigh display "not-so-repeatable" behavior, and the
others that have symmetry in them, do.

8 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 10. Expansion behaviours for the differently colored spiderweb after
100, 250, 300 and 600 iterations.

FIGURE 11. Evolution results for the sleigh image after 200, 500, 750, 1000,
1500 and 2000 iterations.

Symmetry and complexity might matter in the sense that
the NCA works by learning different patterns in the data
based on a NN. Therefore, it should be easier to learn patterns
which are frequently present in the image. Intuitively, if the
image is complex, then a lot of rules have to be learned in
order to recreate the initial shape. On the contrary, if the
parts of the image are more similar, exhibiting a greater
degree of uniformity, this implies that the same pattern can
be recognized more often. As a result, the NCA has more
options to reinforce learning the same rule. In this sense,
the structure of the image is important. We can also observe
this interesting behavior in Figure 10. Here, we can see
that based on which part of the image is colored, different
patterns emerge. In the 1st row, we can observe the image
starting to recreate itself, and ruining the initial organism
by iteration 300, while in the 2nd row, we can see that the
initial structure is preserved despite some expansion being
observed by iteration 300. Additionally, we can observe that
this growth sticks to the initial pattern and that the colors
hold onto their nearby counterparts rather than expanding
haphazardly.

The presence or absence of a colored contour of the figure
seems to influence the evolution over time, which can be
clearly observed in the alien figure’s case. It can be seen,
that in the image of the alien, copies of itself appear around
iteration 250 outside the initial image, along the border of
the figure. Adding a different colored contour to the figure
will impact the way the image evolves compared to the initial
experiment. Figure 12 illustrates an interesting behavior: both
CA are destroying themselves. If we take a look closer, the
genuine alien evolves duplicates of himself from the border.
While this is partly true for the bordered alien, we can see
that this phenomenon happens later. The disturbances from
the first iterations are duplicates of the border rather than the
rebirth of the alien. This is of course, because the seed is not
of red colour, so it is not confused with a point of start. We
also chose the same image but bordered so that other different
factors aren’t taken into consideration. These observations

FIGURE 12. Evolution results for the unbordered and of the bordered alien
after 100, 150, 200, 250, 300 and 500 iterations.

FIGURE 13. Details in the multiplication of the shape during the evolution of
the unbordered and of the bordered alien after 200 respectively 300 iterations.

are detailed in Figure 13.
Another interesting problem is the way, in which lines

propagate in the image during the evolution of the NCA.
Diagonal lines might be preferred due to being the easiest to
create. For example, in Conway’s Game of Life, which works
based on a Cellular Automaton, the glider is the easiest to find
propagating model, which needs only five alive cells to start
propagating diagonally. This preference for the diagonal lines
can be observed in the sleigh emoticon, illustrated in Figure
11, and the uncolored spiderweb.

One explanation for the apparent preference for diagonal
lines can reside in the orientation of the Sobel filters. In the
case of horizontal, respectively vertical lines, one of the filters
will produce a high response, while the other has a nearly 0
response. This will result in an unbalanced feature vector.
In the case of diagonal lines, both filters exhibit similar
responses. To test if the orientation of the filters influences
the way in which the NCA evolves, a third experiment was
conducted (Section III-D).

C. THE STABILITY OF NCA
The second experiment using the pooling strategy yielded the
desired results. The NCA trained by this strategy is able to
grow from one living cell and, once reaching the targeted
image, stabilizes and the image is not expanded further.

In this section, the success of the algorithm described
in Section II-E is presented on images sampled during and
after the pool-based training. As for the comparison with

VOLUME 4, 2016 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 14. Comparison of an organism grown after training with Algorithm 3 (up) and respectively the Algorithm 4 (bottom) steps 0, 50, 100, 150, 250, 350 and
1000.

the first approach without pooling, Figure 14 illustrates how
the NCA without pooling expands the spiderweb image in a
span of 1000 steps post-training and how the NCA using the
pooling algorithm stabilizes, keeping the figure unchanged
even while further evolving the NCA.

In order to further analyze how the training strategy in-
fluenced the behavior of our NCA the spiderweb image
sampled during training, more precisely from batch no. 700
out of 8000, is presented in Figure 15. In the first row are
represented images from the batch, just before evolving them
through the NCA, while in the second row are illustrated the
results of the NCA for each of the samples in the first row.

In the 1st column of Figure 15 we observe that the NN can
guide the NCA to evolve the seed towards an unfurnished
final state of the target image. In the next six columns, the
advantages of using the pool-based approach become clear:
the NN has learned when to stop expanding the image. Due
to the fact that this batch is extracted in the early stages
of the training, we see a duplication problem in the last
column where 4 intertwined spiderwebs in the input image
are evolved simultaneously without the NCA realizing the
need to remove the excess ones. However this problem is
remedied in later stages of training.

D. DIRECTIONAL VERSUS ISOTROPIC FILTERS
In order to determine the influence of edge orientation we
performed an experiment in which we replaced the original
Sobelx and Sobely filters with their, by 450 rotated, corre-
spondents. The results on two of the described emoticons
showed a similar behavior of the NCA, as for the original
filters. After a number of iterations, the figures were distorted
in a manner, which differed only by the direction of the
distortions. This is shown in Figure 16 for the spiderweb and
for the sleight. In both cases, pooling algorithm 4 is necessary
for stabilization.

We were interested to see, if better results could be ob-
tained, by considering an isotropic high-pass filter. Therefore,
we replaced the pair of Sobel filters with a Laplace filter
mask. The results obtained were unexpected in the sense that
the NCA could not learn to regrow the images in either of
the scenarios, i.e., with or without pooling. In Figure 17, the
result of evolving the NCA for the spiderweb emoticon by

Algorithm 3 are presented for iterations 1, 50, 100, 250, 500,
1000.

By using the pooling algorithm 4, we observed that none
of the samples in the pool gets similar to the expected image
and in later iterations most of the samples are replaced by the
seed, while the others are only distorted examples, similar to
those in the figure.

Although the results obtained when using the Laplace filter
were not encouraging, we hypothesized that this filter could
still augment the NCA by offering supplementary informa-
tion, when utilized in conjunction with the Sobelx and the
Sobely filters. Thus we used them together for evolving and
training the NCA. The obtained results are very promising as
can be observed in Figure 18. It can be noticed that between
iteration 250 and 500, the image is almost perfectly restored,
with minimal distortions. Only during later iterations, the
distortions become more pronounced. This is a first indica-
tion that, by integrating the Laplace filter, and thus providing
additional features, the NCA can learn in a more reliable
way how to evolve towards the target image. We still have
to investigate, if we can optimize the process, as to avoid the
elaborated pooling process altogether.

E. HARDWARE DETAILS
To ensure reproducibility, it is also essential to detail the tech-
nical specifications of the device on which the experiments
were performed. Table 3 lists the laptop specifications used
for training alongside with the specific input structure of the
NCA.

TABLE 3. Hardware and software details

Type Parameter Value
Hardware Processor AMD Ryzen 7 5800U

RAM 16.0GB (14GB usable)
Trained on CPU

NCA
Specifics

Batch size 8

Cells dropout rate 0.5
Optimizer Adam
Loss function L2

Number of generations 8000
Iterations/generation’s
individual

random(64, 96)

Time Total training time 12h-16h

10 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

FIGURE 15. Batch 700. Based on the approach presented in Algorithm 4, the randomly selected pool of individuals before and after training of batch number 700.

FIGURE 16. Evolution results for NCA using rotated Sobel filters for the
spiderweb and the sleight: original and after 300, 500, 600 and 800 iterations.

FIGURE 17. Evolution results for NCA using the Laplace filter for the
spiderweb after 1, 50, 100, 250, 500 and 1000 iterations.

FIGURE 18. Evolution results for NCA using the Sobelx, Sobely and the
Laplace filters after 50, 100, 250, 500 and 1000 iterations.

IV. CONCLUSIONS
The field of NCA is expanding. Models exploiting its behav-
ior, such as robots training for regeneration and movement
using cellular automata, research focussing on programmed
cell death, cell division, cell grafting, models responsive
to genomically-coded and environmental signals [19] are
currently studied and applied in different areas. Moreover,
applications in static and dynamic texture generation [20]
have been proven more efficient than former solutions, open-
ing this field for research. Other real-life applications of
cellular automata include fine material migration [21] and
spatial-temporal load forecasting [22]. Thus, neural cellular
automata serve as an active research field with numerous
future prospects.

During our study on cellular automata representing images
of 2D objects we observed various behaviors, thus this article
also aims to address some hypothetical issues. The funda-
mental issue is what causes such an image to self-destruct
after evolving the NCA for a longer period and also what are
the primary aspects of an image that affect how it evolves.

The main advantage of such an automaton is the possibility
of reproducing a whole shape from one seed. It also opens
the way to a series of applications, like automatic repair of
structures or even reproduction of different shapes, patterns
or textures starting from one or several sparse starting points.
The disadvantage at the moment is that the automaton has
to be trained separately for each form considered. But it is a
matter of current research on how to train an automaton, to
choose what shape to generate, depending on the input it gets
in the beginning.

An important contribution of the study is that various
properties were studied - symmetry, image complexity, image
orientation, and image evolution considering the object’s
contours, and some relevant conclusions were drawn about
the growth principles of the images considered. This growth
maintains the original pattern, and the colors maintain their
close neighbors rather than spreading randomly.

Another significant contribution is the study of the influ-
ence of different filters on the stabilization process, which has
been thoroughly discussed. Concerning the influence of the
orientation of the high-pass filters used for feature extraction,
we discovered that for this architecture, oriented filters are
essential in the evolution of the NCA, as our experiment

VOLUME 4, 2016 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

using the isotropic Laplace filter did not produce any useful
results. Moreover, we found out that significant improvement
in stability can be obtained by combining the Sobel filters
with the Laplace, a result that still needs further investigation.
Still, isotropic filters can perform well in more elaborated
NCA models, as presented in [23].

A series of technical details about what is happening in the
background in the functioning of the NCA were presented in
an algorithmic, easy to follow manner.

This study is an explanatory study that deepens under-
standing of previous approaches, tests theories or hypotheses,
offers various perspectives for making decisions, can increase
the validity of research, and can also be utilized in conjunc-
tion with other research designs.

REFERENCES
[1] J. Kari, “Theory of cellular automata: A survey,” Theoretical Computer

Science, vol. 334, no. 1, pp. 3–33, 2005.
[2] M. Khanjary, “Cellular learning automata: Review and future trend,” Com-

putational Vision and Bio-Inspired Computing: Proceedings of ICCVBIC
2021, pp. 229–238, 2022.

[3] E. W. Weisstein, “Cellular automaton,” https://mathworld. wolfram. com/,
2002.

[4] W. Li, N. Packard, et al., “The structure of the elementary cellular automata
rule space,” Complex systems, vol. 4, no. 3, pp. 281–297, 1990.

[5] A. Hernandez, A. Vilalta, and F. Moreno-Noguer, “Neural cellular au-
tomata manifold,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10020–10028, 2021.

[6] E. W. Weisstein, “Elementary cellular automaton,” https://mathworld.
wolfram. com/, 2002.

[7] S. Wolfram, A New Kind of Science. Wolfram Media, 2002.
[8] K. Bhattacharjee, N. Naskar, S. Roy, and S. Das, “A survey of cellular

automata: types, dynamics, non-uniformity and applications,” Natural
Computing, vol. 19, pp. 433–461, 2020.

[9] D. A. Zaitsev, “k-neighborhood for cellular automata,” CoRR,
vol. abs/1605.08870, 2016.

[10] B. Breckling, G. Pe’er, and Y. Matsinos, Cellular Automata in Ecological
Modelling, pp. 105–117. 01 2011.

[11] A. Mordvintsev and E. Niklasson, “µnca: Texture generation with ultra-
compact neural cellular automata,” CoRR, vol. abs/2111.13545, 2021.

[12] E. Niklasson, A. Mordvintsev, E. Randazzo, and M. Levin, “Self-
organising textures,” Distill, 2021.

[13] K. Horibe, K. Walker, and S. Risi, “Regenerating soft robots through
neural cellular automata,” CoRR, vol. abs/2102.02579, 2021.

[14] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, “Growing
neural cellular automata,” Distill, 2020. https://distill.pub/2020/growing-
ca.

[15] S. Sudhakaran, E. Najarro, and S. Risi, “Goal-guided neural cellular
automata: Learning to control self-organising systems,” 2022.

[16] S. Sudhakaran, D. Grbic, S. Li, A. Katona, E. Najarro, C. Glanois, and
S. Risi, “Growing 3d artefacts and functional machines with neural cellular
automata,” CoRR, vol. abs/2103.08737, 2021.

[17] R. Gonzales and R. Woods, Digital image processing 4th edition. Pearson,
2018.

[18] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm-a literature
review,” in 2019 international conference on machine learning, big data,
cloud and parallel computing (COMITCon), pp. 380–384, IEEE, 2019.

[19] J. Stovold, “Neural cellular automata can respond to signals,” in The 2023
Conference on Artificial Life, MIT Press, 2023.

[20] E. Pajouheshgar, Y. Xu, T. Zhang, and S. Süsstrunk, “Dynca: Real-time
dynamic texture synthesis using neural cellular automata,” 2023.

[21] R. Castro, R. Gomez, and L. Arancibia, “Fine material migration modelled
by cellular automata,” Granular Matter, vol. 24, p. 14, 02 2022.

[22] S. Zambrano-Asanza, R. Morales, J. A. Montalvan, and J. F. Franco, “Inte-
grating artificial neural networks and cellular automata model for spatial-
temporal load forecasting,” International Journal of Electrical Power En-
ergy Systems, vol. 148, p. 108906, 2023.

[23] A. Mordvintsev, E. Randazzo, and C. Fouts, “Growing isotropic neural
cellular automata,” 2022.

SORANA CATRINA studies at Transilvania Uni-
versity of Bras, ov and is starting her third year
pursuing a Bachelor’s degree in computer sci-
ence. She is passionate about quantum physics and
quantum programming, participating in plenty of
courses, contests, and Summer Schools on this
topic. Alongside quantum, her interests revolve
around algorithms, machine learning, and data
structures.

MIRELA CATRINA is a student at Transilvania
University of Brasov, currently starting the last
year of her Bachelor’s degree in Computer Sci-
ence. She participates in numerous algorithmic
contests, Summer Schools, and projects, affirming
an interest in machine learning, algorithms, and
data structures. Recent projects include a daily
meal plan recommendation platform, a movie rec-
ommendation platform, Window Query Process-
ing in Fast Dynamic Linear Quadtrees, and The

Influence of Genetic Algorithms on hyperparameter optimization for neural
networks.

ALEXANDRA BĂICOIANU is a research engi-
neer in informatics and received her Ph.D. in 2016
from Babes Bolyai University, Cluj-Napoca. She
has been a lecturer at Transilvania University of
Braşov since 2017, teaching various courses and
seminars. She has published more than 30 scien-
tific papers and is the co-author of 6 books. Also,
she supervised tens of graduation and dissertations
thesis, programming training courses, program-
ming Summer Schools, and code/tech Camps,

some of them in collaboration with IT companies. She is also a member
of the department’s Machine Learning research group, founded in 2018. Her
research interest and expertise are in the field of machine learning, formal
languages and compilers, algorithms, remote sensing and Earth observation
data, autonomous driving, electric and hybrid vehicles.

IOANA CRISTINA PLAJER received the B.E.
and the M.S degree in computer science from the
University of Bucharest, Romania, in 1997 and
1998 respectively. She received her Ph.D. degree
in computer science at the Transilvania University
of Braşov, Romania, in 2011. She is currently
a Lecturer with the Faculty of Mathematics and
Computer Sciences of the Transilvania University,
Brasov, Romania. She is also a member of the
department’s Machine Learning research group,

founded in 2018 and part of the project Artificial intelligence and Earth
observation for Romania’s agriculture (AI4AGRI). Her research interests
include machine learning, image processing, spectral imaging and remote
sensing, formal languages, algorithms, and data structures.

12 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3382541

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Towards Generating Executable Metamorphic
Relations Using Large Language Models

Seung Yeob Shin�1[0000−0001−9025−7173], Fabrizio Pastore1[0000−0003−3541−3641],
Domenico Bianculli1[0000−0002−4854−685X], and

Alexandra Baicoianu2[0000−0002−1264−3404]

1 SnT Centre, University of Luxembourg, Luxembourg, Luxembourg
{seungyeob.shin, fabrizio.pastore, domenico.bianculli}@uni.lu

2 Siemens Industry Software, Braşov, Romania
alexandra.baicoianu@siemens.com

Abstract. Metamorphic testing (MT) has proven to be a successful so-
lution to automating testing and addressing the oracle problem. However,
it entails manually deriving metamorphic relations (MRs) and convert-
ing them into an executable form; these steps are time-consuming and
may prevent the adoption of MT. In this paper, we propose an approach
for automatically deriving executable MRs (EMRs) from requirements
using large language models (LLMs). Instead of merely asking the LLM
to produce EMRs, our approach relies on a few-shot prompting strategy
to instruct the LLM to perform activities in the MT process, by pro-
viding requirements and API specifications, as one would do with soft-
ware engineers. To assess the feasibility of our approach, we conducted a
questionnaire-based survey in collaboration with Siemens Industry Soft-
ware, a worldwide leader in providing industry software and services,
focusing on four of their software applications. Additionally, we evalu-
ated the accuracy of the generated EMRs for a Web application. The
outcomes of our study are highly promising, as they demonstrate the
capability of our approach to generate MRs and EMRs that are both
comprehensible and pertinent for testing purposes.

Keywords: metamorphic testing · large language model · LLM · exe-
cutable metamorphic relations

1 Introduction

In many sectors, software is typically verified with executable test cases that,
at a high level, consist of a set of inputs provided to the software under test
(SUT) and a set of test assertions verifying that the SUT outputs match the
expected results. However, defining executable test cases is expensive because
of the many intellectual activities involved. This cost limits the number of test
cases that can be implemented. Moreover, software faults are often subtle and
triggered by a narrow portion of the input domain. Therefore, they are detected
only after exercising the SUT with a large set of test inputs.

2 S. Shin et al.

Although several tools for the automated generation of test inputs have been
developed [9, 10], they can only identify crashes or regressions faults, because
they lack the capability of determining what the expected output for the soft-
ware should be. Further, manually specifying test assertions for thousands of
automatically generated test inputs is practically infeasible. The impossibility
to programmatically derive expected outputs is known as the oracle problem [3].

Metamorphic testing (MT) has recently gained success as a solution to ad-
dress the oracle problem in many contexts [6]. MT relies on the concept of
metamorphic relations (MRs), which describe the relationships between input
transformations and expected output changes, serving as oracles in software test-
ing. Briefly, to perform MT on the SUT, engineers first need to derive MRs from
the SUT’s requirements and then convert the derived MRs into an executable
form to determine the test outcome. These steps require substantial manual
effort, which increases the MT cost and may prevent its adoption.

Many MT approaches have been developed to test various SUTs, includ-
ing search engines [26], Web applications [5], and embedded systems [1]. These
methods, however, require significant manual efforts to define MRs, which lim-
its their scalability, particularly in cases where SUT executions are lengthy and
expensive. A few recent studies [12, 25] have investigated using Large Language
Models (LLMs) to automate MR derivation directly from LLM knowledge bases.
However, they currently only work with SUTs known during LLM training and
are not effectively applicable to test new, unseen systems. In addition, to the best
of our knowledge, there is no existing work that aims at automating the conver-
sion of MRs into an executable form, hereafter referred to as EMRs (Executable
MRs), which is an essential step to fully automate the MT process.

Contribution. In this paper, we propose an approach for automatically
deriving EMRs from the SUT’s requirements using LLMs. Differently from ex-
isting work, our approach does not merely involve querying an LLM for MRs
based solely on the LLM knowledge base. Instead, we rely on prompt engineering
practices to teach the LLM both (1) the specifications of the SUT, which are
necessary to derive MRs, and (2) the DSL to use for EMRs, which is necessary
to enable MR execution.

We evaluated the feasibility of our approach through two experiments: (1) by
conducting a questionnaire-based survey in collaboration with Siemens Industry
Software, a worldwide leader in providing software and services across industry
domains (hereafter, SISW), involving four of their software applications, and
(2) by assessing the correctness of the generated EMRs for a Web application.

In our experiments, we used OpenAI GPT-3.5 and GPT-4 [15] as LLM, ac-
cessed (to provide prompts and generate responses for deriving MRs and subse-
quently converting them into EMRs) through the web interface of ChatGPT [14].
When converting MRs into EMRs, we instructed the LLM to use SMRL [13] as
a domain-specific language (DSL) for specifying MRs in an executable form. The
results are promising, indicating that the generated MRs and EMRs are under-
standable and relevant for testing, and that the EMRs were correctly converted
from their corresponding MRs.

Towards Generating Executable Metamorphic Relations Using LLMs 3

developrequirements
specifications

software
system

derive
MRs MRs generate

EMRs testEMRs

: LLM-enabled activity that our study focuses on

Fig. 1. Our approach for generating EMRs using LLMs.

Organization. The remainder of this paper is structured as follows: Sec-
tion 2 describes our approach. Sections 3 and 4, respectively, present our experi-
ment design and results. Sections 5 discusses threats to the validity and research
opportunities. Section 6 surveys related work. Section 7 concludes the paper.

2 Approach

This section describes our approach to automatically deriving EMRs from the
requirements of the SUT. Specifically, our approach relies on an LLM to au-
tomate the MT process, particularly by leveraging the LLM’s capabilities in
understanding and processing natural language documents, identifying relevant
information, and synthesizing that information into structured forms (i.e., MRs
and EMRs) useful for software testing.

2.1 Overview

Our approach, shown in Fig. 1, advances the MT process by introducing two
automated activities: “derive MRs” and “generate EMRs”. The “derive MRs”
activity takes as input requirements specifications (in the form of specification
documents) and outputs (MRs in natural language). Unlike existing work that
queries an LLM for MRs based on the LLM built-in knowledge, we provide
SUT specification documents to the LLM. This enables our approach to derive
SUT-specific MRs, which would otherwise be unattainable because the LLM
lacks awareness of the specific software properties that need to be considered.
The “generate EMRs” activity takes as input MRs and the SUT (depicted as
“software system” in Fig. 1). It outputs EMRs, which are executable programs
used to verify that the SUT satisfies the properties captured by the MR. In
the following subsections, we further describe these activities, focusing on their
implementation as adopted in our preliminary experiments (see section 3).

2.2 Deriving metamorphic relations

We aim at automatically deriving MRs from the provided requirements specifi-
cation documents. To this end, our approach relies on ChatGPT and develops

4 S. Shin et al.

I want to derive MRs for testing purposes from a
technical document. Can you assist me?

Certainly! …

Here is a technical document. …

The technical document you provided, titled …, is
from …

Can you identify sentences that are related to
system inputs and outputs, and may be
considered by engineers when defining MRs?

Based on the document, here are sentences
related to system inputs and outputs that
engineers may consider when defining MRs …

Can you rephrase the sentences you found into
the form of MRs?

Certainly! …

(1)

(4)

(3)

(2)

Fig. 2. Prompts to derive MRs from the SUT’s requirements, grouped by phases in
the conversation: (1) setting the context, (2) providing requirements specification docu-
ment(s), (3) identifying relevant sentences, and (4) rewriting these sentences into MRs.

a prompt sequence for automation. Since deriving MRs from requirements is a
complex task, when using ChatGPT for this purpose, we break the task down
into simpler, decomposed steps3.

Figure 2 shows the prompts that derive MRs from the requirements of the
SUT. We have omitted some parts of the text, indicated by “. . . ”, to focus on
the essential prompts of our work. Note that the complete prompts are available
online [17]. As shown in Fig. 2 (1), our prompt sequence begins by setting the
context, i.e., deriving MRs, to guide ChatGPT for the following interactions.
The remaining sequence, which decomposes the task of deriving MRs, consists of
prompts directing ChatGPT to perform simpler steps, as described below. First,
our approach instructs ChatGPT to read a requirements document in order
for ChatGPT to access the requirements needed for defining MRs for the SUT
(see Fig. 2 (2)); in response, ChatGPT provides a short summary of it. Second,
given the requirements document, ChatGPT is directed to find sentences that
are specifically related to the SUT’s inputs and outputs, as well as those that
engineers may consider when defining MRs (Fig. 2 (3)). This step is important
because MRs fundamentally describe how outputs should be changed in response
to specific changes in inputs. The last step then asks ChatGPT to write MRs
based on the identified relevant sentences (Fig. 2 (4)).

For example, consider a scenario where our approach is used to derive MRs
from the requirements document of an online shopping system that includes a
searchItem function. After setting the context and reading the requirements
document, ChatGPT could identify requirement R1 in Table 1, which concerns
the advanced search options in the searchItem function. Given requirement R1,
ChatGPT then proceeds to define an MR, referred to as MR1 in the table. MR1
specifies the relationship between the outputs of an initial search query and those
of a subsequent query where additional filters are applied.

3 We note that when we passed a single, monolithic query to ChatGPT for deriving
MRs, it was unable to derive meaningful MRs.

Towards Generating Executable Metamorphic Relations Using LLMs 5

Table 1. An example requirement for an online shopping system and an MR derived
from this requirement.

R1 The system should provide advanced search options to allow users to refine
their searches based on specific attributes such as price range, category, brand,
customer ratings, and availability.

MR1 For a given search query, applying additional filters (e.g., narrowing down by
category or price range) should reduce the number of search results or refine
them to match the filters more closely.

2.3 Generating executable metamorphic relations

We ask ChatGPT to convert MRs written in natural language into EMRs spec-
ified using SMRL [13], a DSL developed for specifying EMRs. SMRL provides
MR-specific language constructs, which are built on Java, to specify EMRs. Ta-
ble 2 presents a subset of SMRL constructs. The construct Input(int i) refers
to the i-th sequence of actions performed by a user with the SUT. The construct
Output(int i) refers to the sequence of outputs produced by the SUT in re-
sponse to Input(i). The construct CREATE(Object y, Object x) defines y as
a copy of x and satisfies y = x. The last three rows in the table capture Boolean
expressions corresponding to implication (IMPLIES()), negation (NOT()), and
disjunction (OR()). Using these constructs, engineers can specify EMRs in terms
of inputs, input transformations, outputs, output changes, and logical expres-
sions to define the expected relations among them. In addition, SMRL is already
integrated into the MST-wi framework [5], which generates executable Java code
from specified EMRs to automatically perform MT.

Figure 3 depicts a sequence of prompts that converts MRs into EMRs, selec-
tively omitting text using “. . . ” for a clearer exposition. Our approach involves
instructing ChatGPT to understand SMRL and to use SMRL for converting
MRs into EMRs. Specifically, as shown in Fig. 3 (1), when using ChatGPT, we
first set the context by indicating that the subsequent interactions will aim at
converting MRs into EMRs. We then provide ChatGPT with the notations for
the SMRL constructs (see Table 2), enabling it to use the SMRL constructs
when converting MRs into EMRs (Fig. 3 (2)). To transform MRs into EMRs
in a consistent form, we provide ChatGPT with an EMR template (Fig. 3 (3)).
Subsequently, we apply the few-shot learning strategy [21] to instruct ChatGPT

Table 2. A subset of the SMRL constructs.

Construct Description
Input(int i) returns the i-th input sequence
Output(int i) returns the sequence of outputs generate by Input(i)
CREATE(Object y,Object x) creates y as a copy of x
IMPLIES(boolean x,boolean y) is equivalent to the Java expression !x || y
NOT(boolean x) is equivalent to the Java expression !x
OR(boolean x,boolean y) is equivalent to the Java expression x || y

6 S. Shin et al.

I need your coding capabilities to convert MRs
written in natural language into executable code
in a domain-specific language … called SMRL …

Absolutely, …

Before we start, here are the notations of SMRL.
…

Thank you for providing the notations of SMRL. It
appears to be a Java-based DSL …

When I ask you to create an executable MR,
please create it by replacing <body> as in the
following template: …

Understood. I'll use the provided template …

Here is the first example of an executable MR
written in SMRL. The following MR captures the
property: …

Thank you for … the example … Now, if you
have ... another MR …, please share it with me,
and I'll proceed to create an executable MR …

(1) (4)

(3)

(2)

Now I will provide you with the APIs of the SUT.
…

(4)

Now I will provide you with the APIs of the SUT.
…

Thank you for … the APIs … With this …, I can
assist you in writing … MRs ...

(5)

(4)

Can you use the APIs to rewrite the MR below in
SMRL to test the SUT? MR: …

Certainly! … Here's the MR rewritten using the
APIs …

(6)

Fig. 3. Prompts to convert MRs into EMRs, grouped by phases in the conversation:
(1) setting the context, (2) learning the syntax of SMRL, (3) instructing the output
format, (4) few-shot learning of SMRL, (5) learning the SUT’s APIs, and (6) trans-
forming MRs into EMRs.

to understand SMRL, by providing three pairs of MR and corresponding EMR
from prior work [5] (Fig. 3 (4)). The few-shot learning strategy is suitable in
our study context, as SMRL is a state-of-the-art DSL with a limited number
of examples available, and it is built on Java, which ChatGPT already knows.
In addition, we further instruct ChatGPT to understand the SUT’s APIs by
providing the documentation and signature of the API methods (Fig. 3 (5)). For
example, to test the Web application described in prior work [5], which includes
38 APIs, we need to provide ChatGPT with the details of these APIs. Last, we
then ask ChatGPT to transform MRs into EMRs using SMRL and to invoke the
APIs in the EMRs for testing the SUT (Fig. 3 (6)).

Figure 4 shows an EMR generated by our approach, corresponding to the MR
described in Table 1. This EMR specifies that adding filters to a search query
should either reduce the number of results or refine them to better match the
filter criteria. Below, we provide the comments generated by ChatGPT to explain
the EMR statements; each corresponds to one annotation //(#) in Fig. 4.

(1) & (2): Iterate over all actions within the input sequence to identify search actions.
(3): Retrieve the original search results before any additional filters are applied. (4):
Iterate over possible filter types (e.g., categories, price ranges) that can be applied to
the search. (5): Create a new input sequence where a specific filter is applied to the
identified search action. (6): Ensure the new input sequence (Input(2)) is properly
created with the applied filter. (7): Check that the same filter hasn’t already been
applied to the search action to avoid redundant checks. (8): Verify that applying the
filter results in fewer search results compared to the original, indicating a refinement
of the search output. (9): Alternatively, check that the results are more relevant to
the applied filter, even if the number of results does not decrease. This could involve

Towards Generating Executable Metamorphic Relations Using LLMs 7

1 MR {{
2 for (Action searchAction : Input(1).actions()) { //(1)
3 if (!isSearchAction(searchAction)) continue; //(2)
4 var originalResults = Output(Input(1), searchAction.getPosition()); //(3)
5 for (var filterType : getFilterTypes()) { //(4)
6 var filteredInput = applyFilter(Input(1),searchAction.getPosition(),filterType);//(5)
7 IMPLIES(
8 CREATE(Input(2), filteredInput) && //(6)
9 notSameFilterApplied(searchAction, filterType), //(7)

10 OR(
11 fewerResults(Output(Input(2), searchAction.getPosition()), originalResults), //(8)
12 moreRelevantResults(Output(Input(2), searchAction.getPosition()), originalResults,

filterType) //(9)
13)
14);//end-IMPLIES
15 }//end-for
16 }//end-for
17 }}//end-MR

Fig. 4. An EMR generated by ChatGPT based on the MR presented in Table 1.

comparing the characteristics of the search results against the filter criteria to ensure
they match more closely.

We note that we did not provide ChatGPT with the API details of the online
shopping system. Hence, ChatGPT autonomously created some function invo-
cations, such as applyFilter() and notSameFilterApplied(), to implement
the EMR using SMRL. This capability of ChatGPT is desirable in test-driven
development practices as it helps engineers identify which APIs are needed to
test the SUT at early development stages.

3 Experiment Design

To assess the feasibility of our approach, we have carried out two experiments,
namely EXP1 and EXP2. EXP1 aims at collecting feedback from practitioners.
EXP2 aims at evaluating the correctness of generated EMRs.

EXP1 - SISW applications. To assess whether our approach can prac-
tically help software practitioners, it is important to collect and analyze their
perceptions on our work. In collaboration with SISW, we have conducted a
questionnaire-based survey to gather their feedback on the MRs and EMRs ob-
tained by applying our approach to their software applications. Due to confi-
dentiality reasons, SISW was not able to share the requirements and the APIs
of their applications; instead, SISW selected four non-confidential technical doc-
uments based on their interests. These documents describe their applications
(modelling and simulation) for marine design [19], wind turbine [18], aircraft
propulsion [20], and aero-acoustics [4]. They provided us with these documents
(83 pages in total) as requirements specifications. As remarked above, in absence
of appropriate APIs, ChatGPT suggests invoking functions that should be imple-
mented to automate the execution of the MR. Further, despite the lack of APIs,

8 S. Shin et al.

considering the preliminary nature of this work, these subjects still enable us to
gather feedback from practitioners on how well ChatGPT can generate EMRs.

In EXP1, we relied on GPT-4 because, at the time we designed our experi-
ments (January 2024), it was the only available top-5 leaderboard LLM capable
of processing PDF documents4. Note that our questionnaire-based survey study
does not enforce practitioners to respond to all questions. We adopted this survey
strategy to obtain higher quality responses to the questions that practitioners
feel confident in answering, since the participating practitioners have varying
levels of expertise across the four applications developed by SISW.

The questionnaire for MRs (resp. EMRs) contains three statements for each
MR (resp. EMR). It requests practitioners to indicate their level of agreement
with the statements on a Likert scale (i.e., strongly agree, agree, neutral, dis-
agree, and strongly disagree). We designed the statements in our questionnaire-
based survey, drawing inspiration from Rogers’ theory of innovation diffusion [16].
In this theory, the following five characteristics, based on practitioners’ percep-
tions, are introduced for their impact on the adoption of innovative solutions:

– Complexity: Reflecting the extent to which an innovation is perceived as
challenging to understand or implement.

– Compatibility: Referring to the extent to which an innovation aligns with
practitioners’ existing values, experiences, and needs.

– Trialability: Indicating the extent to which an innovation can be tried on a
limited scale or adopted incrementally.

– Observability: Pertaining to the visibility of the results of an innovation to
others.

– Relative advantage: Describing the perception of an innovation’s superiority
compared to what is currently used.

Out of these five characteristics, our focus is on the first three: complexity, com-
patibility, and trialability. Note that the last two characteristics remain unad-
dressed in our survey, as our approach is still preliminary and has not yet been
deployed in practice.

The questionnaire on MRs, available online [17], includes, for each MR, a form
showing the generated MR (e.g., see Table 1) and three assessment statements
(S1, S2, and S3) described in Table 3. These forms are grouped by application,
and for each application, the questionnaire invites practitioners to provide open
feedback. Statement S1 in Table 3 is about complexity; it assesses the degree to
which a derived MR is understandable. Statement S2 relates to compatibility;
it assesses the degree to which a derived MR aligns with practitioners’ percep-
tions as a property to be considered in testing the SUT. Statement S3 concerns
triability; it examines how helpful a derived MR is as an instrument for defining
test cases (i.e., input and expected output pairs).

The questionnaire on EMRs, available online [17], first introduces SMRL by
explaining its constructs, providing three examples of EMRs written in SMRL,
and a link to the SMRL paper [5]. The questionnaire then, for each MR, provides
4 https://lmsys.org/blog/2023-12-07-leaderboard/

Towards Generating Executable Metamorphic Relations Using LLMs 9

Table 3. Statements (S1, S2, and S3) for collecting feedback on MRs.

S1 The MR is easy to understand.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

S2 The MR captures a property that needs to be considered when testing the appli-
cation.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

S3 The MR helps identify the expected outputs for given inputs.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

a form with an MR (e.g., see Table 1), an EMR (e.g., see Fig. 4), and three
statements (S1E , S2E , and S3E , listed in Table 4). These forms are grouped by
each SISW application. For each application group, the questionnaire includes
an open question to collect additional feedback. Statement S1E in Table 4 is
about complexity, assessing the extent to which an EMR is understandable.
Statement S2E relates to compatibility, evaluating the degree to which an EMR
aligns with its corresponding MR. Statement S3E concerns triability, examining
the feasibility of implementing the functions invoked in an EMR.

Our approach derived 50 MRs and their corresponding EMRs from the four
documents. Of these MRs, SISW independently assigned two practitioners to
evaluate the 14 MRs derived for the aero-acoustics application, while one was
assigned to 36 MRs for the remaining three applications, totaling 64 MRs ana-
lyzed. For the EMRs, one practitioner was assigned to all the applications. Note
that these assignments were independently decided by SISW.

EXP2 - Web application. EXP2 evaluates the correctness of the EMRs
generated by our approach. Recall that EXP1 studies EMRs that are incomplete
with regard to invoking the SUTs’ APIs. Therefore, EXP2 employs a different
application, for which we have its API specifications. EXP2 uses the experiment
dataset provided by the prior work on MST-wi [5], containing both the APIs
enabling the testing of a Web application (hereafter, SUT) and MRs that are
designed to detect security vulnerabilities. Specifically, in EXP2, we randomly
selected ten MRs among the ones published online after the cutoff date of GPT-
3.5 (in EXP2, we relied on GPT-3.5 for this reason). Given the ten MRs and the
SUT’s APIs, we applied our approach to produce ten corresponding EMRs.

Table 4. Statements (S1E , S2E , and S3E) for collecting feedback on EMRs.

S1E The EMR is easy to understand.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

S2E The EMR is consistent with the corresponding MR.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

S3E It is feasible to implement all the functions used in the EMR.
□ strongly agree □ agree □ neutral □ disagree □ strongly disagree

10 S. Shin et al.

Table 5. Annotation labels used in EXP2.

Label Type Description
CLC Simple The statement contains a correct language construct.
C Complex The statement is correct.
AI Complex The statement does not perform exactly what the original MR does,

but it is a valid alternative implementation.
WLC Simple The statement misuses a language construct.
WS Complex The statement is wrong; it misses some required actions, performs

the wrong operation, and the explanation does not reflect what is
requested in the MR text.

WI Complex The statement does not correctly implement what is suggested in the
explanation.

IE Complex The statement invokes an API function invented by ChatGPT, even
if an adequate one exists.

INE Complex The statement invokes an API function invented by ChatGPT because
an adequate one does not exist.

ITE Complex The statement invokes an API function invented by ChatGPT but
delegates too much logic to it.

ES Complex The statement invokes an existing and appropriate API function but
swaps parameters.

ENO Complex The statement invokes an existing and appropriate API function but
not in an object-oriented manner.

WAU Complex The statement misuses valid APIs.
MISS Complex The statement misses an instruction required to implement what is

reported in the explanation.

To assess the correctness of the ten generated EMRs, we inspected and an-
notated each line of the EMRs with one of the 13 labels described in Table 5.
In the annotation process, we considered both the EMRs and their explanations
(i.e., comments on the EMRs) generated by our approach. Note that each EMR
statement is associated with an explanation in natural language produced by
ChatGPT. Our labels distinguish between complex and simple statements. Sim-
ple statements are the ones including only one language construct (e.g., IMPLIES,
NOT, OR). Complex statements include at least one method invocation. Further,
our labels are classified into two groups: correct and incorrect. The former con-
tains three labels (i.e., C, CLC, and AI in Table 5) indicating, respectively,
whether a statement in an EMR implements part of the corresponding MR ex-
actly, uses SMRL constructs correctly, or implements valid alternatives. The
latter includes the remaining ten labels, each indicating a different type of issue,
such as “incorrect use of SMRL constructs” and “misuse of the SUT’s APIs”.
For example, in Fig. 4, the statement if (!isSearchAction(searchAction))
continue; on line 3 is annotated with the INE label, indicating that ChatGPT
invented isSearchAction() and the EMR invokes it because an adequate API

Towards Generating Executable Metamorphic Relations Using LLMs 11

of the SUT was not provided to ChatGPT when generating the EMR from the
MR described in Table 1.

4 Experiment results

EXP1. Table 6 shows the results of EXP1, focusing on the combined number of
responses (i.e., Likert ratings) for each statement across the 64 MRs reviewed by
the three practitioners at SISW. From the results of statement S1, we found that
in 49 out of the 64 MRs (77%), the practitioners were able to understand the
proposed MRs and expressed positive feedback, i.e., “strongly agree” or “agree”.
In 12 MRs, the practitioners were neutral, and in the remaining 3 MRs, they
disagreed with statement S1. Regarding statement S2, the practitioners agreed
that the MRs capture properties that need to be considered when testing the
SUT for 41 out of the 64 MRs (64%). In 10 MRs, the practitioners were neutral;
in the remaining 13 MRs, the practitioners disagreed or strongly disagreed with
statement S2. In contrast to these results, which are more positive, the responses
to statement S3 showed mixed ratings. This statement indicates whether the
presented MR helps identify the expected outputs for given inputs. In 18 MRs,
the practitioners agreed; in 19 MRs, they were neutral; and in the remaining 27,
they disagreed or strongly disagreed.

Regarding the non-positive responses to statement S3, we identified possible
reasons from the practitioners’ qualitative feedback. In particular, one practi-
tioner, who provided 11 ratings as “disagree” and one as “strongly disagree” to
the statement, stated that while most of the MRs are correct and useful for
reminding someone what to test, they are too generic to aid in deriving ap-
propriate testing. This aligns with feedback from another practitioner at SISW
who, despite not assessing the MRs, collected and reviewed the responses to the
MRs questionnaire. The practitioner provided a possible reason for some of the
MRs being very generic, stating that it could be attributed to the nature of the
documents provided by SISW.

Regarding the survey results for the 50 EMRs in EXP1, one practitioner
provided consistent responses across all EMRs, stating they perceived that the
EMRs were clean and understandable and consistent with their corresponding
MRs. However, the practitioner deemed that not all functions used in the EMRs
were feasible to be implemented. Regarding the last opinion, the practitioner
noted that the functions in the EMRs, generated by ChatGPT, were specific
to each EMR. Therefore, there is little opportunity for reusing these functions
across different EMRs, meaning the effort required for implementation would be

Table 6. Responses to the MRs survey, for each statement (S1, S2, S3) in Table 3.

strongly agree agree neutral disagree strongly disagree
S1 3 46 12 3 0
S2 0 41 10 12 1
S3 0 18 19 24 3

12 S. Shin et al.

significant. In addition, the specific constraints of the testing environment for
their applications may pose challenges in using the exposed APIs to implement
functions in the EMRs. Even though EXP1 generated incomplete EMRs with
regard to using the SUT’s APIs, as discussed above, this finding suggests that
the characteristics of the SUT, such as its APIs, should be considered when
further elaborating our approach to deriving EMRs.

The results for EXP1 indicate that our approach generates MRs and EMRs
that practitioners deem to be understandable and relevant for testing.

EXP2. In EXP2, we annotated each line of the ten EMRs, which were con-
verted from the corresponding ten MRs studied in prior work [5]. These EMRs
have a minimum of 10 statements, a mean of 13.6 statements, and a maximum
of 20 statements, totaling 136 statements.

Table 7 shows the results of EXP2 annotations using the labels defined in
Table 5. Out of the 136 statements in the EMR code, the majority (107 state-
ments, 78.6%) were classified as correctly converted. Specifically, 52 of the 107
statements are complex, and correctly and exactly implement part of the cor-
responding MRs, as shown by column C in Table 7. 54 of the 107 statements
are simple, and correctly use SMRL constructs (column CLC). The remaining
complex statement is valid and correct with respect to the corresponding MR
(column AI). As for the 30 statements that were deemed incorrect, they can be
further categorized as follows:

– 16 statements incorrectly use APIs (labeled with IE, INE, ITE, ES, and
ENO). For example, five ITE cases introduce the method isAuthorized to
check if a user is authorized to perform an action, instead of verifying that
the outputs obtained by the source and the follow-up inputs differ.

– 10 statements incorrectly use SMRL constructs (column WLC). They are all
related to the LLM “forgetting” how to use the construct IMPLIES; indeed,
instead of separating the right-hand side of the implication with a comma
(see end of Line 9 in Fig. 4), it uses an &. They can be easily fixed manually.

– Three statements are wrong (column WS); for example, the generated MR
checks if the returned page is an error page instead of the opposite.

– Three statements miss implementing what is described in the corresponding
explanations (column MISS); specifically, they do not compare the outputs
of the source and the follow-up inputs. Further, these three statements had
been annotated also with another label because, in addition to miss some in-

Table 7. Distribution of annotation labels (from Table 5) for the 10 EMRs obtained
from EXP2.

C CLC AI WS WI IE INE ITE ES ENO WAU WLC MISS
52 54 1 3 0 3 1 9 1 2 0 10 3

38.2% 39.7% 0.7% 2.2% 0.0% 0.7% 0.0% 6.6% 0.7% 1.5% 0.0% 7.4% 2.2%

Towards Generating Executable Metamorphic Relations Using LLMs 13

structions, they contained an incorrect implementation (i.e., ENO and WS),
which is the reason why our labels sum up to 139 instead of 136.

The results for EXP2 indicate that the generated EMRs are largely correct
with respect to their MRs.

5 Threats to Validity and Research Opportunities

Even though the experiment results are promising, we recognize that our work is
in its preliminary stages, and there are some potential threats to its validity. In
this section, we discuss these concerns, focusing on those that lead to challenging
yet important directions for future research.

Prompt engineering. Our prompts are designed by decomposing the pro-
cesses of deriving MRs from requirements and transforming MRs into EMRs
into smaller, simpler steps. Despite these decomposed steps aligning with those
that engineers would conduct manually, when using LLMs there might be better
sequences of prompts that could improve the accuracy and relevance of the auto-
matically generated MRs and EMRs. Further research is necessary to refine and
compare the prompts, ensuring that they efficiently guide LLMs in producing
effective MRs and EMRs.

Assessing MRs and EMRs. We evaluated the MRs and EMRs generated
by our approach using the questionnaire-base survey and annotation studies,
which rely on the quality of human assessments. Hence, such assessments are
naturally biased by the participating personnel in the study. To minimize any
threat to construct validity (i.e., researcher expectations affecting human sub-
jects’ assessment), our industrial partner, SISW, invited four practitioners with
different backgrounds for the questionnaire-based survey study. For the annota-
tion study, the second author, who is familiar with SMRL, annotated the EMRs
to ensure that the annotations are accurate. Although our choice may introduce
a construct validity threat, the availability of experimental data enables other
researchers to further investigate our findings.

As part of our future work, to better address face validity (i.e., the selection
of appropriate reflective indicators), we aim to leverage recent studies on the as-
sessment of code generation models [8] and select additional quantitative metrics
to measure the degree to which MRs and EMRs are accurate and relevant to
the SUT. Such metrics are desirable not only for objective assessment but also
for automating the MT process; indeed, such metrics might be used as reward
to improve LLMs results.

Human expertise. In our work, we leveraged human expertise to select
technical documents and assess the outputs, i.e., MRs and EMRs. Since our
approach does not involve humans-in-the-loop (e.g., the textual MRs generated
by the LLM for EXP1 are not rewritten by humans before generating EMRs),
the quality of outputs highly depends on the quality of inputs. To mitigate any
bias originated from the input documents (construct validity), SISW selected
four technical documents independently from the authors who developed the
approach.

14 S. Shin et al.

In the future, even if we aim to automate the MT process, incorporating
humans in the loop could be used to refine and validate the inputs and the
intermediate outputs, to efficiently and effectively guide our approach to produce
more accurate and relevant MRs and EMRs. Therefore, future research should
explore methods to effectively incorporate human expertise into an AI-based MT
process, balancing automation with human interventions.

External validity. To mitigate generalizability threats, for EXP1, we con-
sidered specifications of industrial modelling and simulation software for four
different applications domains (marine design, wind turbine, air-craft propul-
sion, and aero-acoustics). Although such software may differ from other types of
software systems (e.g., content management software), it is of high complexity
and adopted in many industrial sectors including automotive and space. Further,
for EXP2, we focused on MRs that demonstrated effective for content manage-
ment (e.g., Joomla [11]) and Web-based automation software (e.g., Jenkins [7]),
thus complementing the choice made for EXP1.

6 Related Work

Many MT approaches have been developed for testing various SUTs, such as
search engines [26], Web applications [5], and embedded systems [1], accounting
for the requirements specific to these SUTs. However, these approaches heavily
rely on manual efforts to elicit MRs, inherently limiting the applicability of MT.
To reduce the cost of defining MRs, researchers have proposed relying on meta-
heuristic search [24, 23] and genetic programming [2] to automatically derive
MRs from execution data. Although promising, such approaches require several
executions of the SUT, which makes them suitable for small programs, but may
not scale for large software where executions may take several minutes and a lot
of outputs are produced.

Recently, a few studies [12, 25] have proposed the use of LLMs to automati-
cally derive MRs from the knowledge base of LLMs. However, these studies are
limited to deriving MRs for SUTs already known in the adopted LLMs. In other
words, there are no studies demonstrating the applicability of LLMs to derive
MRs that account for the requirements specific to an SUT that was unseen dur-
ing the LLM training phases. Considering that, in industrial contexts, software
testing activities often target new products implementing requirements different
from those implemented by existing systems, LLM-based approaches for the au-
tomated generation of MRs should be capable of handling unseen requirements.
This capability is what we presented in this paper.

Additionally, we note that, to the best of our knowledge, there is no work
that automates the conversion of MRs into an executable form, which is required
to fully automate the MT process. Chaleshtari et al. [5] proposed the adoption
of a DSL to automate the execution of MRs; however, DSL-based MRs may have
limited readability, contrary to MRs in natural language.

In summary, there is no solution in the literature that aims at fully au-
tomating the MT process, involving the derivation of MRs from SUT-specific

Towards Generating Executable Metamorphic Relations Using LLMs 15

requirements and the generation of EMRs, for the automated determination of
test results in MT. An alternative is the automated generation of test cases—
including oracles—using LLMs, which is under active development [22]. However,
since LLM-generated code may still require human validation, we believe that
validating EMRs is more cost-effective than validating test cases. Indeed, a single
validated EMR enables exercising the SUT with multiple inputs, which might
otherwise be exercised by different test cases, each needing validation.

7 Conclusion and Future work

In this paper, we have introduced our approach for automatically deriving EMRs
from requirements using LLMs. In our preliminary experiments, we applied our
approach to four applications of our industry partner (SISW) and conducted a
questionnaire-based survey study to collect opinions from SISW practitioners. In
addition, we evaluated the correctness of the EMRs generated by our approach,
by applying it to a Web application. The feedback from practitioners at SISW
confirmed that our work is a promising direction for automating the derivation of
MRs and EMRs from requirements. Furthermore, our annotation results indicate
that our approach has strong potential for correctly generating EMRs from MRs.
However, our results also reveal that the derived MRs need to be more specific
to the SUTs, and the derived EMRs could be further improved with regard to
the use of DSL constructs and APIs, which necessitate further research.

In our future work, we plan to explore several key areas related to our current
research. A primary focus will be on automating prompt engineering to facili-
tate the generation of prompts for deriving MRs from requirements and their
subsequent conversion into EMRs. Recognizing the significance of input qual-
ity, particularly in requirements, another important area will involve developing
methods to assist engineers in providing high-quality inputs. Integrating human
expertise, or “human in the loop”, will also be an important aspect of our re-
search, aiming to further enhance the accuracy and relevance of the generated
MRs and EMRs.

Data availability. Our experiment package with prompts, MRs, EMRs, and
questionnaires is available online [17].

References

1. Ayerdi, J., Segura, S., Arrieta, A., Sagardui, G., Arratibel, M.: QoS-aware meta-
morphic testing: An elevation case study. In: ISSRE. pp. 104–114 (2020)

2. Ayerdi, J., Terragni, V., Arrieta, A., Tonella, P., Sagardui, G., Arratibel, M.: Gener-
ating metamorphic relations for cyber-physical systems with genetic programming:
An industrial case study. In: ESEC/FSE. pp. 1264–1274 (2021)

3. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: A survey. IEEE TSE 41(5), 507–525 (2015)

4. Bériot, H., Gabard, G., Hamiche, K., Williamschen, M.: High-order unstructured
methods for computational aero-acoustics. Progress in simulation, control and re-
duction of ventilation noise, Publisher: (2015)

16 S. Shin et al.

5. Chaleshtari, N.B., Pastore, F., Goknil, A., Briand, L.C.: Metamorphic testing for
web system security. IEEE TSE 49(6), 3430–3471 (2023)

6. Chen, T.Y., Kuo, F.C., Liu, H., Poon, P.L., Towey, D., Tse, T.H., Zhou, Z.Q.:
Metamorphic testing: A review of challanges and opportunities. ACM Computing
Surveys 51(1) (2018)

7. Eclipse Foundation: Jenkins ci/cd server. https://jenkins.io/ (2018)
8. Evtikhiev, M., Bogomolov, E., Sokolov, Y., Bryksin, T.: Out of the bleu: How

should we assess quality of the code generation models? J. Syst. Softw. 203(C)
(sep 2023)

9. Fioraldi, A., Maier, D.C., Eißfeldt, H., Heuse, M.: AFL++ : Combining incremental
steps of fuzzing research. In: WOOT. pp. 1–12 (2020)

10. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: ESEC/FSE. pp. 416–419 (2011)

11. Joomla: Joomla, https://www.joomla.org/ (2018)
12. Luu, Q.H., Liu, H., Chen, T.Y.: Can ChatGPT advance software testing intelli-

gence? An experience report on metamorphic testing (2023)
13. Mai, P.X., Pastore, F., Goknil, A., Briand, L.: Metamorphic security testing for

web systems. In: ICST. pp. 186–197 (2020)
14. Open AI: Chatgpt. https://openai.com/blog/chatgpt
15. OpenAI: GPT-4 technical report. CoRR abs/2303.08774 (2023)
16. Rogers, E.M., Singhal, A., Quinlan, M.M.: Diffusion of innovations. In: An inte-

grated approach to communication theory and research, pp. 432–448. Routledge
(2014)

17. Shin, S.Y., Pastore, F., Bianculli, D., Baicoianu, A.: Replication package.
https://doi.org/10.6084/m9.figshare.25046276.v1

18. Siemens: Improving wind turbine gearbox simulation.
https://resources.sw.siemens.com/en-US/white-paper-full-scale-cfd (2021),
accessed: 2024

19. Siemens: Full-scale simulation for marine design.
https://resources.sw.siemens.com/en-US/white-paper-full-scale-cfd (2023),
accessed: 2024

20. Siemens: Leveraging preliminary design and simu-
lation to drive next-generation propulsion systems.
https://view.highspot.com/viewer/65a7c309c5926b7b3e0192c6 (2023), accessed:
2024

21. Song, Y., Wang, T., Cai, P., Mondal, S.K., Sahoo, J.P.: A comprehensive survey
of few-shot learning: Evolution, applications, challenges, and opportunities. ACM
Computing Surveys 55(13s) (jul 2023)

22. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Software testing with
large language models: Survey, landscape, and vision (2024)

23. Zacchia Lun, Y., D’Innocenzo, A., Smarra, F., Malavolta, I., Domenica
Di Benedetto, M.: State of the art of cyber-physical systems security: An auto-
matic control perspective. JSS 149, 174–216 (2019)

24. Zhang, J., Chen, J., Hao, D., Xiong, Y., Xie, B., Zhang, L., Mei, H.: Search-based
inference of polynomial metamorphic relations. In: ASE. pp. 701–712 (2014)

25. Zhang, Y., Towey, D., Pike, M.: Automated metamorphic-relation generation with
ChatGPT: An experience report. In: COMPSAC. pp. 1780–1785 (2023)

26. Zhou, Z.Q., Xiang, S., Chen, T.Y.: Metamorphic Testing for Software Quality
Assessment: A Study of Search Engines. IEEE TSE 42(3), 260–280 (2016)

Big Earth Data

ISSN: 2096-4471 (Print) 2574-5417 (Online) Journal homepage: www.tandfonline.com/journals/tbed20

DACIA5: a Sentinel-1 and Sentinel-2 dataset for
agricultural crop identification applications

A. Băicoianu, I. C. Plajer, M. Debu, M. Ștefan, M. Ivanovici, C. Florea, A.
Cațaron, R. M. Coliban, Ș. Popa, Ș. Oprișescu, A. Racovițeanu, Gh. Olteanu, K.
Marandskiy, A. Ghinea, A. Kazak, L. Majercsik, A. Manea & L. Dogar

To cite this article: A. Băicoianu, I. C. Plajer, M. Debu, M. Ștefan, M. Ivanovici, C. Florea, A.
Cațaron, R. M. Coliban, Ș. Popa, Ș. Oprișescu, A. Racovițeanu, Gh. Olteanu, K. Marandskiy,
A. Ghinea, A. Kazak, L. Majercsik, A. Manea & L. Dogar (09 Jun 2025): DACIA5: a Sentinel-1
and Sentinel-2 dataset for agricultural crop identification applications, Big Earth Data, DOI:
10.1080/20964471.2025.2512685

To link to this article: https://doi.org/10.1080/20964471.2025.2512685

© 2025 The Author(s). Published by Taylor
& Francis Group and Science Press on
behalf of the International Society for
Digital Earth, supported by the International
Research Center of Big Data for Sustainable
Development Goals.

View supplementary material

Published online: 09 Jun 2025. Submit your article to this journal

Article views: 530 View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20

https://www.tandfonline.com/journals/tbed20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/20964471.2025.2512685
https://doi.org/10.1080/20964471.2025.2512685
https://www.tandfonline.com/doi/suppl/10.1080/20964471.2025.2512685
https://www.tandfonline.com/doi/suppl/10.1080/20964471.2025.2512685
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=tbed20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2025.2512685?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/20964471.2025.2512685?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2025.2512685&domain=pdf&date_stamp=09%20Jun%202025
http://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2025.2512685&domain=pdf&date_stamp=09%20Jun%202025
https://www.tandfonline.com/action/journalInformation?journalCode=tbed20

DATA NOTE

DACIA5: a Sentinel-1 and Sentinel-2 dataset for agricultural
crop identification applications
A. Băicoianu a, I. C. Plajera, M. Debua, M. Ștefanb, M. Ivanovicia, C. Floreaa,c,
A. Cațarona, R. M. Colibana, Ș. Popaa, Ș. Oprișescua, A. Racovițeanua,c, Gh. Olteanua,
K. Marandskiya, A. Ghineab, A. Kazaka,d, L. Majercsika, A. Maneaa and L. Dogara

aDepartment of Mathematics and Informatics, Transilvania University, Brașov, Romania; bNational Institute
of Research and Development for Potato and Sugar Beet, Brașov, Romania; cDepartment of Image
Processing and Analysis Laboratory, National University of Science and Technology Politehnica Bucharest,
Bucharest, Romania; dDepartment of Telecommunications and Electronic Systems, Technical University of
Moldova, Chișinău, Republic of Moldova

ABSTRACT
Artificial intelligence and data analysis are essential in smart agriculture
for enhancing crop productivity and food security. However, progress
in this field is often limited by the lack of specialized, error-free labeled
datasets. This paper introduces DACIA5, a multispectral image dataset
for agricultural crop identification, complemented with Sentinel-1
radar data. The dataset consists of 172 Sentinel-2 multispectral images
(800 × 450 pixels) and 159 Sentinel-1 radar images, collected over
Brașov, Romania, from 2020 to 2024, with precise, in-situ verified labels.
Additionally, 6,454 Sentinel-2 and 5,995 Sentinel-1 rectangular patches
(32 × 32 pixels) were extracted, exceeding 6 million pixels in total. The
cropland parcels considered in our dataset are used for research and
are owned and cultivated by the National Institute of Research and
Development for Potato and Sugar Beet, ensuring error-free labeling.
The labels in our dataset provide detailed information about crop
types, offering insights into crop distribution, growth stages, and phe
nological events. Furthermore, we present a comprehensive dataset
analysis and two key use cases: crop identification based on a “past vs.
present” approach and early crop identification during the agricultural
season.

ARTICLE HISTORY
Received 24 February 2025
Accepted 18 May 2025

KEYWORDS
Sentinel-2 data; Sentinel-1
data; smart agriculture;
artificial intelligence; crop
identification; early crop
identification

1. Introduction

With the growth of the world population (Ritchie & Rodes-Guiaro, 2024), the threat on
food security induced by climate changes, conflicts, and the need for biodiversity protec
tion, it becomes increasingly important to optimize the usage of resources for agricultural
purposes (Anderson et al., 2020; Frona et al., 2019; Maja & Ayano, 2021). Precision

CONTACT A. Băicoianu a.baicoianu@unitbv.ro Department of Mathematics and Informatics, Transilvania
University of Brașov, 500091, Romania

Supplemental data for this article can be accessed online at https://doi.org/10.1080/20964471.2025.2512685

BIG EARTH DATA
https://doi.org/10.1080/20964471.2025.2512685

© 2025 The Author(s). Published by Taylor & Francis Group and Science Press on behalf of the International Society for Digital Earth,
supported by the International Research Center of Big Data for Sustainable Development Goals.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or
with their consent.

http://orcid.org/0000-0002-1264-3404
https://doi.org/10.1080/20964471.2025.2512685
http://www.digitalearth-isde.org/
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20964471.2025.2512685&domain=pdf&date_stamp=2025-06-09

agriculture, supported by the latest technological developments such as artificial intelli
gence (AI), offers a promising solution to these challenges (Ivanovici, Baicoianu, et al.,
2024b; Marandskiy & Ivanovici, 2024). In this context, intense research on using AI and
smart systems for crop monitoring has been done in recent years (Akkem et al., 2023).
However, one of the main problems in using AI models in general, and machine learning
(ML) and deep learning (DL) in particular, is the large amount of training data required for
accurate detection and classification (Benami et al., 2021). In agreement with prior work
(Alzubaidi et al., 2023), we observed that freely available labeled data is often insufficient.
Moreover, in agricultural data sets, many labels rely on self-reported information from
farmers, which sometimes is not accurate or misleading. This can induce serious biases in
the resulting learning-based models (Cabrera et al., 2014). While ML and DL models can
cope with erroneous labels and data, this robustness is limited (Song et al., 2022).

In this direction, while several datasets are available for land cover and slightly towards
agricultural crop monitoring, they frequently exhibit limitations that prevent them from
adequately addressing the specific requirements of precision agriculture.

One notable dataset is BigEarthNet (Sumbul et al., 2019), a large-scale benchmark
archive comprising Sentinel-2 image patches spanning 10 European countries. Although
comprehensive, the BigEarthNet dataset is primarily designed for multi-label remote
sensing image classification, with a particular focus on land cover classes. Since it contains
classes such as “agricultural land” and “pasture”, it lacks detailed crop type annotations,
verified through in-situ validation, which represents a significant limitation for precise
agricultural applications. Similarly, EuroSAT (Helber et al., 2019) provides a dataset based
on Sentinel-2 imagery with a focus on land use and land cover classification. Although the
dataset includes agricultural areas among its categories, it lacks the specific crop type
information and multi-temporal data necessary for monitoring crop growth stages and
phenological events. The SEN12MS dataset (Schmitt et al., 2019) provides also a selection
of georeferenced multi-spectral Sentinel-1/2 imagery, suitable for use in deep learning
and data fusion. While the SEN12MS dataset is useful for a range of remote sensing
applications, it does not focus on agricultural parcels with accurate crop labels over
multiple years. This limits its applicability for detailed crop monitoring tasks.
Additionally, the CropHarvest dataset (Tseng et al., 2021) is a global repository for crop
type classification, aggregating data from multiple sources. However, CropHarvest fre
quently relies on crowd-sourced labels and lacks the desired level of accuracy for precise
AI modeling in agriculture. Additionally, the dataset may exhibit inconsistencies in tem
poral coverage and spatial resolution, which are essential for analyzing crop dynamics
over time. A recent pixel-based dataset, TimeSen2Crop (Weikmann et al., 2021), includes
over a million labeled multispectral Sentinel-2 pixels collected across Austria over two
consecutive years, covering 16 different crop types. The labels were derived from farmers’
declarations. A notable feature of this dataset is the inclusion of reports on snow,
shadows, and cloud coverage for each labeled unit.

The exhibited limitations, including the absence of accurate, in-situ validated crop type
labels, insufficient multi-year data over the same parcels, the reliance on less precise
crowd-sourced labels, and lack of regional specificity, underscore the need for a new
dataset that effectively addresses the specific requirements of smart agriculture.

In order to help the international community and enrich the available data, we
generated a new dataset for crop monitoring, certification, and identification/detection,

2 A. BĂICOIANU ET AL.

which has the important advantage of accurate labels, based on in-situ institutional
validation. Moreover, the dataset was constructed on the same parcels over the interval
of 5 years, thus including variability resulting from different climatic conditions. The
construction and validation of the data set was done in collaboration with the National
Institute of Research and Development for Potato and Sugar Beet from Brașov, Romania
(INCDCSZ, n.d.). To enhance clarity and readability, the National Institute of Research and
Development for Potato and Sugar Beet will be referred to as the Potato Institute
throughout the remainder of this article.

2. Methods

The dataset presented in this study is based on data acquired by Sentinel-2 optical
instruments (Drusch et al., 2012) as well as on Sentinel-1 radar data (Torres et al., 2012).
This section provides a comprehensive description of the procedures and steps used in
producing the dataset. It includes a detailed account of the experimental design and the
computational processing involved. Specifically, we present the geographical and climate
context, describe the experimental setting in relation to Sentinel-1 and Sentinel-2 data,
and outline the process of dataset creation, starting from the engineering data, and
detailing the tools utilized.

2.1. Geographical and climate setting

The land of the Potato Institute from Brasov, where the metadata for our dataset was
collected, is part of the Bârsa premontane plain, which is a vast depression in Romania,
surrounded by mountains. Bârsa is a part of the so-called “Potato country” in Romania.
From a geographical perspective, Bârsa area extends from 45°27’ to 46°00’ north latitude
and from 26°10’ to 26°13’ east longitude and has a surface of 2406 km2 in extent. The
altitude varies from 550 m at Bod village to 722 m at Zărnești city. This region experiences
a climate transitional between Mediterranean and continental types. According to the
Köppen classification (Beck et al., 2023; Peel et al., 2007) it falls into the climate region Dfb
(cold, without dry season, warm summer). This climate is characterized by cold winters
with significant snowfall and moderate precipitation throughout the year, as defined by
the Köppen climate symbols and criteria. The region enjoys relatively warm springs, mild
summers with temperatures suitable for potato cultivation, and long, sunny autumns
extending into November. The humidity, indicated by an aridity index ranging from 34.8
to 40.8, supports favorable growing conditions for crops like potato and sugar beet. Bârsa
has relatively low-to-medium annual precipitation (548–782 mm) due to its mountainous
surroundings which absorb the fallen precipitation, with most rainfalls occurring in winter
and drier periods in spring. Summer rainfalls are 250–300 mm. The region’s average
annual temperature of 7–8°C and summer temperatures of 15–17°C are suitable for
potato cultivation, though recent droughts have increased the need for irrigation.

The soils within the Potato Institute belong to the mollic, hydromorphic, and
weakly developed soil classes. It predominates the chernozimoid soil type, with
a high humus content in the A horizon and a very large reserve in the first
centimeters, moderately acidic reaction, good nitrogen supply, nitrification condi
tions negatively influenced by the acid reaction, medium insurance with mobile

BIG EARTH DATA 3

forms of assimilable phosphorus and potassium, the degree of saturation in bases is
high (approx. 70%), thus determining a good microbial activity. Under these condi
tions, the soil is favorable for potato cultivation, with a quality score of 81 out of
100. As noted in Teaci (1980), this score is based on an evaluation of the main
climatic parameters (temperature, precipitation), edaphic factors (physical, chemical,
and relief characteristics), and their ecological favorability for various agricultural
crops. This type of information is highly relevant for the agricultural domain and
experts. Combined with the publicly available dataset we provide researchers and
agricultural professionals with supplementary information, to allow a more in-depth
analysis and the evaluation of the impact of various parameters on both the quantity
and quality of agricultural production.

From the flora point of view, the institute is located in an area where the spontaneous
vegetation is represented by forest associations where Quercus and Fagus species pre
dominate, mixed with shrubs (Crataegus sp., Cornus sp.) and herbaceous species, like
grasses (Lolium sp., Poa sp.) and legumes (Trifolium sp.). Main crops include potato, sugar
beet, cereals, legumes, and fodder plants. The flat terrain and soil texture support the full
mechanization of these crops.

To provide a comprehensive view of the natural characteristics of the Brașov region, we
have included a series of three thematic maps, each highlighting different aspects of the
area, including height profile, soil types, and land cover, see Figure 1. For the creation of
the height profile map, data were sourced from the official platform provided by the
National Agency for Cadastre and Land Registration of Romania (https://geoportal.ancpi.
ro/). The soil types map, depicted in Figure 1b, was generated utilizing information from
(Liedekerke et al., 2006; Panagos, 2006; Panagos et al., 2022). The land cover map was
produced using resources available on the Copernicus Land Monitoring Service platform
(https://land.copernicus.eu/).

2.2. Dataset acquisition

AI models, particularly in recent deep learning frameworks, require a lot of data (Borisov
et al., 2024). In agriculture, a significant source of big data comes from remote sensing,
especially through satellite imagery. More and more satellite missions offer free data for
the international community. In this context, one of the most significant is the Copernicus
Earth Observation Programme (Aschbacher, 2017). This is a European Union program
using a constellation of satellites called “Sentinels” to gather extensive environmental
data, which is freely available to users worldwide.

The Sentinel-2 satellites (Gascon et al., 2014), launched in 2015 and 2017, offer 13
spectral bands with spatial resolutions ranging from 10 m to 60 m (Gascon et al., 2017),
enabling detailed analysis of vegetation, soil, and water. These satellites operate in a Sun-
synchronous orbit, maintaining consistent sunlight angles for accurate, shadow-
minimized imagery, with a 100-min orbit period at an altitude of 786 km and a 290 km
swath width (n.d.).

The dataset was obtained by downloading Sentinel-2 products from the Copernicus
Browser platform (Copernicus Browser, 2024). The data is free and can be downloaded
after creating an account. The platform provides data from all Copernicus missions. Users
can view and download data specifically from the Sentinel-2 mission, at processing level

4 A. BĂICOIANU ET AL.

https://geoportal.ancpi.ro/
https://geoportal.ancpi.ro/
https://land.copernicus.eu/

a) Height profile map

b) Soil types map

c) Land cover map

Figure 1. Illustrating maps with the characteristics of the Brașov area, including latitude and long
itude, legend, and scale.

BIG EARTH DATA 5

2A. We downloaded the data covering the period from 2020 to 2024. The downloaded
images are from the area of the Research and Development Institute of Transilvania
University of Brașov (Research and Development Institute of Transilvania University of
Brașov, 2024) located at latitude: 45.669410 and longitude: 25.549550. The downloaded
products are all at processing level 2A. This processing level is applied to the raw level 1C
data with atmospheric correction. During atmospheric correction, the band number 10
(wavelength 1373 nm) is removed (Sentinel-2 processing, n.d.).

In Table 1 we provide an overview of the spectral bands specific to Sentinel-2 images as
presented in (Pour et al., 2023). It should be noted that Band 10 was excluded from the
level 2A products during the process of atmospheric correction. Since our dataset was
generated using level 2A products, the images comprise Bands 1–9 and Bands 11–12. As
can be observed in Table 1, the original Sentinel-2 bands have different spatial resolu
tions. In order to uniformize the bands, they were all sampled to the same spatial
resolution of 10 × 10 m, using the Sentinel Application Platform (SNAP) default Nearest
Neighbour algorithm (SNAP – Resampling Methods, n.d).

The image selection process was carried out using the Copernicus Browser platform,
which allows filtering Sentinel-2 satellite images based on the maximum cloud coverage
parameter (Max. cloud coverage). To ensure a balance between data availability and
quality, we set a threshold of 30% cloud coverage, meaning that only images with
a cloud cover below this percentage were considered. It is important to note that this
threshold applies to the entire satellite product, not exclusively to our area of interest.
Regarding the use of the Scene Classification Layer, while the initial filtering was per
formed using the Max. cloud coverage parameter, an additional manual selection step
was necessary. This involved visually inspecting the pre-selected images to ensure that
the area of interest was free from cloud shadows and other obstructions that could affect
the analysis. The downloaded products were visualized with the Sentinel Application

Table 1. Sentinel-2 bands with the central wavelengths (in nanometers) and their description.
Band Spatial Resolution (m) Central Wavelength (nm) Description

B1 60 443 Aerosol
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Vegetation Red Edge 1
B6 20 740 Vegetation Red Edge 2
B7 20 783 Vegetation Red Edge 3
B8 10 842 NIR
B8A 20 865 Narrow NIR
B9 60 945 Water Vapor
B10 60 1375 Cirrus Clouds
B11 20 1610 SWIR1
B12 20 2190 SWIR 2

Figure 2. Preprocessing steps in Sentinel Application platform (SNAP) – European Space Agency (ESA).

6 A. BĂICOIANU ET AL.

Platform (SNAP) (Sentinel Application Platform, n.d.) which is a free, open-source platform
developed by the European Space Agency (ESA) (European Space Agency, n.d.). Using the
ESA SNAP, the Sentinel-2 mission products were visualized, and the steps in Figure 2 were
applied in order to obtain images that encompass the area of interest (AOI).

The subset of the initial product was realized using the coordinates inferred after the
identification of the Research and Development Institute of Transilvania University of
Brașov. The size of the images was chosen to encompass all parcels at the Potato Institute.
The AOI was identified using maps from the Potato Institute. An example map can be seen
in Figure 3. The maps were used to identify the parcels cultivated by the Potato Institute.
Parcel marking was done manually using a software program we developed in MATLAB.
The application provides the possibility to read GeoTIFF images from Sentinel-2. To

Figure 3. Example of the Potato Institute map of agricultural crops for 2023. The map presents the
delimitation of each parcel. The parcels are identified by the corresponding parcel number and color.
The colors were assigned using the color palette proposed by the US Department of agriculture
(United States Department of Agriculture, 2024).

BIG EARTH DATA 7

visualize the image, the red, green, and blue (RGB) color channels were selected. In order
to produce a color composite image to be displayed, the image values were scaled in the
range [0, 255] and a brightness enhancement was performed.

To identify and save the parcel coordinates, an image was chosen where the
parcel boundaries were clearly visible. Parcel delineation and coordinate extraction
were done with roipoly MATLAB function on images acquired in summer, where the
parcels can best be observed. Saving the parcel coordinates was done by clicking on
the corners of the parcels in the RGB image and saving the coordinates of these
points in .txt files. After saving the coordinates of all the parcels that exist on the
Potato Institute’s maps, masks were generated to cover each year’s parcels. These
masks were created based on the .txt files, which contained the necessary spatial
information. The details regarding the number of these files have been provided in
Table 3.

The Sentinel-1 mission, part of the European Space Agency’s Copernicus programme,
has been widely used in agricultural applications due to its all-weather, day-and-night
Synthetic Aperture Radar (SAR) capabilities, and it operates in the C-band at 5.405 GHz.
SAR uses the motion of the satellite platform to synthetically increase the aperture of the
Radar, which allows high-resolution acquisition of images. SAR backscattering is affected
by the structure and the water content of the soil surface and plants. In this dataset, we
exclusively used Sentinel-1 images that are temporally close to corresponding Sentinel-2
images in our set. For each Sentinel-2 image, we selected a corresponding Sentinel-1 SAR
image acquired within a three-day window, either up to 3 days before or after the
Sentinel-2 acquisition date. We retrieved Sentinel-1 SAR images that are acquired in
Interferometric Wide (IW) swath mode and included both VV (vertical transmit and vertical
receive) and VH (vertical transmit and horizontal receive) polarizations with 10-m spatial
resolution from Google Earth Engine’s “COPERNICUS/S1_GRD” collection. These images
have already been preprocessed using the Sentinel-1 Toolbox (n.d.). This includes detec
tion, multi-looking, projection to ground range using an Earth ellipsoid model (e.g.
WGS84), thermal noise removal, radiometric calibration, terrain correction (using SRTM
30 m or ASTER DEM for areas above 60° latitude) where images were also reprojected to
a UTM coordinate system, and, finally, conversion of the terrain-corrected values to
decibels (10 × log10(x)). We further processed them after retrieval by applying a Lee
Filter (Lee, 1980) to reduce speckle noise. Figure 4 illustrates the processing steps for
the Sentinel-1 images.

2.3. Crop description and color scheme

A MATLAB script was used for the generation of masks based on the coordinates saved in .
txt files. The files are saved in different directories for each year. Although the parcel

Figure 4. Processing steps for the Sentinel-1 data using the Sentinel-1 Toolbox.

8 A. BĂICOIANU ET AL.

coordinates remain largely the same, the crops change from year to year. The masks were
refined based on the information received from the Potato Institute. Each year, all the
parcels were analyzed and checked on the maps received in order to avoid positioning
errors or mistakes in specifying a crop.

All the files used in mask generation follow a naming convention. Each name is of the
form “a_b” where a represents the parcel number and b the unique code given to a crop
by the Payments and Intervention Agency for Agriculture (APIA) (n.d.) in Romania (see
Table 2).

For example, the file with the name “1_151.mat” contains the multispectral data from
parcel 1 and the crop with the code 151 corresponding to green peas. For each year, we
generated masks for each parcel, with labels corresponding to the specific crops of
that year. The visual representation of the masks enables users to easily identify the
crops that were cultivated on the parcels by the Potato Institute in the respective year by

Table 2. The color palette for the masks. The first column lists the crop names, the second column
provides the specific APIA identifier for each crop, the third column shows the labels assigned by us,
and the final column indicates the crop color as defined by the United States Department of
Agriculture.

Name crops APIA code Label Color
Color code

(RGB)

Common winter wheat 101 1 (165, 112, 0)

Common spring wheat 1010 2 (217, 181, 107)

Corn 108 3 (255, 211, 0)

Peas 151 4 (84, 255, 0)

Late potatoes 253 5 (112, 38, 1)

Other potato crop 254 6 (125, 46, 7)

Potatoes for seed 255 7 (180, 112, 91)

Potatoes for seed 2557 8 (189, 125, 106)

Sugar beets 3017 9 (167, 0, 228)

Temporal grassland 450 10 (233, 255, 191)

Alfalfa 9748 11 (255, 165, 226)

Permanent grassland 606 12 (233, 255, 191)

Corn silage 131 13 (255, 211, 0)

Soybean 2037 14 (38, 112, 0)

Alfalfa 9747 15 (255, 165, 226)

Winter rapeseed 202 16 (209, 255, 0)

Sunflower 123 17 (255, 255, 0)

Table 3. Overview of acquired Sentinel-1 and Sentinel-2 images from DACIA5 dataset.

Year
Number of images

of Sentinel-1
Number of images

of Sentinel-2
Number of

text files
Number of

crops

Number of
patches of
Sentinel-1

Number of patches
Sentinel-2

2020 40 40 51 10 1520 1520
2021 32 32 53 12 1380 1380
2022 25 30 47 12 914 1121
2023 28 30 47 12 1289 1410
2024 34 40 48 11 892 1023

BIG EARTH DATA 9

their specific colors. For the masks, we used the color palette proposed by the United
States Department of Agriculture, which is detailed in Table 2. The colored masks allow us
to observe the distribution and variety of the crops. The study of the masks also shows the
crop rotation from year to year. The resulting masks are shown in Figure 5. The Potato
Institute has dedicated parcels for research studies. These parcels are the same every year,
but the crops are changed according to research needs. The APIA corresponding crop
codes for the parcels from 2020 to 2024 are provided in the Appendix. It is important to
mention that not all 17 crops are present every year.

In Table 3 we present the number of Sentinel-1 and Sentinel-2 images acquired in
each year from 2020 to 2024, the number of text files containing the coordinates of the
parcels, the number of crops in each year, as well as the number of patches generated
from the Sentinel-1 and, respectively, the Sentinel-2 images. The number of text files
differs in the different years, as some of the parcels were divided in some years into
subparcels.

3. Data records

In this section, we provide detailed information about the data files, format (GeoTIFF), and
other aspects that should ease the work with the data. The database contains all the
available images from Sentinel-2 MSI and the corresponding Sentinel-1 SAR spanning
over a time period of 5 years, from 2020 to 2024, covering the area of interest, as

Figure 6. Image naming convention. YYYY is the four-digit year, MM is the two-digit month, and DD is
the two-digit day.

Figure 5. The masks with the parcels and the crops from 2020 to 2024, provided also as shapefiles in
the DACIA5 dataset.

10 A. BĂICOIANU ET AL.

described in Section 2.1. All the images respect a naming convention and are saved in
GeoTIFF format. This GeoTIFF format can be read in MATLAB and Python. The naming
convention is detailed in Figure 6. The Sentinel-2 images have dimensions of 800 × 450 ×
12, meaning each image consists of 800 pixels in height, 450 pixels in width, and 12
spectral bands, with a spatial resolution of 10 × 10 m. Similarly, Sentinel-1 images have
dimensions of 800 × 450 × 2, comprising 800 pixels in height, 450 pixels in width, and 2
bands, also with a spatial resolution of 10 × 10 m.

The Sentinel-1 data is stored in a folder named Images_Sentinel1_2bands_GeoTIFF,
while folder Images_Sentinel2_12bands_GeoTIFF contains Sentinel-2 data. Within each of
these folders, the acquired images are organized into subfolders corresponding to
the year in which they were captured by the Sentinel-1 SAR sensors and the Sentinel-2
optical sensor, respectively. The folders containing these images have the names
Sentinel1_yyyy and Sentinel2_yyyy, where yyyy represents the four-digit year. The directory
Images_Sentinel2_GeoTIFF contains all the Sentinel-2 images as the previous Sentinel-2
folder, but these images have all the information provided by the Copernicus browser.
Additional information is provided in Table 3, which displays the number of images from
each year. The file naming convention is depicted in Figure 6.

In addition to the Sentinel-1 SAR data and the Sentinel-2 multispectral images, the
database contains the ground truth of agricultural crops as RGB masks in PNG format and
the masks with labels corresponding to each agricultural crop in both PNG and MAT
formats. These are located in the Masks_and_legend directory. This directory also contains
the legend for the masks in PDF format and the five subdirectories where the masks for
each year are stored. The subdirectories are named Masks_yyyy, where yyyy represents the
four characters for the corresponding year.

Using the aforementioned Sentinel-1 and Sentinel-2 imagery, we generated SAR
and multispectral patches with dimensions of 32 × 32 × 2, respectively, 32 × 32 × 12,

Figure 7. Selection grid for the patches.

BIG EARTH DATA 11

which are systematically organized within the database in the 32×32_patches folder.
For automatic patch selection, the chosen rectangular areas of both the multispectral
and SAR images were swept from the top-left corner to the bottom-right corner using
a 32 × 32-pixel mask with a step of 16 pixels. Simultaneously, the label mask corre
sponding to each year was also traversed to count the number of pixels belonging to
a specific crop within each identified patch. For each selected patch, a validity check
was performed. A patch is considered valid if it contains at least 75% (768 out of 1024)
pixels from a specific crop. The patches deemed valid were saved with a specific
naming convention (which can be referenced). The position of the patches as
a consequence of the traversal process can be observed in Figure 7(a) as well as the
position of the resulting patches. In Figure 7(b) and (c), the overlay of patches on
a Sentinel-1 image and a Sentinel-2 image, respectively, can be observed. This figure
shows that the overlay is identical in both images, with each patch from Sentinel-1
corresponding to a patch from Sentinel-2, covering the same area.

After generating all the patches from the multispectral images, we examined their
band selection RGB visualization, in order to filter the patches of interest for the training
model, specifically those that contain visible crops (that have sprouted) and not bare soil.
To generate the radar patches we used the same method as in case of multispectral
patches. To filter them, we used the already examined RGB patches generated from
multispectral images. An example of a radar and multispectral patch can be seen in
Figure 8.

Figure 8. Visualization of a Sentinel-1 patch (left) and an RGB Sentinel-2 patch (right). The patches
represent the same area on the ground.

Figure 9. The naming convention for patches.

12 A. BĂICOIANU ET AL.

Each patch is named according to a structured convention, as exemplified in Figure 9.
The practical use of these patches is demonstrated in Section 5, where they are employed
to address two specific problems.

The 32×32_patches directory is subdivided into two subdirectories: 32×32_SAR
+MSI_patches and 32×32_RGB_patches, with the latter intended solely for visualization
purposes. The first subdirectory contains radar and multispectral data utilized for addres
sing the two problems: problem1 corresponds to the agricultural crop identification (ACI)
with temporal generalization, while problem2 focuses on the agricultural crop early
identification (ACEI). For each problem, the data is further divided into training and test
sets. The patches in these directories are georeferenced and are saved in both GEOTIFF
and MAT formats, as indicated by the names of the subdirectories where they are stored:
sentinel1_patches_mat, sentinel1_patches_tiff, sentinel2_patches_mat, and sentinel2_
pacthes_tiff. For the fused data scenario discussed in Section 5, we included a CSV file
for training and testing, which maps the correspondence between Sentinel-1 patches and
Sentinel-2 patches.

The directory 32×32_RGB_patches contains the patches generated from the RGB
masks, as a ground truth for the labels at pixel level. Based on these, we generated the
patches from each image. Each patch contains an agricultural crop, which must
occupy at least 75% of the pixels of the patch for it to be considered. For each year,
there is a subdirectory where the patches from the masks are saved, named patch
es_yyyy, where yyyy represents the four characters corresponding to the
respective year.

In our dataset, we also included the geographic information about the area and the
crop field labels. RoI_and_labels folder has three sub-folders: RoI sub-folder includes files
to locate the region of interest (RoI) as rectangle polygon, while WGS84 and UTM sub-
folders include polygons for crop field labels in geographic (WGS84) and projected
coordinate system (UTM). They are further separated based on the year.

File names inside RoI and WGS84 sub-folders which include “wgs84” represent the RoI
and label polygons in the geographic coordinate reference system, specifically, World
Geodetic System 1984 which is also known as EPSG:4326. This system represents Earth as
a three-dimensional ellipsoid. File names that include “utm” in the RoI and UTM sub-
folders represent the RoI and label polygons in a projected coordinate system, specifically
the Universal Transverse Mercator (UTM), which provides a flat, two-dimensional repre
sentation of the Earth. We included both coordinate systems for convenience: WGS84 is
more commonly used with Google Earth, Copernicus Browser, and similar applications,
while the dataset itself is in the UTM coordinate system for more precise analysis. The
primary files have the “.shp” suffix, which stores geospatial vector data. This type of file,
known as a shapefile, contains the X and Y coordinates for the RoI and label polygons.
Additional files with the suffixes “.shx”, “.dbf”, and “.prj” accompany the shapefile. The “.
shx” file serves as an index for the shapefile, while the “.prj” file contains coordinate
system and projection information for the RoI and labels. The “.dbf” file is a dBase
database file that complements the shapefile by storing additional attribute data. For
the RoI, the dBase file contains only the “NAME” field, while for labels, it includes the
following fields: crop_name, apia_code, label, rgb_r, rgb_g, rgb_b, and hex_color. The label
field holds non-zero positive integer values, rgb_r, rgb_g, and rgb_b store color values, and
hex_color provides the HEX code equivalents of the RGB values. This color information can

BIG EARTH DATA 13

be used to overlay crop field labels with specific colors for better visualization and
inspection, consistent with the details provided in Table 2.

4. Technical validation

In the context of smart agriculture, where monitoring and automation are increasingly
driven by machine learning models, the integrity and accuracy of data are critical.
Machine learning algorithms rely heavily on large-size, high-quality data to make reliable
predictions, optimize processes, and support decision-making. Any errors in labeling or
inconsistencies in the dataset can lead to flawed models, deceiving accuracy, and sub
optimal outcomes, which is especially detrimental in agriculture, where precision is key to
resource management, crop monitoring, and sustainability.

In Romania, APIA (https://apia.org.ro/) is responsible for the administration of agricul
tural subsidies and direct payments to Romanian farmers, thereby playing a pivotal role in
the implementation of the European Union’s Common Agricultural Policy (CAP) (ECA -
European Court of Auditors, 2020), that is implemented with various tools, including the
Single Area Payment Scheme (SAPS). This provides direct payments based on land size,
along with other initiatives designed to advance environmental protection, rural devel
opment, and the modernization of agricultural practices. The agency has to ensure
rigorous quality control measures that guarantee the effective and transparent utilization
of funds.

The information provided by APIA ensures that our dataset is meticulously curated and
free from labeling errors. As a national authority responsible for managing agricultural
subsidies and interventions, APIA plays a crucial role in confirming and verifying the
accuracy of information, ensuring that data used in our processes adheres to strict quality
standards. The partnership with the Potato Institute has allowed us to create a clean,
error-free dataset that meets the highest standards of data integrity. Through close
collaboration with the Potato Institute, the dataset provided undergoes continuous
validation and refinement, ensuring that the data used in the models is accurate, up-to-
date, and highly relevant.

Furthermore, considering data collected over a period of 5 years, with measurements
taken throughout the entire crop development cycle, from sprouting to harvest, allows for
addressing significant issues such as the spectral overlap between different crops and the
heterogeneity within a single crop (Rana et al., 2025), thus enhancing the generality of
features learned by AI models. For the image patches, the applied filtering to produce
clean data ensures that only the patches containing the agricultural crop, specifically,
those in which the crop has sprouted but has not yet been harvested, are included.

5. Data set value

The integration of new datasets into precision agriculture offers valuable opportunities to
enhance the monitoring, analysis, and optimization of farming operations. In this section,
we present a series of practical use cases that demonstrate the applicability of the dataset
within the context of precision agriculture. These use cases highlight scenarios where
data-driven decision-making can lead to improved crop management, resource efficiency,
and environmental sustainability.

14 A. BĂICOIANU ET AL.

https://apia.org.ro/

By exploring these use cases, we aim to showcase the versatility and value of the
dataset, providing insights into how it can address real-world challenges. Each use case is
discussed in detail, outlining the experimental setups, methodologies employed, and the
results obtained. Through these examples, we aim to emphasize the practical impact and
innovative possibilities enabled by our dataset.

5.1. Crop identification: past vs present (problem 1)

For the first problem, we consider as being the “present” moment, “the beginning
of 2024”, and therefore all data before (2020, 2021, 2022, 2023) is viewed as
available for training. All the data from 2024 is in the “present”, thus not available
for training the model and is consequently placed in the testing set. In this way,
we can study how relevant is the data that was acquired in the past, to identify
the data that will be presently acquired.

To facilitate the AI-based identification of agricultural crops, we used the patches
corresponding to the known agricultural crops within the DACIA5 dataset, generated as
described in Section 3. The multispectral patches of 32 × 32 × 12 pixels from Sentinel-2, as
well as the Sentinel-1 patches of 32 × 32 × 2 were selected from the Potato Institute
parcels. The resolution 32 × 32 has been popularized by the CIFAR 10 dataset
(Krizhevsky & Hinton, 2009), which is one of the most used benchmarks in image
classification (Brigato et al., 2022) (this report shows that it is by far most used, but data
is limited to 2022).

All patches from the years 2020 to 2023 from Sentinel-2 result in a training set of 5431
images, each with a size of 32 × 32 × 12. The test set, based on patches from 2024,
comprises 1023 images of the same dimensions. For Sentinel-1, the number of train
patches from the years 2020 to 2023 is 5103, from timestamps slightly different than
those of the Sentinel-2 patches, while the number of samples in the test set from year
2024 is 892. As previously explained, a matching between the timestamps of the Sentinel-
2 to the closest ones from Sentinel-1 data was performed, to allow the fusion of both
types of satellite data.

Although the dataset comprises 17 types of crops (in total), some of the parcels
were too small to provide patches of the required size, and as a result, these crops are
not included. This leaves us with 12 crops, corresponding to 12 classes for our models.
The patches were carefully filtered to ensure they predominantly contained pixels
representing the target crop and were captured during periods of the year when the
crop had sprouted and was clearly visible on the respective parcel. It is important to
note that, while the dataset encompasses 12 distinct crop classes, only 8 of these
classes were represented in the test set, reflecting variations in crop availability during
the selected time period. This refined dataset enables precise and consistent input for
our models, ensuring that they receive high-quality, relevant data for crop identifica
tion and classification tasks.

Two types of classification experiments were conducted. The first experiment utilized
only the Sentinel-2 patches, while the second experiment employed fused data, where
each 32 × 32 × 14 image contains Sentinel-1 information in the first two channels and
Sentinel-2 data from the corresponding patch in the remaining 12 channels.

BIG EARTH DATA 15

5.1.1. Deep learning approach: identification using ResNet18
One of the most prevalent challenges in the literature is the classification and identifica
tion of agricultural crops and our dataset can be seen as addressing this issue. Initial
experiments that will form a baseline indicating the problem difficulty and exploring this
application were conducted using ResNet18 (He et al., 2016). ResNet18 was selected due
to its ability to handle complex and diverse visual patterns efficiently. The architecture
uses residual connections to mitigate the challenges of the vanishing gradient problem,
making it particularly suited for datasets with nuanced agricultural features.

5.1.1.1. Model description and training procedure. For crop identification, we started
a pretrained ResNet18 model provided by the PyTorch library. This architecture is well
suited for handling image classification tasks involving small-sized inputs, such as the
patches in our dataset. Since the Sentinel-2 patches were derived from multispectral
images with 12 spectral bands, we modified the input layer of the original ResNet18
model to accommodate the new input dimensions; this was done by replicating the green
plane initial weights. Additionally, the network’s final layer was replaced with a fully
connected layer containing 12 neurons, each corresponding to one of the crop classes.
For the experiment with the fused data, the number of input channels was set to 14.

For optimization, we employed the AdamW optimizer (Loshchilov & Hutter, 2019),
a variation of the Adam optimizer that effectively handles weight decay, leading to
improved generalization and reduced overfitting. The loss function used was the classical
cross-entropy loss, as implemented in the PyTorch library.

During training, the model processed the training set in batches of 128 images.
However, the dataset was inherently imbalanced, as some crop classes were significantly
more represented than others. Such class imbalances can bias the model towards the
overrepresented classes, reducing its ability to accurately classify the underrepresented
ones. Addressing this issue was critical to ensure the model achieved balanced perfor
mance across all crop classes.

To mitigate the effects of class imbalance, we employed the Imbalanced Data Sampler
from the torch.utils.data module in PyTorch, see Imbalanced Dataset Sampler (2022). This
sampling strategy dynamically adjusts the composition of batches, ensuring that under
represented classes are sampled more frequently during training. By doing so, the
sampler effectively balances the contribution of each class to the training process, helping
the model to learn features from all classes more equitably. This approach is particularly
beneficial for datasets where the minority classes are crucial yet insufficiently represented,
as it avoids the need for data duplication or excessive augmentation, which could
otherwise lead to overfitting. For further details on such techniques, see Buda et al.
(2018), which discusses strategies for dealing with imbalanced datasets in deep learning.

The learning rate was set to a standard value of 10−3, which is commonly used for deep
learning models in similar tasks. To further prevent overfitting, a weight decay of 10−3 was
applied. This regularization technique penalized excessively large weights, encouraging
the model to rely on more robust features and improving its generalization capability.

5.1.1.2. Results and discussion. For both types of experiments, we ran the training
process several times. For the Sentinel-2 set, the accuracy achieved on the test set varied
between 60% and 65%, with an average of 62.67%, while for the training set, we

16 A. BĂICOIANU ET AL.

Figure 10. The confusion matrices obtained for two cases are detailed. For the Sentinel-2, the overall
accuracy was 62.13% (top), while for the fused Sentinel-1 and Sentinel-2, it was 62.56% (bottom).

BIG EARTH DATA 17

consistently obtained accuracies above 90%. To illustrate the model’s performance, we
selected one example for detailed analysis. For this example, the model achieved an
accuracy of 91.72% on the training set and 62.13% on the test set.

For the experiment using the fused data, the best accuracy on the test set was
around 55%, obtaining for the train set also a large accuracy above 91%. In this
experiment, the training was run several times. The performance in this case is
illustrated by one example, in which the accuracy on the train set was 97.33% and,
on the test set 62.56%.

The confusion matrices for these two cases are presented in Figure 10. Each cell (i, j) of
the matrix represents the fraction of images from class i that were classified as class j. This
allows for a detailed evaluation of the model’s performance across the different crop
classes, revealing potential areas for improvement.

The results from the two datasets – one using Sentinel-2 data and the other
combining Sentinel-1 and Sentinel-2 – are similar. The confusion matrices for both
tests show nearly identical distributions of true positives, false positives, true
negatives, and false negatives. Additionally, the accuracy values are almost the
same, indicating that the model performs consistently across different data sources.
While the overall accuracy is moderate, the consistency of the results suggests that
the model’s performance is not significantly influenced by the choice of the
dataset. To enhance performance, further model adjustments or data preprocessing
may be necessary.

One can notice that several agricultural crops are better identified, such as corn and
peas, with true positive rates ≥0.75. Other crops, like wheat and sugar beets, are accep
tably-well identified, with rates between 0.5 and 0.7. While for the rest of the crops, the
identification exhibits very low accuracy rates.

However, it is worth mentioning that some crops are better classified by adding the
Sentinel-1 bands. For example, wheat, potato, and rapeseed present a performance
gain, whereas sugar beet and alfalfa show a lower performance. Radar (Sentinel-1) is
sensitive to crop structure, and water content, which helps distinguish crops with
unique structural characteristics. Optical (Sentinel-2) focuses on leaf reflectance and
chlorophyll content. Adding the two bands can make a difference for plants with
a more different structure. If the crops are sufficiently different at the spectral level,
but similar at the structural level, the use of radar information can downgrade the
results.

The classification results can be influenced by several factors, including hyperpara
meters (such as learning rate, batch size, weight decay, etc.), but also by the inherent
imbalance in the training set, where certain classes are underrepresented. Another
challenge arises from the presence of similar-looking crop types, which can make accurate
classification more difficult.

To address these issues, one potential solution could be to cluster similar crops
together, which might help the model focus on distinguishing between the most distinct
features of each class. This approach could potentially reduce classification errors and
improve the model’s overall performance by mitigating the effects of both class imbal
ance and visual similarity between certain crop types.

There is potential for further improving the performance of the trained model, as well
as exploring the use of other models for classification.

18 A. BĂICOIANU ET AL.

Figure 11. The confusion matrices obtained for the two experiments are detailed. For Sentinel-2 (top),
the overall accuracy was 49.6%, while for the fused Sentinel-1 and Sentinel-2 (bottom), it was 54.09%.

BIG EARTH DATA 19

5.1.2. Classical approach: identification with Random Forests
Random Forests (RF) (Breiman, 2001) are widely used for classification tasks due to their
robust and versatile nature. They consist of an ensemble of decision trees, each trained on
a random subset of the data and features. To prevent overfitting and improve general
ization, the trees are regularized with injection of randomness, which came two-fold: trees
are trained within bootstrapping framework (i.e. on randomly selected subsets) and each
node selects a random subset of the input dimension for the split. As a result, Random
Forests strike a good balance between bias and variance and can model non-linear
relationships in the data without requiring prior assumptions about the data’s
distribution.

For a classification problem like the one here, the final result is determined by the
majority (plurality) vote of the ensemble trees. Considering all these advantages, we
conducted a classification experiment for our dataset, training a Random Forest to classify
crops.

5.1.2.1. Model description and training procedure. To train the model, we used in
the first experiment all Sentinel-2 patches (i.e. 5431) having the full size 32 × 32 × 12. In
the second experiment, the fused Sentinel-1 and Sentinel-2 patches (i.e. 5103) of size
32 × 32 × 14 were considered. The test data consisted of all the respective patches
from 2024. The input to the model consists of multispectral pixels, with each pixel
assigned a label corresponding to the patch from which it was derived. The selected
hyperparameters were as follows: 40 decision trees and an InBagFraction of 0.8. The
model produced 12 output classes, each representing a crop type present in the
training set.

5.1.2.2. Results and discussion. The confusion matrix constructed from the results
obtained on the Sentinel-2 test set is shown in Figure 11 (top). Overall accuracy is
49.6%. With respect to individual crops, the best obtained classification score is 84% for
corn (code 108), followed by the result for wheat at 77.3%, peas at 77.1% and sugar beet
at 60.6%.

The results obtained for the second experiment with the fused test (Sentinel-1 +
Sentinel-2) set are presented in Figure 11 (bottom). Overall accuracy is 54.09%. In
comparison with the first experiment, we can observe that some classes are better
classified, like peas, with an accuracy of 85.42%, while for other classes, like winter
wheat (76.52%), the results are slightly worse.

Comparing the results obtained by RF (pixel-based) with those achieved by ResNet18
(patch-based) reveals certain similarities in classification, but at the same time certain
discrepancies. Some crops are well identified by the deep model and poorly by the RF and
the other way around. Other crops, such as winter wheat, are well separated by both
approaches.

The two identification solutions presented here are aimed at offering baseline per
spectives for future tests. This use case demonstrates the potential of our dataset in
training a CNN model to identify different types of agricultural crops based on past data,
a task that is critical for applications in precision agriculture, crop monitoring, and
resource management.

20 A. BĂICOIANU ET AL.

5.2. Early crop identification (problem 2)

A second experiment focuses on the early identification of agricultural crops. To achieve
this, we selected patches of interest from the refined dataset. We chose 20 May as the date
for splitting the dataset into train and test. The date is motivated by the fact that at that
moment the sowing process ended and the accumulation of data with respect to areas
cultivated by various crops can be done. For Romania, it is also the date when APIA asks
for self-reports about crops cultivated and it will start the verification process.

Given this date, we explored two working scenarios. We selected 32 × 32 × 12 patches
from the period 2020–2024 up to 20 May only for the crops that had already sprouted,
resulting in 1176 patches. Based on the crops present before 20 May, we selected patches
from after 20 May in the same period, yielding 1073 patches. Six crops were selected that
appeared in both the training and test sets.

In the first working scenario, the model was trained on the patches from before 20 May
and tested on those from after 20 May. That would correspond to the standard problem of
after harvest identification: recognize older crops from young ones.

In the second scenario, the training and test sets from the first scenario were swapped:
the training is done on mature plants, and the testing is on young plants. As mentioned in
a previous section, experiments were also performed on the merged data between
Sentinel-1 and Sentinel-2, with 1162 patches before 20 May and 1025 after this date.
This is motivated from a machine learning perspective to study the dataset compactness
and is the standard early crop identification. For the implementation of both scenarios, we
used the same model to ensure a fair comparison between the two approaches.

5.2.1. Deep learning approach with ResNet18
5.2.1.1. Model description and training procedure. The ResNet18 model, provided by
the PyTorch library preparation, is similar to the Past vs Present crop identification: the input
layer of the pretrained is changed to accommodate the input dimensions of 32 × 32 × 12 of
Sentinel-2 patches. For the experiment with the Sentinel-1 and Sentinel-2 data, the input
dimensions were set to 32 × 32 × 14. The network’s final layer was replaced with a fully

Figure 12. The confusion matrices obtained for the two scenarios, considering only Sentinel-2 data.

BIG EARTH DATA 21

connected layer containing six neurons, each corresponding to one of the crop classes. The
optimizer used was Adam, and the loss function employed was cross-entropy loss.

During training, the model processed the training set in batches of four images. The
dataset was quite unbalanced, some crops were better represented than others. This aspect
influenced the model to learn certain agricultural crops better than others, with those that
were in a higher proportion achieving better results in identification on the test set.

The model was trained for 40 epochs. The learning rate was set to a standard value of
3 × 10−4. To further prevent overfitting, a weight decay of 3 × 10−4 was applied. The
smaller learning rate was chosen in parallel with the smaller batch and to ensure enough
iterations as to allow the model to be able to learn.

5.2.1.2. Results and discussion. For the experiment using Sentinel-2 data, in the first
working scenario (mature crop identification), the overall accuracy on the test set was
41.01%, while on the training set, it was 91.79%. In the second working scenario (early crop
identification), the overall accuracy on the test set was 49.96%, while on the training set, it was
94.25%. The confusion matrices of the two working scenarios can be seen in Figure 12.

For the experiment using the fused data, in the mature crop identification, the overall
accuracy on the test set was 33.01%, while on the training set, it was 90.31%. For early
crop identification, the overall accuracy on the test set was 41.16%, while on the training
set, it was 95.17%. The confusion matrices of the two working scenarios with fused data
can be seen in Figure 13.

Through the experiments and scenarios addressed, we found that the model is
influenced by the unbalanced amount of data of each agricultural crop, for example in
the first scenario we have a higher proportion of wheat crops and in the second scenario
the proportion of alfalfa is higher. These aspects are also observed in the confusion
matrices, by high accuracy of wheat and of alfalfa, respectively.

When we use Sentinel-2 data, in the after-harvest identification, we observe good
identification of wheat, winter rapeseed, and peas. In the early crop identification, the
resulting accuracies are different: the model identifies well the alfalfa and peas. Peas are

Figure 13. The confusion matrices obtained for the two scenarios with fused data.

22 A. BĂICOIANU ET AL.

identified quite well in both scenarios. A major impact on the early identification of crops
is also the choice of the date we use to split the dataset; this has to take into account the
growing season of the agricultural crops. The use of fused data does not greatly influence
the obtained results, the confusion matrices do not change significantly by adding
Sentinel-1 data. In the first work scenario wheat and rapeseed are well identified, and in
the second work scenario alfalfa is best identified. A difference occurs in the peas crop
identification, where a decrease is observed.

5.2.2. Early crop identification using Random Forest
As in the Past vs Present crop identification problem, where ResNet18 and Random
Forests were compared, we conducted a similar analysis in this second experiment
focused on early crop identification, thus complementing the baseline result with
Random Forests.

Figure 14. The confusion matrices were obtained with random forest for the two scenarios.

Figure 15. The confusion matrices were obtained with random forest for the two scenarios with fused
data.

BIG EARTH DATA 23

5.2.2.1. Model description and data. The considered dataset was identical to that
presented in the previous section, while the Random Forest ensemble is the same as in
the previous problem.

5.2.2.2. Results and discussion. In the mature crop identification, where the training
set contains images before May 20, and the test set contains images after this date, the
total accuracy was 30.64%. Among the very well-identified crops are winter wheat and
rapeseed with a percentage of 70–75%. The highest confusions are between peas and
rapeseed and the two types of wheat. The confusion matrix for this scenario is repre
sented in Figure 14, left subfigure.

In the second scenario, where the training set contains images after May 20, and the test
set contains images before this date, the total accuracy was 35.65%. In this case, the crops
correctly identified are two types of alfalfa. The confusions are also present for most of the
crops with alfalfa classes. The confusion matrix for the second case can be seen in Figure 14,
right subfigure.

As mentioned in Section 5.2.1, a major impact on the results is the uneven distribution of
classes. Also, the division of the data set containing crops in different vegetation phases can be
an explanation. For example, in the first case (Figure 14 -left) many confusions are made with
winter wheat because it is the crop with a more advanced vegetation phase in spring. The test
images, being selected from 20 May onwards, contain crops with more vegetation, which is
why they can be confused with the most developed crop that was present in the training set.

For the two fused data experiments, the results are quite similar in terms of overall
performance and confusion matrices, as illustrated in Figure 15. The accuracies are 30.4%
for after harvest identification and 35.28% for early identification, respectively. It can be
observed that in the case of early identification there is an increase for the alfalfa crop, but
otherwise the results are similar. The results for Random Forest are more stable (there are no
major differences between the Sentinel-2 data only and the merged data) because it treats
each band separately, avoids overfitting, and is less sensitive to texture differences. CNNs have
high capacity and might overfit to radar features for some crops while failing to generalize
well for others.

5.2.2.3. Comparison between deep learning and Random Forest approaches. When
the two approaches are compared, as expected, the deep learning model presents better
results. Having a convolutional layer and more parameters, the ResNet18 model recog
nizes better local structure of each crop (such as plant spatial organization, and texture)
and is therefore able to outperform the Random Forest. The latter, due to its nature, does
only local and linear approximations of the crop texture and structure.

6. Conclusions

In the context of smart agriculture, the proposed DACIA5 dataset can contribute to the
development of AI-based tools for agricultural crop identification. The dataset presented in
this paper is publicly available on Zenodo, to further help the community in developing
algorithms and methods for crop identification and monitoring. The provided dataset com
prises Sentinel-1 SAR data and Sentinel-2 multispectral images. This ensures a balanced
representation of different observational modalities, making the dataset more versatile and

24 A. BĂICOIANU ET AL.

adaptable to various scenarios and use cases within precision agriculture. By integrating both
radar (Sentinel-1) and optical (Sentinel-2) imagery, we aim to provide a comprehensive
dataset that facilitates model generalization across diverse agricultural crops, improving its
applicability in real-world settings. This complementarity is a key strength of our dataset,
allowing it to be leveraged in different methodological approaches and machine learning
frameworks. Furthermore, the dataset is highly reliable, with accurate labels verified in-situ by
accredited institutions like the National Institute of Research and Development for Potato and
Sugar Beet, Brașov, Romania. The data set is spanning over 5 years (2020–2024) and compris
ing 17 types of agricultural crops on 47 parcels. With its 172 Sentinel-2 multispectral images
(each of them 800 × 450 pixels), 159 Sentinel-1 radar images, together with its 6,454 Sentinel-2
and its 5,995 Sentinel-1 rectangular patches (of size 32 × 32 pixels) the dataset comprises over
6 M pixels. Ground truth data is essential, particularly for machine learning approaches, as it
helps reduce errors in crop identification applications. The 32 × 32-pixel size patches allow for
addressing two problems (use cases). We introduce two use cases for our dataset: past versus
present agricultural crop identification and late versus early crop identification using machine
learning models. Our dataset can be further used for new models and results, thereby
contributing to the global efforts towards improved resource and land management.

Additionally, the dataset can be integrated or concatenated with other datasets through
recently developed spectral image data aggregation methods (Luca et al., 2025). Current
research has demonstrated how combining datasets with interpolation techniques can
enhance machine learning models’ generalization capabilities across different geographic
regions. Such methodologies allow researchers to effectively utilize geographically con
strained datasets while preserving the benefits of highly accurate labeling.

However, there are several limitations to consider. Although the dataset includes
a substantial amount of multispectral pixel data, its size is still relatively small for training
deep neural networks. Cloudy satellite images were excluded during preprocessing, and
future work could explore including such cases to improve model robustness. The five-year
timespan, while valuable, may not fully capture longer-term climatic variations. Furthermore,
the dataset lacks complementary contextual information such as weather conditions, disease
occurrences, or agricultural interventions, which could impact plant development. While the
data was collected from a limited geographic region and may reflect local-specific patterns,
the data aggregation approaches mentioned above can help researchers address this spatial
limitation by combining our highly accurate dataset with others that offer greater geo
graphic diversity. By making this dataset publicly available, we hope to support the field of
precision agriculture and the development of more accurate, efficient, and sustainable
farming practices through improved crop identification and monitoring technologies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

Funded by the European Union. The AI4AGRI project entitled “Romanian Excellence Center on
Artificial Intelligence on Earth Observation Data for Agriculture” received funding from the
European Union’s Horizon Europe research and innovation program under grant agreement

BIG EARTH DATA 25

no. 101079136. Views and opinions expressed are, however, those of the authors only and do not
necessarily reflect those of the European Union. Neither the European Union nor the granting
authority can be held responsible for them; AI4AGRI project received funding from the European
Union’s Horizon Europe research and innovation programme [101079136].

Notes on contributors

Alexandra Baicoianu holds a PhD in Computer Science from Babeș-Bolyai
University, Cluj-Napoca. She currently serves as an Associate Professor in the
Department of Mathematics and Computer Science at Transilvania University
of Brașov, where she teaches various courses and seminars on Algorithms,
Formal Languages and Compilers, Data Mining, Data Warehousing, etc. With
a strong academic background, she has published over 30 peer-reviewed
scientific papers in prominent journals and conferences. She has also contrib
uted to the academic literature as a co-author of six books, reflecting her
commitment to advancing research and education in the field.

Ioana Cristina Plajer received her PhD in Computer Science from Transilvania
University of Brasov, Romania, in 2011 and is currently a Lecturer with the
Faculty of Mathematics and Computer Sciences of the Transilvania University.
She is also a member of the Artificial Intelligence and Earth Observation for
Romania’s agriculture (AI4AGRI) European project. Her research interests
include machine learning, image processing, spectral imaging and remote
sensing.

Matei Debu received a bachelor’s degree in computer science from the
Transilvania University of Brașov in 2023 and is currently pursuing a master’s
degree in Modern Technologies in Software Systems Engineering at the same
university. He is actively involved as a research assistant in several projects,
including notable initiatives such as AI4AGRI, which focuses on the integration
of artificial intelligence in agriculture, and other projects like AI4RiSK, IMINT
and SEEN all of them focus on using artificial intelligence in different scenarios.
His research interests span artificial intelligence, software systems design, and
the application of modern technologies to solve complex, real-world problems.

Floriana Maria Ștefan is the Head of Potato Genetic Breeding and Selection Lab at
NIRDPSB Brasov and also serves as an Associate Professor at the Faculty of Food
and Tourism of Transilvania University Brasov. As a horticultural engineer, her
expertise lies in potato genotyping and phenotyping. Her research interests
further extend to the development of temporal and spatial data.

26 A. BĂICOIANU ET AL.

Mihai Ivanovici received his PhD from the Politehnica University of Bucharest,
Romania, in 2006. He is currently a full professor at Transilvania University of
Brasov, Romania. His research interests include signal and image processing
and analysis, as well as remote sensing and Earth Observation data analysis.

Corneliu Florea earned his master’s degree from the National University of
Science and Technology Politehnica of Bucharest, Romania, in 2004 and
a PhD from the same university in 2009. After a stint with digital still camera
software industry, he currently serves as a professor at the university’s Image
Processing and Analysis group. There, he teaches courses on machine learning,
computer vision, and introductory statistical information processing. His
research interests include statistical approaches to machine learning and
computer vision, yielding over 80 peer-reviewed papers and of more than 25
U.S. patents.

Angel Caţaron obtained his PhD in 2004 from the Politehnica University of
Bucharest. He is currently affiliated with Transilvania University of Brașov. His
research interests focus on data analysis, machine learning and their applica
tions in addressing complex real-world challenges, with an emphasis on the
practical use of predictive modeling and data-driven decision-making.

Radu-Mihai Coliban is an Associate Professor in the Department of Electronics
and Computers at Transilvania University of Brasov, Romania. His research
interests include hyperspectral image processing, signal processing and digital
electronics.

Ștefan Popa received his PhD in Electronics, Telecommunications and
Information Technology in 2021 from the Transilvania University of Brasov,
Romania. Currently, a researcher in the university’s Electronics and Computers
Department, his work spans FPGA and ASIC design, data structures and algo
rithms, artificial intelligence, signal and image processing.

BIG EARTH DATA 27

Serban Oprişescu got his PhD in Electronics and Telecommunications from the
Politehnica University of Bucharest, Romania, in 2007. He is currently a lecturer
with Transilvania University of Brașov, Romania. He holds a B.S. degree in
Electrical Engineering and Computer Science (2002) and an M.S. degree in Bio-
medical Engineering (2003) from the University Politehnica of București. His
research focuses on image and video processing, ToF cameras, biomedical
image processing and analysis and computer science. He has authored two
ISI journal papers and more than 23 conference papers.

Andrei Racoviţeanu is a lecturer at the National University of Science and
Technology Politehnica Bucharest. He is also a researcher within the Image
Analysis and Processing Laboratory. His research interests include image pro
cessing and analysis, machine learning and remote sensing.

Gheorghe Olteanu is an agronomy expert at Transilvania University of Brașov.
His research focuses on in-situ measurements to monitor vegetation status,
contributing to advancements in precision agriculture and sustainable land
management.

Kamal Marandskiy received a B.Sc. in Electronics, Telecommunication and
Radio Engineering from the National Aviation Academy of Azerbaijan in
2020, and his M.Sc. in Advanced Electrical Systems from Transilvania
University of Brasov in 2022. He is currently pursuing a PhD in Electronics
and Telecommunications. His research focuses on machine learning techni
ques for Earth observation data analysis.

Adrian Ghinea is a network engineer at NIRDPSB Brasov. He holds a master’s
degree in Computer Science, specializing in Algorithms and Software Products
from the Faculty of Mathematics and Computer Science at Transilvania
University of Brasov. His research focuses on remote sensing.

28 A. BĂICOIANU ET AL.

Artur Kazak is a PhD student in Electronics, Telecommunications, and
Information Technologies at Transilvania University of Brașov. His research
focuses on AI-based analysis of Earth Observation data, aiming to advance
techniques for environmental monitoring and decision-making.

Luciana Majercsik received the B.S. degree in Mathematics from the University
of Bucharest, Romania, and completed her PhD in Computer Science at the
Transilvania University of Brasov, Romania. Her research interests include
machine learning, multi- and hyperspectral image analysis and visualization,
as well as graph-based methods in remote sensing.

Adrian Constantin Manea earned a PhD in Computers and Information
Technology from Transilvania University. His research focuses on the legal
and security aspects of Earth Observation, exploring the intersection of tech
nology, law, and data protection.

Liviu Doru Dogar is a PhD student in Computer and Information Technologies
at Transilvania University. His research focuses on surveillance camera systems
and data acquisition techniques for monitoring applications.

ORCID

A. Băicoianu http://orcid.org/0000-0002-1264-3404

Data availability statement

Data is available on Zenodo at https://doi.org/10.5281/zenodo.14915950.

References

Akkem, Y., Biswas, S. K., & Varanasi, A. (2023). Smart farming using artificial intelligence: A review.
Engineering Applications of Artificial Intelligence, 120, 105899. https://doi.org/10.1016/j.engappai.
2023.105899

Alzubaidi, L., Bai, J., Al-Sabaawi, A., Santamaría, J., Albahri, A. S., Al-Dabbagh, B. S. N., Fadhel, M. A.,
Manoufali, M., Zhang, J., Al-Timemy, A. H., Duan, Y., Abdullah, A., Farhan, L., Lu, Y., Gupta, A.,
Albu, F., Abbosh, A., & Gu, Y. (2023). A survey on deep learning tools dealing with data scarcity:
Definitions, challenges, solutions, tips, and applications. Journal of Big Data, 10(1), 46. https://doi.
org/10.1186/s40537-023-00727-2

BIG EARTH DATA 29

https://doi.org/10.5281/zenodo.14915950
https://doi.org/10.1016/j.engappai.2023.105899
https://doi.org/10.1016/j.engappai.2023.105899
https://doi.org/10.1186/s40537-023-00727-2
https://doi.org/10.1186/s40537-023-00727-2

Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural
adaptation. Current Opinion in Plant Biology, 56, 197–202. https://doi.org/10.1016/j.pbi.2019.12.
006

Aschbacher, J. (2017). ESA’s earth observation strategy and Copernicus. In Satellite earth observations
and their impact on society and policy (pp. 81–86). Springer Open. https://doi.org/10.1007/978-
981-10-3713-9_5

Beck, H. E., McVicar, T. R., Vergopolan, N., Pehrsson, R., Huang, X., Nijssen, B., Zhang, Y., Ukkola, A. M.,
Wood, E. F., Schumacher, D. L., Weerasinghe, I., & Sheffield, J. (2023). High-resolution (1 km)
Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific Data, 10
(1), 724. https://doi.org/10.1038/s41597-023-02549-6

Benami, E., Jin, Z., Carter, M. R., Ghosh, A., Hijmans, R. J., Hobbs, A., Kenduiywo, B., & Lobell, D. B. (2021).
Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature
Reviews Earth and Environment, 2(2), 140–159. https://doi.org/10.1038/s43017-020-00122-y

Borisov, V., Leemann, T., Seßler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2024). Deep neural
networks and tabular data: A survey. IEEE Transactions on Neural Networks and Learning
Systems, 35(6), 7499–7519. https://doi.org/10.1109/TNNLS.2022.3229161

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/
A:1010933404324

Brigato, L., Barz, B., Iocchi, L., & Denzler, J. (2022). Image classification with small datasets: Overview
and benchmark. Institute of Electrical and Electronics Engineers Access, 10, 49233–49250. https://
doi.org/10.1109/ACCESS.2022.3172939

Buda, M., Maki, A., & Maki, D. (2018). A systematic study of the class imbalance problem in
convolutional neural networks. Computers in Biology and Medicine, 98, 107–118. https://doi.org/
10.1016/j.neunet.2018.07.011

Cabrera, G. F., Miller, C. J., & Schneider, J. (2014). Systematic labeling bias: De-biasing where every
one is wrong. 2014 22nd International Conference on Pattern Recognition (pp. 4417–4422). IEEE.
https://doi.org/10.1109/ICPR.2014.756

Copernicus Browser. (2024). Retrieved July 10, 2024, from https://dataspace.copernicus.eu/explore-
data

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C.,
Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012).
Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sensing of
Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026

ECA - European Court of Auditors. (2020). Special report: Using new imaging technologies to monitor
the common agricultural policy: Steady progress overall, but slower for climate and environment
monitoring, https://www.eca.europa.eu/en/publications/SR20_04

European Space Agency. (n.d.). Retrieved July 11, 2024, from https://www.esa.int/
Frona, D., Szenderák, J., & Harangi-Rákos, M. (2019). The challenge of feeding the world.

Sustainability, 11(20), 5816. https://doi.org/10.3390/su11205816
Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B.,

Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F., Pflug, B., Bieniarz, J.,
Clerc, S., Pessiot, L., Trémas, T. . . . Martimort, P. (2017). Copernicus Sentinel-2A calibration and
products validation status. Remote Sensing, 9(6), 584. https://doi.org/10.3390/rs9060584

Gascon, F., Cadau, E., Colin, O., Hoersch, B., Isola, C., Fernández, B. L., & Martimort, P. (2014).
Copernicus Sentinel-2 mission: Products, algorithms and Cal/Val. In Prasad S. Thenkabail (ed),
Earth observing systems XIX (Vol. 9218, pp. 455–463). SPIE. https://doi.org/10.1117/12.2062260

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). https://doi.org/10.
1109/CVPR.2016.90

Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7), 2217–2226. https://doi.org/10.1109/JSTARS.2019.
2918242

30 A. BĂICOIANU ET AL.

https://doi.org/10.1016/j.pbi.2019.12.006
https://doi.org/10.1016/j.pbi.2019.12.006
https://doi.org/10.1007/978-981-10-3713-9_5
https://doi.org/10.1007/978-981-10-3713-9_5
https://doi.org/10.1038/s41597-023-02549-6
https://doi.org/10.1038/s43017-020-00122-y
https://doi.org/10.1109/TNNLS.2022.3229161
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/ACCESS.2022.3172939
https://doi.org/10.1109/ACCESS.2022.3172939
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1109/ICPR.2014.756
https://doi.org/10.1109/ICPR.2014.756
https://dataspace.copernicus.eu/explore-data
https://dataspace.copernicus.eu/explore-data
https://doi.org/10.1016/j.rse.2011.11.026
https://www.eca.europa.eu/en/publications/SR20_04
https://www.esa.int/
https://doi.org/10.3390/su11205816
https://doi.org/10.3390/rs9060584
https://doi.org/10.1117/12.2062260
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/JSTARS.2019.2918242
https://doi.org/10.1109/JSTARS.2019.2918242

Imbalanced Dataset Sampler. (2022). GitHub repository. Retrieved July 11, 2024, from https://github.
com/ufoym/imbalanced-dataset-sampler

INCDCSZ. (n.d.). National Institute of Research andDevelopment for potato and sugarbeet. Retrieved
July 11, 2024, from https://potato.ro/

Ivanovici, M., Baicoianu, A., Plajer, I. C., Debu, M., Ștefan, F.-M., Florea, C., Cațaron, A., Coliban, R.-M.,
Popa, S., Oprisescu, S., Racoviteanu, A., Olteanu, G., Marandskiy, K., Ghinea, A., Kazak, A.,
Majercsik, L., Manea, A., & Dogaru, L. (2024). AI4AGRI Sentinel-2 Brasov area 2020-2024 multi-
spectral dataset for crop monitoring and identification [data set]. Zenodo. https://doi.org/10.5281/
zenodo.14283243

Ivanovici, M., Olteanu, G., Florea, C., Coliban, R. M., Ștefan, F., & Marandskiy, K. (2024). Digital
transformation in agriculture. https://doi.org/10.1007/978-3-031-63337-9_9

Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images. https://
www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

Lee, J. S. (1980). Digital image enhancement and noise filtering by use of local statistics. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-PAMI-2(2), 165–168. https://
doi.org/10.1109/TPAMI.1980.4766994

Liedekerke, M. V., Jones, A., & Panagos, P. (2006). ESDBv2 raster library - a set of rasters derived from
the European soil database distribution v2.0. European Commission and the European Soil Bureau
Network.

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. International Conference
on Learning Representations (pp. (ICLR)). https://doi.org/10.48550/arXiv.1711.05101

Luca, R. I., Baicoianu, A., & Plajer, I. C. (2025). Spectral image data aggregation for multisource data
augmentation. European Journal of Remote Sensing, 58(1). https://doi.org/10.1080/22797254.
2025.2492295

Maja, M. M., & Ayano, S. F. (2021). The impact of population growth on natural resources and
farmers’ capacity to adapt to climate change in low-income countries. Earth Systems and
Environment, 5(2), 271–283. https://doi.org/10.1007/s41748-021-00209-6

Marandskiy, K., & Ivanovici, M. (2024). Early identification of potato fields using data fusion and
artificial neural network. 2024 International Symposium on Electronics and Telecommunications
(ISETC), Timisoara, Romania (pp. 1–4). IEEE. https://doi.org/10.1109/ISETC63109.2024.10797316

Panagos, P. (2006). The European soil database. GEO: Connexion, 5(7), 32–33.
Panagos, P., Van Liedekerke, M., Borrelli, P., Köninger, J., Ballabio, C., Orgiazzi, A., Lugato, E., Liakos, L.,

Hervas, J., Jones, A., & Montanarella, L. (2022). European soil data centre 2.0: Soil data and
knowledge in support of the EU policies. European Journal of Soil Science, 73(6), e13315.
https://doi.org/10.1111/ejss.13315

Payments and Intervention Agency for Agriculture. (n.d.). Retrieved July 11, 2024, from https://apia.
org.ro/

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger
climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.
5194/hess-11-1633-2007

Pour, A. B., Parsa, M., & Eldosouky, A. M. (Eds.). (2023). Geospatial analysis applied to mineral exploration:
Remote sensing, GIS, geochemical, and geophysical applications to mineral resources. Elsevier.

Rana, S., Gerbino, S., & Carillo, P. (2025). Study of spectral overlap and heterogeneity in agriculture based
on soft classification techniques. MethodsX, 14, 103114. https://doi.org/10.1016/j.mex.2024.103114

Research and Development Institute of Transilvania University of Brașov. (2024). Retrieved July 11,
2024, from https://icdt.unitbv.ro/ro/contact.html

Ritchie, H., & Rodes-Guiaro, L. (2024). Peak global population and other key findings from the 2024 UN
world population prospects. Our world in data. Retrieved October 18, 2024, from https://ourworl
dindata.org/un-population-2024-revision

Schmitt, M., Hughes, L. H., Qiu, C., & Zhu, X. X. (2019). SEN12MS – a curated dataset of georeferenced
multi-spectral Sentinel-1/2 imagery for deep learning and data fusion. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-2(W7), 153–160. https://
doi.org/10.5194/isprs-annals-IV-2-W7-153-2019

BIG EARTH DATA 31

https://github.com/ufoym/imbalanced-dataset-sampler
https://github.com/ufoym/imbalanced-dataset-sampler
https://potato.ro/
https://doi.org/10.5281/zenodo.14283243
https://doi.org/10.5281/zenodo.14283243
https://doi.org/10.1007/978-3-031-63337-9_9
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.1109/TPAMI.1980.4766994
https://doi.org/10.1109/TPAMI.1980.4766994
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.1080/22797254.2025.2492295
https://doi.org/10.1080/22797254.2025.2492295
https://doi.org/10.1007/s41748-021-00209-6
https://doi.org/10.1109/ISETC63109.2024.10797316
https://doi.org/10.1111/ejss.13315
https://doi.org/10.1111/ejss.13315
https://apia.org.ro/
https://apia.org.ro/
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1016/j.mex.2024.103114
https://icdt.unitbv.ro/ro/contact.html
https://ourworldindata.org/un-population-2024-revision
https://ourworldindata.org/un-population-2024-revision
https://doi.org/10.5194/isprs-annals-IV-2-W7-153-2019
https://doi.org/10.5194/isprs-annals-IV-2-W7-153-2019

Sentinel-1 Toolbox. (n.d.). Retrieved February 12, 2025, from https://earth.esa.int/eogateway/tools/
sentinel-1-toolbox

Sentinel-2 bands. (n.d.). Retrieved July 17, 2024, from https://custom-scripts.sentinel-hub.com/
custom-scripts/sentinel-2/bands/

Sentinel-2 processing. (n.d.). Retrieved July 11, 2024, from https://sentinels.copernicus.eu/web/
sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a

Sentinel Application Platform. (n.d.). Retrieved July 11, 2024, from https://step.esa.int/main/down
load/snap-download/

SNAP - Resampling methods. (n.d.). Retrieved February 12, 2024, from https://step.esa.int/main/wp-
c o n t e n t / h e l p / v e r s i o n s / 1 1 . 0 . 0 / s n a p / o r g . e s a . s n a p . s n a p . h e l p / g e n e r a l / o v e r v i e w /
ResamplingMethods.html

Song, H., Kim, M., Park, D., Shin, Y., & Lee, J. G. (2022). Learning from noisy labels with deep neural
networks: A survey. IEEE Transactions on Neural Networks and Learning Systems, 34(11),
8135–8153. https://doi.org/10.1109/TNNLS.2022.3152527

Sumbul, G., Charfuelan, M., Demir, B., & Markl, V. (2019). BigEarthNet: A large-scale benchmark
archive for remote sensing image understanding. In IGARSS, 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium (pp. 5901–5904). https://doi.org/10.1109/IGARSS.
2019.8900532

Teaci, D. (1980). Bonitarea terenurilor agricole (Bonitarea și caracterizarea tehnologică a terenurilor
agricole) (p. 296). Editura Ceres, București.

Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B.,
Floury, N., Brown, M., Navas Traver, I., Deghaye, P., Duesmann, B., Rosich, B., Miranda, N.,
Bruno, C., L’Abbate, M., Croci, R. . . . Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing
of Environment, 12, 0034–4257. https://doi.org/10.1016/j.rse.2011.05.028

Tseng, G., Zvonkov, I., Nakalembe, C. L., & Kerner, H. (2021). CropHarvest: A global dataset for crop-
type classification. In NeurIPS, 2021 datasets and benchmarks track. https://openreview.net/
forum?id=JtjzUXPEaCu

U.S. Department of Agriculture. (2024). Retrieved July 12, 2024, from https://www.nass.usda.gov/
Research_and_Science/Cropland/sarsfaqs2.php

Weikmann, G., Paris, C., & Bruzzone, L. (2021). TimeSen2Crop: A million labeled samples dataset of
Sentinel-2 image time series for crop-type classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 14, 4699–4708. https://doi.org/10.1109/JSTARS.2021.
3073965

32 A. BĂICOIANU ET AL.

https://earth.esa.int/eogateway/tools/sentinel-1-toolbox
https://earth.esa.int/eogateway/tools/sentinel-1-toolbox
https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/bands/
https://custom-scripts.sentinel-hub.com/custom-scripts/sentinel-2/bands/
https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a
https://sentinels.copernicus.eu/web/sentinel/sentinel-data-access/sentinel-products/sentinel-2-data-products/collection-1-level-2a
https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/download/snap-download/
https://step.esa.int/main/wp-content/help/versions/11.0.0/snap/org.esa.snap.snap.help/general/overview/ResamplingMethods.html
https://step.esa.int/main/wp-content/help/versions/11.0.0/snap/org.esa.snap.snap.help/general/overview/ResamplingMethods.html
https://step.esa.int/main/wp-content/help/versions/11.0.0/snap/org.esa.snap.snap.help/general/overview/ResamplingMethods.html
https://doi.org/10.1109/TNNLS.2022.3152527
https://doi.org/10.1109/IGARSS.2019.8900532
https://doi.org/10.1109/IGARSS.2019.8900532
https://doi.org/10.1016/j.rse.2011.05.028
https://openreview.net/forum?id=JtjzUXPEaCu
https://openreview.net/forum?id=JtjzUXPEaCu
https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php
https://www.nass.usda.gov/Research_and_Science/Cropland/sarsfaqs2.php
https://doi.org/10.1109/JSTARS.2021.3073965
https://doi.org/10.1109/JSTARS.2021.3073965

Received 15 September 2023, accepted 26 October 2023, date of publication 2 November 2023, date of current version 8 November
2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329732

An Extended Survey Concerning the Significance
of Artificial Intelligence and Machine Learning
Techniques for Bug Triage and Management
RAZVAN BOCU 1,2, ALEXANDRA BAICOIANU 1,2, AND ARPAD KERESTELY 2
1Department of Mathematics and Computer Science, Transilvania University of Braşov, 500091 Braşov, Romania
2Department of Research and Technology, Siemens Industry Software, 500227 Braşov, Romania

Corresponding author: Razvan Bocu (razvan.bocu@unitbv.ro)

ABSTRACT Bug reports are generated in large numbers during the software development processes in the
software industry. The manual processing of these issues is usually time consuming and prone to errors,
consequently delaying the entire software development process. Thus, a properly designed bug triage and
management process implies that essential operations, such as duplicate detection, bug assignments to proper
developers, and determination of the importance level, are sustained by efficient algorithmic models and
implementation approaches. Designing and implementing a proper bug triage and management process
becomes an essential scientific research topic, as it may significantly optimize the software development
and business process in the information technology industry. Consequently, this paper thoroughly surveys the
most significant related scientific contributions analytically and constructively, distinguishing it from similar
survey papers. The paper proposes optimal algorithmic and software solutions for particular real-world
use cases that are analyzed. It concludes by presenting the most important open research questions and
challenges. Additionally, the paper provides a valuable scientific literature survey for any researcher or
practitioner in software bug triage and management systems based on artificial intelligence and machine
learning techniques.

INDEX TERMS Bug report, bug prioritization, bug assignment, bug triaging, classification, machine
learning.

I. INTRODUCTION
Large software development projects rely on bug triaging as
an important part of software testing. Thus, it supports the
software bug management processes, while allowing relevant
decisions, which are related to the software bug fixing, to be
made. Relevant tasks are represented by properly assigning
bugs to adequate developers, prioritizing bugs, and detecting
duplicate bugs. Nevertheless, manual bug triaging appears as
an essentially time consuming and tedious task, considering
that a significant part of software development requires a lot
of time and other types of resources. Considering old statistics
from August 2009, the Mozilla bug database contained over
500,000 bug reports, and the Eclipse bug database had over
250,000 bug reports. The average number of bug reports
created daily amounts to 170 for the Mozilla database and

The associate editor coordinating the review of this manuscript and

approving it for publication was Xinyu Du .

120 for the Eclipse database between January and July
2009. The dynamics of software systems development have
constantly increased during the past fifteen years. Therefore,
the problem that is approached in this paper becomes
increasingly more relevant.

The process of bug triage involves that a triager makes
a decision regarding the bugs entered in the respective
bugs repository through an analysis, which involves two
variants. Thus, the repository-oriented decisions involve that
the reported bug does not represent a duplicate, the person
that triages checks it for validity, which means that the bug is
assessed whether it is genuine. This mediates the removal of
bug reports that do not require a resolution. The remaining
bug reports are investigated to support the development-
oriented decisions, which involve that the triager assesses
the severity and priority levels of the bugs. These levels are
modified if inappropriate values are observed, so sufficient
resources are allocated to resolve critical bugs. Consequently,

123924

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6577-1904
https://orcid.org/0000-0002-1264-3404
https://orcid.org/0000-0002-8918-2888
https://orcid.org/0000-0002-5954-1675

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

the person that addresses the manual bug triaging process
writes down the required remarks for the bug and assigns
this bug report to the suitable developer. Therefore, the
need to design and implement an efficient bug triaging and
management system becomes clear.

In this context, the task of bugs classification, which
implies the determination of priorities, appears as a very
important effort package relative to very large software devel-
opment projects, and also open source projects, considering
that the efficiency of the development process is usually
quantitatively assessed considering the number of open
bug reports, and the average resolution time. The manual
determination of bug priorities also introduces inherent
human errors to the process, which essentially depends
on the bug triager’s subjective perspective and experience.
Consequently, a significant number of bug reports may have
been assigned incorrect priority levels while other bug reports
remain unaddressed. The implied economic and operational
consequences are easily discernible. Therefore, an automatic
bug triaging and management strategy, which uses a certain
automated approach, is required. Thus, the related scientific
literature includes various machine learning approaches, such
as Decision Tree (DT), Support vector machine (SVM)
classification algorithms, Naive Bayes (NB) classifiers,
Information Retrieval (IR), and Random Forest (RF) models.
This paper concentrates on a logically structured survey,
which aims to analyze and suggest the optimal bug triaging
and management approaches. The scientific objectives of this
research are the following.

• To survey the existing literature to determine shortcom-
ings and propose optimal solutions.

• Identification of the most relevant studies in bug
classification.

• Prioritizing studies relevant to bug sorting according to
various criteria: citations, scientific relevance, objectives
achieved, reproducibility of experiments, genericity of
solutions, etc.

• Classification by various criteria of frameworks dedi-
cated to the open problem.

• To determine the relevant scientific research trends.
• To identify the relevant research problems.
• To define the scientific relevance of the corresponding
content of research.

• To propose the conceptual and practical relevance of
automatic bug triaging in the management processes.

The rest of the paper is structured according to the follow-
ing sections. The next section presents the structured research
methodology, which has been considered. Following, the
most relevant artificial intelligence models are described
and analyzed. Moreover, the relevant performance evaluation
methods and related metrics are surveyed and assessed.
Furthermore, the most relevant scientific challenges and
open research questions are discussed. Consequently, the
essential research questions, which determined this extended
survey process, are analyzed, and the degree of this paper’s

TABLE 1. Reference scientific literature databases and academic search
engines.

accomplishment is objectively assessed. The last section
concludes the paper.

II. RESEARCH METHODOLOGY
The survey methodology relates to a systematic review (SR)
approach, which is determined by the methodology that is
referred to as ‘‘Preferred Reporting Items for Systematic
Reviews andMeta-Analysis’’ (PRISMA) [1]. More precisely,
the scientific methodology is based on the following phases:
specification of research questions, identification and survey
of proper papers, and specification of the relevant inclusion
and exclusion criteria.

A. RESEARCH QUESTIONS
The literature review relates to the following research
questions.

• What is the related significant literature, which
approaches conceptual problems, and reports adequate
solutions?

• What are the relevant scientific research trends?
• What are the determined research questions and short-
comings?

• What is the reviewed research scope’s conceptual,
scientific, and real-world importance?

• What are the principal algorithmic and machine learning
models that specify and implement automatic bug
triaging and management approaches?

The following subsection describes the logical structure of
the proper research process.

B. RESEARCH PROCESS
The reference sources that were considered in order to collect
the proper scientific literature are described in Table 1.
Here, DL means Digital Library, and SE means Search
Engine.

The next subsection presents the exclusion and inclusion
criteria, which have been used to filter the scientific
contributions objectively.

VOLUME 11, 2023 123925

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

TABLE 2. Inclusion criteria.

TABLE 3. Exclusion criteria.

C. EXCLUSION AND INCLUSION CRITERIA
The appropriateness of the surveyed papers, and, conse-
quently, the scientific adequacy of this review paper, are also
determined by certain inclusion criteria (IC), and exclusion
criteria (EC). More precisely, contributions that do not meet
the specified EC are disregarded. The IC-related filtering
model relates to a logical process based on the following
steps.

• Step 1. Abstract-related filtering: irrelevant articles are
disregarded considering the information acquired from
the abstract, and also based on the keywords. More
precisely, articles that fulfill at least 50% of the relevance
threshold are considered.

• Step 2. Full text-related filtering: articles that concern
only a small part of the scientific scope, as specified by
the abstract and the keywords, are disregarded.

• Step 3. Quality analysis-related filtering: the rest of the
papers were additionally filtered considering that at least
one of the following conditions are unmet:
<The paper describes a functional solution concerning
the automatic bug triaging and management models.>
AND <The article fully presents the implemented
technical solution.> AND <The article surveys related
relevant contributions.>AND<The article presents and
assesses the outcomes of the experimental process.>

Furthermore, the inclusion criteria are presented in table 2.
Moreover, the exclusion criteria are described in table 3.
The following sections extensively review the large

number of articles, which were selected considering the
principles of this scientific survey methodology.

III. ARTIFICIAL INTELLIGENCE MODELS FOR BUGS
TRIAGING
The relevant scientific literature presents various approaches
concerning software bug triaging (SBT). Thus, SBT models
are grouped into six fundamental categories relative to

the considered AI technologies. The six technological
approaches relate to machine learning (ML), information
retrieval (IR), social network analysis (SNA), recommender
systems (RS), mathematical modeling and optimization
(MMO), and deep learning (DL). The features of these
approaches are described in Table 4. This section surveys
the most relevant scientific contributions identified in each
category.

A. BUG TRIAGING MODELS BASED ON MACHINE
LEARNING
Machine Learning (ML) models represent the natural
solution to implement an automatic software bug triaging
(SBT) system. Proper machine learning-based models [2],
[3] are frequently used in this respect (Softmax classi-
fier, Support Vector Machine, Multinomial Naive Bayes,
K-Nearest Neighbors, J48, Random Forests, Artificial Neural
Networks), along with clustering [4] and association rule
mining [5]. SBT is regarded as a multiclass, single-label
classification problem [6], which considers the software
developer as a class. Thus, it is immediately discernible
that the proper classification techniques are frequently used
relative to machine learning-based bug triaging techniques.
The performance metrics, such as accuracy, precision, recall,
and F1-measure, are used in order to assess the described
approaches, typically on the top 5 or 10 best outcomes.
Thus, the accuracy gets as high as 40% - 50%. It is
relevant to note that a comparative review concerning
a handful of machine learning models for software bug
triaging is presented in article [7], and is also conducted
by Goyal and Sardana [8]. While other techniques like
information retrieval can beat plain ML-based SBTs, they
are relatively simple to model, and there are proper libraries,
which implement efficient Application Programming Inter-
face (API) support. Nevertheless, the enhancement of the
computational performance [9] represents a goal that con-
tinues to motivate scientific research efforts to enhance the
existing approaches [10], and consequently assess modern
approaches, which are based on artificial intelligence models.
The surveyed experimental analysis contributions suggest
that plain machine learning-based approaches under-perform
deep learning-based models, but they are comparable with
information retrieval-based models.

B. BUG TRIAGING MODELS BASED ON INFORMATION
RETRIEVAL
The general algorithmic process of software bug triaging
may also be perceived as a problem of information retrieval
(IR), which presumes that the relevant data determines that
a developer is fetched from the set of software developers
relative to the newly created bug reports. Thus, IR-related
models, such as LSA (Latent Semantic Analysis), and
LSI (Latent Semantic Indexing) [11], [12], are also used
together with other relevant models. The accuracy scores
generated using IR-related SBT models range from 63.2%

123926 VOLUME 11, 2023

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

TABLE 4. Features of various bug triaging techniques.

to 96%. Moreover, a recall value of 95% is reported by
the work described in article [13]. Additionally, TF-IDF
(Term Frequency-Inverse Document Frequency) represents
the most usual algorithmic model relative to IR-related
models for software bug triaging. Several articles describe
relevant changes to TF-IDF-related solutions related to the
scientific efforts presented in [14] and [15]. These resources
consider bug location information, termweighting in TF-IDF,
and time metadata concerning the TF-IDF presentation.
Additionally, software bug triaging uses both text mining,
which is presented in articles [16], [17], [18], [19], and also
text similarity models, which are described in articles [20],
[20], [21], [22], [23], [24], [25]. The topic is also approached
in other related studies.

Moreover, large software repositories determine an inter-
esting scope of scientific research, which is interestingly
approached in [26]. Also, the concept of topic modeling
is approached in several articles, such as [12], [27], [28],
[29], and [30], with a clear emphasis on software bug
triaging. Moreover, Latent Dirichlet Allocation (LDA) deter-
mines an important probability-related algorithmic approach,
which is described in paper [31]. Other similar approaches
consider this algorithmic model for automatic software
bug triaging, presented in [32] and [33]. Certain papers
regard specialized variants concerning topic modeling in
connection to automatic software bug triaging. Thus, the
multi-feature topic model (MTM) is proposed in article [34].
At the same time, the Entropy Optimized Latent Dirichlet
Allocation is described in article [35], along with the
Multiple LDA concept proposed in paper [29]. Notably, the
maximum generated accuracy through the utilization of topic
modeling-based bugs triaging approaches is 98.31%, which
is suggested by the work presented in article [36].

The extensive scientific literature that was surveyed
suggests that, in a similar fashion to machine learning-
based models, information retrieval-based models provide
acceptable application programming interface (API) features.
Furthermore, the implied algorithmic models are easy to
model and implement in a suitable programming language.
Despite the obvious conceptual and practical advantages, the
relevant approaches related to information retrieval and topic
modeling present computational performance issues in cer-
tain real-world scenarios, and they may also have difficulties
generating proper terms relative to the topics produced by
the respective topic modeling approaches. Thus, the topics
that are produced by related topic modeling approaches may

provide a certain degree of randomness, which may impact
the overall data analysis process, as it is suggested by the
work that is reported in article [37]. Nevertheless, it is relevant
to state that the surveyed scientific literature suggests that
the main problem, which should be addressed, is represented
by the insufficient level of computational performance that
manifests in certain real-world scenarios that are described
in article [32]. This may affect the real-time processing of
relevant software bug data.

There is a clear similarity between ML-related and
IR-related automatic bug triage and management techniques.
The fundamental difference is determined by the fact that
IR-related approaches essentially relate to the textual data
that are stored by the software bug repositories. Similarly to
ML-related approaches, algorithmic and software model-
ing is also relatively easy with IR-related models, which
require the least computational and data storage resources
to implement automatic software bug triaging systems.
The surveyed literature also suggests that these IR-related
approaches benefit from consistent support relative to all
modern programming languages and application program-
ming interfaces. Some drawbacks, such as computational
scalability and real-time software bug triaging, are shared
between IR-related and ML-related approaches.

C. BUG TRIAGING MODELS BASED ON SOCIAL NETWORK
ANALYSIS
Relative to software bug triaging, social networks designate
the developers’ network, which is used by the enrolled
software developers in order to sustain the implied software
systems development processes. The activity of bug resolu-
tion implies the existence of particular skills. Nevertheless,
developers use third-party or external support sources, such
as StackOverflow, or GitHub, which may provide useful
technical information. The extraction of useful information
from several sources in order to enhance the resolution of
software bugs is referred to as Crowdsourcing. Thus, this idea
is explored in certain papers, such as [38], [39], and [40].

The relevant technical information, as it is fetched from
several repositories, may be integrated together with the
identifying data of the software bug repository, which may
help identify the software developers with expert skills.
This approach is generally designated as cross-repository
analysis and is approached in an interesting manner in arti-
cle [41]. The synergistic combination of crowdsourcing and
social networks-related analysis models creates a functional
advantage regarding determining the relationship between
developers and their technical skills. This generally supports
an enhanced bug assignment process to the proper developers,
which may support the implied automatic bug management
systems. The surveyed scientific literature suggests that
this type of approach determines a problematic aggregation
and integration of the acquired and existing data, which is
particularly derived from the consideration of multiple data
sources. The implied problem is studied and reported in

VOLUME 11, 2023 123927

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

articles [38], [39], and [40], which also analyze the generated
and existing relationship graphs. Furthermore, the surveyed
literature suggests that automatic software bug triage and
management approaches, which are based on software
network analysis, are relatively difficult to design due to the
implied processing of the graph data structures that model
the developer-bug relationships. Consequently, the implied
data processing routines require more computational time
and resources. Nevertheless, the surveyed contributions claim
that this is compensated by the overall enhancement of the
bug assignment or reassignment, while further algorithmic
and implementational improvements are likely to assure the
required computational scalability.

D. BUG TRIAGING MODELS BASED ON RECOMMENDER
SYSTEMS
Recommender systems represent a fundamental concept in
the scope of machine learning scientific research. Thus,
the contributions that are described in articles [23], [43],
[44], and [45] suggest that proper developers may be
efficiently recommended and assigned to the newly created
bug reports. The consideration of recommender systems
(RS) mediates the creation of a list of software developers,
and a list of the most suitable k developers is generated,
according to their assessed technical skills. Thus, certain
historical contributions are reported in articles [46], [47],
and [48]. The approach that is described in article [48]
involves that a ranking of the software developers is created
considering using the mechanism of developer prioritization.
It is interesting to note that certain performance metrics are
described in the surveyed literature. Thus, in article [48],
the authors propose Accuracy@K (Acc@K), Precision@K
(P@K), and Recall@K (R@K). Here, K designates the
most suitable K software developers relative to the list,
which was created using the implied recommender system.
There is a majority of the articles that were surveyed,
which consider the Eclipse and Mozilla Firefox bug
trackers, and Recall@10 is obtained at a level of up
to 90%.

Including an RS-related algorithmic module mediates the
generation of a list of ranked developers, which are sent over
to the automatic bug triaging and management components.
Consequently, the system generates a higher-quality software
developer suggestion, who is available and adequate to fix
the respective bugs. Nevertheless, it is important to note that
there are certain conceptual and practical problems, which are
reported in the surveyed literature. Thus, the issue of cold
start is analyzed in article [49], while the performance and
data sparsity are approached in paper [50]. Thus, the issue
of cold start and data sparsity are determined by insufficient
data relative to a certain data item or category, which
provokes an overall degradation of the recommender system’s
computational performance. More precisely, an RS-related
bug triaging system may not properly identify the software
developer, if sufficient data are not available regarding the
potentially suitable developers.

E. BUG TRIAGING MODELS BASED ON MATHEMATICAL
MODELING AND OPTIMIZATION
Several mathematical models are relevant for general bug
triaging and management processes. Thus, fuzzy sets are
assessed and experimentally analyzed in articles [51], [52],
[53], [54], and [55]. Moreover, the Knapsack programming
was analyzed in paper [55], in connection to bug triaging.
Additionally, a bug triaging process, which is based on
genetic algorithms models, is proposed in article [56]. It is
relevant to mention the probabilistic optimization models that
are based on the behaviour of ants, which are approached
in paper [57]. Most surveyed contributions pertain to the
Eclipse bug tracker, and the implemented models generate
a maximum accuracy of 86%. In this case, the researcher
focuses on the development of the mathematical models, and
also on the specification of the objective functions, which are
used to process the bug reports data.

As an example, relative to the fuzzy modeling-related
techniques, a fuzzy model of software bugs is necessary,
along with the membership functions that are specified
between software bug terms and respective developers
for bug triaging purposes. Considering the optimization
models for software bug triaging, the relevant optimization
constraints are specified relative to the number of bugs
that are resolved by a certain developer during a given
period of time. This is particularly important, as time is an
important parameter, especially relative to high priority and
security bugs. Consequently, the specified and implemented
mathematical model mediates the selection of the proper
developer to resolve the processed bug reports.

The software bug triage techniques (SBT), which are
based on the optimization concept, imply the adequate
mathematical modeling of the SBT problems relative to the
terms of the implied optimization model. As an example,
an SBT software system that is based on the mechanism
of Ant Colony Optimization (ACO) [58], presumes that the
bug tossing graphs are generated using the historical bug
resolution data. Furthermore, the ants are allowed to circulate
through these tossing graphs, with the goal to detect the
optimumpaths, which determine the suggested developers for
the resolution of the reported bugs. Additionally, an ACO-
related model is based on certain calibration parameters,
such as the number of ants, the number of iterations, the
configuration of the developer’s network, and the intensity of
the ants’ pheromone. Several knapsack optimization-related
SBT techniques [59], involve that the bug fixing and
developer metadata are transformed into the respective
knapsacks. The capacity of knapsacks is determined by the
time limit, which is allocated for the resolution of the software
bugs. Thus, the items and knapsacks determine the number of
bugs and developers, respectively.

Genetic algorithms-related optimization techniques [60]
for software bug triaging imply that fitness functions are
specified relative to the list of words that label and describe
bugs. The calculation of similarity scores is performed for
clustered centers, and the fitness functions pertain to the

123928 VOLUME 11, 2023

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

developers’ data. The maximum value of the similarity
suggests a higher-grade membership in the cluster of devel-
opers, which resolve the provided software bugs. Moreover,
greedy search-related optimization models [61] for software
bug triaging are based on the creation of a search space
by considering the data of particular developers, which
are available for a specific timeframe in order to resolve
the existing bugs. Moreover, concerning the bugs triaging
process, the distance functions are utilized to compute the
distance to all the available developers, and consequently
assign the open bugs to the developers that are featured by
the shortest distance.

The surveyed articles suggest that the mathematical-based
models mediate efficiently identifying the necessary con-
straints. The computational performance of bug triaging
represents the main issues of these techniques, and the rel-
evant problematic is approached in the articles [41], [62], and
[63]. The efficient real-time behaviour of the implemented
models may be affected by particular situations, such as the
removal of the developer from the respective project, or the
possibility for the developer to leave the company.

The fuzzy logic-related bug triaging models imply that
membership functions are specified to represent relationships
between the newly reported software bugs, and the proper
software developers. The relevant problematic is approached
in articles [60], [61], and [63]. The creation of new software
bugs implies that the similarity between the terms of newly
reported bugs relative to the existing bug terms is computed.
Following, fuzzy logic allows for the membership values
to be computed in connection to the newly created bugs,
to assign the proper developers. Thus, a greater value of
the membership indicates a higher possibility of properly
resolving the bugs. It is relevant to note that several
recent studies, such as [60], [62], and [63], propose fuzzy
logic models relative to multi-criteria decision-making and
analysis. The surveyed contributions suggest that these are
used in the realm of efficient software bug triaging systems.

The main advantage of fuzzy logic models is the implied
simplicity, and also the reasonable amount of computation
resources that are required [63]. Considering a varied set
of skilled software developers, the consideration of fuzzy
membership mediates the efficient selection of the optimal
developer. The disadvantage of SBT approaches that are
based on fuzzy logic models is represented by the relatively
difficult development of the most relevant and logical
membership function. Moreover, the extensive scientific
survey that was conducted suggests that only a few relevant
fuzzy logic-related models are reported. Consequently, the
degree of scientific generality is reduced, in this case, and
the possibility of considering this type of mathematical and
algorithmic model in all real-world use cases is problematic.

F. BUG TRIAGING MODELS BASED ON DEEP LEARNING
Deep Learning represents a machine learning technique,
which considers the natural ‘‘learn by example’’ strategy.
Therefore, its algorithmic and computational apparatus may

also be applied to software bug triaging (SBT). Thus,
deep learning techniques, which are based on Convolutional
Neural Networks (CNN) are described in articles [2], [64],
and [65]. Moreover, models that are based on Recurrent
Neural Networks (RNN) are discussed in articles [2] and [5].
These papers report contributions that are consistently used
relative to software bug triaging. It is relevant to note
that Convolutional Neural Networks and Recurrent Neural
Networks represent popular approaches relative to deep
learning models, which are considered to implement software
bug triaging systems. The essential difference between
CNN and RNN is determined by the densely connected
feed-forward network, which determines CNN, while RNN
considers a feed-backward network, which processes the data
from the previous iteration in order to improve the weights.
Thus, bug summary and description represent significant
attributes, which are usually processed in general bug triaging
processes. These are text-based attributes. Consequently,
word embedding models, such as Word2Vec and Glove,
are frequently used to implement software bug triagers.
The surveyed articles report experiments that are conducted
on various datasets, and the obtained accuracy values
belong to the range 57% to 87% relative to the assessed
DL-related models. The Word2Vec approach [66] is a
word embedding technique that is frequently considered in
the related scientific literature, as compared to the Glove
model [67].

The considered CNN models are based on convolutional
layers and pooling layers. The rationale behind these layers is
represented by feature extraction. Classification is conducted
during the last stage. Thus, relative to SBT, each software
developer determines a category. Generally, DL-related mod-
els offer consistent computational performance, scalability,
and learning rates, which is the time required for the model’s
training, relative to other AI-related models. Nevertheless,
computational time and the mandatory features of the
computing infrastructure represent key challenges. Thus,
DL-related models require greater training time relative to
traditional machine learning or information retrieval-related
approaches [68]. This computational behaviour is determined
by the multiple data processing layers, which have to be
visited [69]. Therefore, organizations that cannot afford the
more expensive computational infrastructures, may be forced
to consider alternative solutions.

Regular multilayered CNN architectures, such as the one
that is presented in article [64], consider DL-related software
architectures for SBT, which are structured according to word
vector representation layers, convolutional layer, pooling
layer, and activation functions, which are necessary in order
to aggregate the generated output values. The convolution
layer conducts the training of the data samples, and also the
training of the input data samples. The functional relevance of
the pooling layer is to determine and extract the data samples
from the feature space, which are relevant to the processed
task. Moreover, it is relevant to note that Max pooling tech-
niques, which are sample-based discretization processes, are

VOLUME 11, 2023 123929

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

considered and proposed in the surveyed studies, considering
that they provide consistent computational performance.

The surveyed papers also describe personalized deep
learning models, such as graph recurrent convolutional
neural networks (GRCNN) models [68], and reinforcement
deep learning (RDL) models [69]. The graph recurrent
convolutional neural network (GRCNN) model generates F1
scores of 86.74%, and 75.64% relative to the Eclipse and
Mozilla projects bug trackers. Furthermore, the surveyed
deep reinforcement learning approaches generate 52%, 54%,
68%, and 78% top-5 accuracy values considering the
OpenOffice, NetBeans, Mozilla, and Eclipse bug trackers.

IV. PERFORMANCE EVALUATIONS
Performance determines a significant problematic for the
assessment of any bug triaging approach, which was nat-
urally approached by this extended study. Consequently,
the relevant performance metrics suggest the real-world
appropriateness of the proposed algorithmic approaches.
As an example, relative to a classification-related bug
management and triaging model, accuracy (ACC), precision
(P), recall (R), and F-measure (F1) are defined through a
confusion matrix [70].

The number of correct predictions divided by the total
number of predictions makes up the classification accuracy
measure, which is possibly the most straightforward to use
and implement. The formula for the accuracy is presented in
equation (1), where TP, TN , FP, and FN represent the true
positives, true negatives, false positives, and false negatives,
respectively.

ACC =
TP+ TN

TP+ TN + FP+ FN
(1)

A multitude of studies consider this metric to validate
the model [31], [94], [95], [96], [97], [98]. However,
some of the mentioned studies also use other metrics for
parallel comparisons, and/or validations, precisely because
the accuracy itself presents some downfalls. Sometimes,
it may be preferable to choose a model with lower accuracy,
if it has a stronger ability to anticipate the outcome of the
situation. For instance, if the real-world use case presents a
significant class imbalance, a model can predict the value of
the majority class for all predictions, and obtain a high level
of classification accuracy. Nevertheless, the model may not
be applicable to the problem at hand.

Therefore, the next time a classification problem is
presented, one should be careful not to merely choose
accuracy as a metric, and start creating the model straight
away. Naturally, experimenting with the model is enticing,
but it’s necessary to take some time to understand the types
of issues that should be solved, and the most suitable metrics.
After clearing that up, one may be confident that the model
that is created will be appropriate for the task at hand. This
paradox is known as the Accuracy Paradox, and for such
issues, extra measurements are needed to evaluate a classifier.

Further on, precision represents the ratio of relevant
software developers relative to all the developers determined
by the respective machine learning algorithm. Continued, the
recall represents the ratio of relevant software developers
relative to all the relevant software developers determined
by the machine learning algorithm. The formulas for these
metrics are presented in equation (2).

P =
TP

TP+ FP
,R =

TP
TP+ FN

(2)

Both of these values should ideally be as high as they can
be. That might not be possible, though. Precision will fall off
when recall rises, and vice versa. Therefore, one must choose
which indicators are particularly relevant while training the
machine learning model. One crucial and time-consuming
aspect of software maintenance is bug triaging. The model
may be required not to provide a false result if it was used
for an organization that wanted to determine whether the
programmer is a good fit or not for an urgent bug. As a result,
one would rather label suitable programmers as inappropriate
programmers (false negative) than suitable programmers as
inappropriate (false positive). In other words, a false negative
is preferable to a false positive (recall).

Additionally, F1-measure (3) is a metric that combines
precision and recall. The F1 measure is the best option if it
is required to choose a model based on a balance between
precision and recall.

F1 =
2 × P× R
P+ R

(3)

It is interesting to note that these metrics may be
computed directly, or they can be computed using a confusion
matrix [99].

In addition, other metrics have proved valuable for
measuring the quality of results, metrics that are perhaps
less well-known but of certain interest. For example, the
authors of article [71] conduct a relatively consistent analysis
of existing bug triaging techniques. Thus, the article surveys
74 studies, which are related to software bug triaging, and it
includes a presentation of the metrics that were used in order
to evaluate the analyzed software bug triaging models. Thus,
the article emphasizes the metrics, which are considered in
order to rank the available software developers. Thesemetrics
are top-K accuracy, Precision@K (P@K), Recall@K (R@K),
mean reciprocal rank (MRR), and mean average precision
(mAP). Here, K designates the number of recommended or
available software developers. The top-K accuracy relates
to the number of effective developers that have been tasked
with the resolution of existing bugs, out of the K developers
that are recommended. This is computed as the ratio of
recommended developers divided by the total number of
developers. Although there are numerous studies that use this
metric, such as [101] and [102], the article [100] presents
an experimental analysis concerning the trade-offs in top-
k classification accuracies, and the losses related to the
problematic of deep learning.

123930 VOLUME 11, 2023

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

Furthermore, P@K is calculated as the ratio between
the relevant (effective) recommended developers and the
total number of recommended developers. Moreover, R@K
is calculated as the ratio between the relevant (effective)
recommended developers and the total number of relevant
developers. Thus, P@K and R@K are computed according to
the formulae described in equation (4), F1@K is represented
in equation (5), and the average precision (AP) is described
in equation (6).

P@K =
TP@K

TP@K + FP@K
,

R@K =
TP@K

TP@K + FN@K
(4)

F1@K = 2 ×
P@K × R@K
P@K + R@K

(5)

AP = 6(Recall@K − Recall@(K − 1))

× Precision@K (6)

Furthermore, DCG@K and NDCG@K represent two
additional metrics, which are considered in order to evaluate
recommender systems. DCG is an acronym for Discounted
Cumulative Gain, and NDCG is the acronym for Normalized
Discounted Cumulative Gain. These metrics are considered
in order to assess the quality of the developers ranking
during the software bug triaging process. The calculation of
DCG@K and NDCG@K is conducted using the formulae
described in equation (7). Here, reli represents the relevance
of the ith developer recommendation, while the IDCG deter-
mines the Discounted Cumulative Gain in ideal conditions.

DCG@K =

K∑
i=1

2reli − 1
log2(i+ 1)

,

NDCG@K =
DCG@K
IDCG@K

(7)

The surveyed articles suggest that, although contributions
like [71] imply that mean average precision mAP represents
the optimal quantitative assessment metric related to software
bug triaging, the quantitative and qualitative analysis is
also determined by the type of AI-related model, which is
selected for the bug management and triaging process. Thus,
if the algorithmic model is based on recommender system
techniques, then DCG@K and NDCG@K are the optimal
metrics to conduct the performance evaluation [48].

Furthermore, relative to machine learning and information
retrieval-oriented models, accuracy, precision, recall, and
F-measure are the recommended performance evaluation
metrics [70].

V. SCIENTIFIC CHALLENGES AND OPEN RESEARCH
QUESTIONS
The types of metrics, algorithmic and numerical approaches,
which were surveyed in the previous sections, suggest that
although numerous techniques exist for the design and
implementation of automatic bug triaging and management

techniques, there are also conceptual and practical chal-
lenges, which are discussed in this section, along with the
proper suggested solutions. This section considers several
categories of conceptual and real-world problems, which
are relevant for future research efforts. Additionally, the
extensive surveyed literature determines significant open
research questions, which are discussed.

A. GENERATION OF DEVELOPERS VOCABULARY
The generation of a precise software developers’ vocabulary
represents a fundamental activity relative to the software
bug triaging process. Thus, the design and development of
software bug triaging techniques imply that the defining
bug data and technical abilities of the software developers
are taken into account during the automatic bug assignment
process. Nevertheless, apart from the technical abilities of
the involved software developers, recent articles, such as [72]
and [73], consider other relevant aspects. Thus, there are
certain software engineers or developers that can be classified
as ‘‘experts’’, and may be consequently considered during the
optimization of the developer vocabulary generation process,
which relates to upcoming software bug triaging techniques.

B. DATA REDUCTION MODELS
The contribution that is described in article [74] reports
an approach for filtering and eliminating invalid bugs from
the processed bug trackers. This optimizes the amount
of bug triaging data, and consequently ameliorates the
necessary time and energy, which are necessary for the
proper management and effective bug triaging processes.
Moreover, the paper defines four feature groups, which are
the experience of the bug reporter, the related collaboration
network, the degree of technical completeness, and the
defining bug text. Consequently, a Random Forest classifier
was designed to assign the invalid bug to the proper category.
Additionally, the paper has themerit to conduct a rather useful
overview on interesting approaches for software bug triaging.
It is also relevant to mention the contribution reported in
paper [75], which aims to detect and properly manage the
non-reproducible bugs, in which identification and handling
of respective bugs are conducted relative to the processed bug
tracker. This may sensibly reduce the processing time of non-
reproducible bugs, which are generally difficult to manage in
an adequate manner.

C. MODELS REGARDING BUG PRIORITIZATION
The contribution that is described in article [40] concerns
the prioritization of security bugs, which is regarded as
an essential process in the scope of software development.
Thus, the implementation of security patches determines a
mandatory effort in the process of software development, as it
implements the required security mechanisms. The reported
work is based on reducing the size of the training data, which
is logically enriched and further improved with a transfer
learning model. The article demonstrates that this type of

VOLUME 11, 2023 123931

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

approach may be considered relative to the relevant software
bug triaging processes.

D. MODELS RELATED TO FEATURES SELECTION AND
AGGREGATION
Feature selection, aggregation, and ranking [76] determines
a task that is usually performed during the preprocessing
phase of the software bug triaging process. Thus, article [77]
describes an ontology for an efficient location-based knowl-
edge extraction relative to the implementation phase of
software development. The relevant ontology may be con-
sidered for bug triaging during the subsequent phases of the
software bug triaging process. Furthermore, the generation
of user summaries, which are useful to recommend similar
projects during the software development is proposed in
article [27], which can be aggregated and used together
with other algorithmic model to implement the software
bug triaging process. Additionally, another contribution was
reported in article [78], which described an approach for
the generation of a text summary. This is used to assess the
opportunity to escalate a ticket, to automatically generate
the title and content of the ticket, and also to assign the
ticket to a properly available developer. This approach brings
obvious advantages to the bug triaging process. Furthermore,
aside from the classical feature selection models, feature
enhancement is also conducted relative to software bug
triaging in article [38], which also presents further useful
features and metrics relative to the software bug triaging
process.

E. RELEVANT METRICS
The comprehensive contributions that are reported in arti-
cles [51], [79], and [80] discuss four quality metrics,
which influence the quality and computational efficiency of
bug triaging processes. Thus, the relevant quality metrics
are complexity, cohesion, inheritance, and coupling, which
were analytically assessed in the mentioned articles. The
conceptual and real-world analysis that determines this
scientific survey implies that future research efforts should
concentrate on other software quality features, such as
maintainability, reusability, and refactoring.

F. ANALYSIS OF LARGE BUG DATASETS
The majority of surveyed papers [77] consider public
bug trackers, such as Mozilla, Apache, Google, and Git,
in order to assess the validity and computational efficiency
of the proposed software bug triaging models. Consequently,
we suggest that the reference performance assessment
datasets should be diversified, while the automatic software
bug triaging models should be algorithmically enriched with
up-to-date techniques, such as big data analytics.

G. MODELS RELATED TO THE STUDY OF NETWORKED
AND GRAPH STRUCTURES
The authors of article [38] suggest the consideration of
semantic, multiplex, and multimode networks, which are

useful to model the relationships between the components of
bug items components. This supports the design and develop-
ment of future enhanced software bug triaging models. More-
over, paper [81] describes the creation of a visual analysis
tool that is related to a Directed Acyclic Graph (DAG), which
may be considered to model the logical relationship between
the involved developers. Article [82] reports a model that is
called iTriage, which creates a sequential model that supports
the processing of textual features, and also the relevant bugs
tossing sequences. The relevant conceptual and practical
suggestions should be considered for the creation of future
enhanced software bug triaging systems, which properly
implement the bug assignment and management routines.
It is relevant to note that article [41] proposes a logically
related approach that considers the GitHub bugs tracking
repository, which presumes that semantically related issues
are properly recorded in the analyzed GitHub bugs dataset.
The reported scientific developments may be considered to
efficiently identify similar bugs, and consequently determine
relevant information for the resolution of critical and high-
priority bugs. Furthermore, the logical mechanism of bug
dependency, and also dependency graphs may also be
considered for the enhancement of software bug triaging
routines, as it is demonstrated in article [83].

H. MODELS THAT CONSIDER CROSS REPOSITORY
ANALYSES
Several papers consider the experimental and performance
analysis mechanism of cross-repository analysis. Thus,
paper [84] proposes an automatic commitmessage generation
model, which pertains to version control systems. Thus, the
text of the commit message was automatically generated
considering previous software commit data, which was
stored in a comprehensive repository. Moreover, a further
relevant model is described in article [85], which proposed
a customized recommender system that is related to the pro-
cessing of open-source repositories. Additionally, an interest
measurement mechanism, which is based on the processing
of GitHub data, is specified relative to the developers that
work on a project that is linked, considering the common
technical abilities of relevant software developers. These and
similar existing contributions propose conceptually relevant
algorithmic models, which should be considered in order to
design future software bug triaging models.

I. MODELS THAT CONSIDER DEEP LEARNING
TECHNIQUES
Deep Learning (DL) models are created and reported by
several contributions that pertain to software bug triaging.
Thus, the Deep Learning-related Convolutional Neural
Networks (CNN) model is utilized, together with the
Word2vec word embedding model, in order to implement
the bug triaging processes [64]. Apart from the described
algorithmic model, DL determines a consistent algorithmic
and functional apparatus, which can be used in future

123932 VOLUME 11, 2023

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

software bug triaging approaches. Variants of CNN, such
as bio-inspired spiking CNN (SCNN), seem to provide
superior computational performance than classical CNN
networks. Consequently, SCNN networks can be considered
in order to implement relevant computational routines for
software bug triaging [46]. Moreover, article [44] analyzes
the technological profile recommendations relative to various
document embedding models, while paper [86] addresses
the problematic of the software developers’ skills prediction
considering a multi-label classification of available resumes
data, which is based on the usage of CNN networks with
model predictions.

J. CONTEMPORARY MACHINE LEARNING AND BIG DATA
APPROACHES
Contemporary machine learning models like ensemble learn-
ing and transfer learning are usually coupled with big data
analyticsmethods, which can be considered in order to further
improve the software bug triaging approaches. Thus, the
model of label prediction in bug repositories is studied in [17],
while the automatic identification of technically skilled
software engineers are discussed, designed, and implemented
in paper [73]. Moreover, various software fault prediction
models are explored in article [87], while an automated issue
assignment model is proposed by the contribution reported in
paper [88]. Furthermore, it is interesting to note that relevant
blockchain-related models are also analyzed and described
in article [62], with a clear emphasis on the software bug
triaging processes.

K. EFFICIENT MANAGEMENT OF IMBALANCED DATASETS
The subject of imbalanced classes represents a theoretical and
practical problem in the general field of artificial intelligence.
Relative to software bug triaging, class imbalancing mani-
fests when the bug items are not assigned to the developers
in a balanced manner. More precisely, the abnormal situation
occurs when a few software engineers fix a majority of
the reported bugs. This situation may determine a class
imbalancing in the training dataset, which is considered
relative to the bug triaging process. Thus, several papers
explore the relevant problematic from several perspectives,
including the defect prediction algorithmic models [89],
[90], [91], [92]. The surveyed papers also approach the
topics of bug fixability prediction [93], and also the general
problem of bugs classification [23], [24]. Nevertheless, there
are only a few systematic studies concerning the relevant
research aspects and open questions in the scope of automatic
bug triaging and management. Consequently, this survey
contributes to filling a gap, as it systematically approaches
the essential aspects and existing contributions, which are
related to software bug triaging and management. The issue
of imbalanced datasets may be further approached using
deep learning and soft computing techniques, which combine
artificial intelligence models, and also natural selection
approaches.

VI. RESEARCH QUESTIONS AND DEGREE OF
ACCOMPLISHMENT
Artificial intelligence is perceived and practically demon-
strated as a novel approach to the problematic of design
and implementation of precise and automated software
bug triaging systems. The vast array of analyzed scientific
contributions suggests that artificial intelligence and machine
learning can be considered effective tools in order to
design and implement accurate and computationally efficient
automated software bug triaging systems. Nevertheless, the
continuous technological developments, and also certain
conceptual and practical issues, which were addressed in
the previous sections, suggest that there is still enough
room for further optimizations and functional extensions.
Consequently, the following paragraphs discuss the three
fundamental research questions, which guided this scientific
survey effort and also analyze the degree of scientific
achievement of this paper.

A. RQ1: IS AI CAPABLE TO EFFECTIVELY ENHANCE AND
AUTOMATE SOFTWARE BUG TRIAGING?
Regarding the thorough scientific review that was conducted,
several pertinent remarks can be made concerning the
consideration of AI-related models to design and implement
software bug triaging approaches. Thus, the discussion
considers three perspectives relative to software bug triaging
systems, which this section considers. The first perspective
pertains to AI-related models for bug triaging. The identi-
fied scientific contributions suggest that machine learning
models have been a popular choice during the past ten
years for software bug triaging. Following, as this paper
already demonstrated, information retrieval-related models
were considered, chronologically followed by approaches
that are based on recommender systems. Furthermore,
contemporary studies have started to consistently rely on
deep learning-related solutions. The significant changes
regarding the conceptual and practical paradigms are easily
discernible considering the scientific literature, which this
article surveys. Thus, deep learning-related approaches
have been demonstrated to enhance related software bug
triaging routines, both considering the accuracy, as it is
measured by various metrics and also the computational
efficiency. Nevertheless, future developments are expected
to address the remaining issues, which are also connected
to the accuracy and computational efficiency of relevant bug
triaging processes. These currently hamper the consideration
of some deep learning-related approaches in the context of
certain large or structurally complex real-world software bug
triaging use cases.

It is immediate to observe that automated software
bug triaging will minimize the time that is necessary for
software development processes, and concomitantly, the
software development costs will be reduced. Consequently,
the economical viability of the software development projects
and companies will be strengthened. This assertion is com-
prehensively approached and demonstrated in the surveyed

VOLUME 11, 2023 123933

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

literature. Therefore, it can be inferred that AI-related models
are not only relevant, but essential for the implementation of
automated software bug triaging systems.

B. RQ2: IDENTIFICATION OF SIGNIFICANT
PERFORMANCE PARAMETERS AND METRICS
CONSIDERED BY EXISTING CONTRIBUTIONS
The second perspective relates to the comprehensive anal-
ysis of performance evaluation techniques, parameters, and
metrics, which are considered for AI-related software bug
triaging models. The relevance of the second analysis
perspective is determined by the fact that the selection
of performance parameters should be carefully conducted,
in accordance with the technological model, which is
used to design and implement the relevant software bug
triaging techniques. More precisely, relative to a bug triaging
technique that is based on classification algorithms, accuracy,
precision, recall, and F-measure are specified through the
consideration of a confusion matrix. Furthermore, developer
ranking algorithms consider performance metrics like top-
K accuracy, Precision@K, Recall@K, mean reciprocal rank,
and mean average precision, which is fully covered in this
paper. Here, K designates the number of recommended
software developers. Additionally, Discounted Cumulative
Gain, and Normalized Discounted Cumulative Gain, which
have already been covered, represent significant performance
metrics, which are used in order to evaluate software
bug triaging approaches, which are based on recommender
systems.

Although certain contributions, such as the one that is
reported in article [71], suggest that the mean average
precision may be the optimal performance evaluation metric
relative to the relevant software bug triaging processes, the
assessment should consider the specific AI model that is
used to implement the bug triaging process. As an example,
in the case of bug triagers that are based on recommender
systems, then Discounted Cumulative Gain, and Normalized
Discounted Cumulative Gain was reported to be the proper
performance evaluation metrics. Furthermore, in the case
of bug triagers that are based on machine learning and
information retrieval models, accuracy, precision, recall,
and F-measure were reported to be the suitable metrics,
both considering their validity for the intended type of
measurement and their computational efficiency. It can
be asserted that this scientific survey reached the goal
to determine and comparatively analyze the most suitable
performance parameters and metrics, in the context of
software bug triaging.

C. RQ3: OPEN SCIENTIFIC PROBLEMS AND POSSIBLE
FUTURE DEVELOPMENTS TO ENHANCE SOFTWARE BUG
TRIAGING PROCESSES
The third perspective is defined by the open scientific
research problems, which could define possible future
research pathways in the scope of software bug triaging.
The open research problems are presented in the previous

section, along with clear indications regarding the possible
future research pathways. Thus, eleven categories concerning
the future possible research subjects are defined. These
categories pertain to data reduction techniques, developers’
vocabulary generation, feature selection and aggregation,
bug prioritization, performance parameters and metrics,
exploration of large bug data sets (repositories), networks
and graph-related models, advanced deep learning-related
models, cross repository analysis, contemporary machine
learning and big data-related approaches, and the proper
management of imbalanced datasets. The comprehensive
scientific literature that was surveyed suggests that, in spite
of the existing functional approaches that were proposed
for automatic software bug triaging, there are numerous
conceptual and practical aspects that need to be further
addressed. Considering the semantics and perspectives that
are determined by the comprehensive literature that was
surveyed, it is possible to objectively assert that the most
relevant open scientific problems, research gaps, and future
research pathways were properly identified and discussed in
this paper.

VII. CONCLUSION
Software bug triaging determines a significant research
scope, considering its conceptual and real-world implica-
tions. Consequently, the relevant scientific literature encom-
passes various contributions, which have been thoroughly
surveyed and presented. Thus, AI-related models are gen-
erally considered in order to implement automatic software
bug triaging and management systems. The present article
describes an extended survey, which systematically analyzes
the most relevant contributions that are related to software
bug triaging. The scientific survey is structured according
to a systematic approach, which selects the relevant existing
articles based on the principles of the PRISMA scientific
review system. Consequently, this paper comprehensively
surveys, classifies, and analyzes relevant software bug
triaging and management approaches, which are reported
in the existing literature. The identified papers are analyt-
ically and comparatively evaluated, and three fundamental
research questions are defined and discussed. Consequently,
a three-dimensional evaluation and comparative analysis are
conducted relative to the identified software bug triaging
contributions, which consider the defined research questions.
Consequently, an evaluation of the identified performance
parameters and metrics is conducted and included, as a
separate section, in this paper.

Furthermore, relevant research questions, which are
currently unsatisfactorily approached, are presented and
analyzed, and possible future research and practical trends
related to software bug triaging are discussed. Consider-
ing each surveyed bug triaging approach, the identified
advantages and problems are discussed and evaluated, both
considering their conceptual relevance and their importance
for real-world software development processes. The rele-
vance of the problematic approached in this survey paper is

123934 VOLUME 11, 2023

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

further justified by the economic implications of the implied
bug triaging and management processes relative to the
overall software development efforts. Thus, the consideration
of algorithmic models that relate to artificial intelligence
and machine learning has essentially changed the paradigm
of software bug triaging and management. The surveyed
approaches significantly enhance the relevant software
bug triaging and management processes, and the software
development times and costs are consistently reduced.
Nevertheless, several conceptual and practical issues remain,
which are thoroughly presented. Therefore, future research
efforts should carefully approach the remaining problems,
in order to fully establish the automatic software bug triaging
andmanagement as an accurate and computationally efficient
practical solution.

REFERENCES
[1] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, ‘‘Preferred

reporting items for systematic reviews and meta-analyses: The PRISMA
statement,’’ Ann. Internal Med., vol. 151, no. 4, pp. 264–269, 2009.

[2] S. Mani, A. Sankaran, and R. Aralikatte, ‘‘DeepTriage: Exploring the
effectiveness of deep learning for bug triaging,’’ in Proc. ACM India Joint
Int. Conf. Data Sci. Manage. Data, Jan. 2019, pp. 171–179.

[3] H. Mohsin and C. Shi, ‘‘SPBC: A self-paced learning model for bug
classification from historical repositories of open-source software,’’
Expert Syst. Appl., vol. 167, Apr. 2021, Art. no. 113808.

[4] J. A. Nasir, O. S. Khan, and I. Varlamis, ‘‘Fake news detection: A hybrid
CNN-RNN based deep learning approach,’’ Int. J. Inf. Manage. Data
Insights, vol. 1, no. 1, Apr. 2021, Art. no. 100007.

[5] U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, ‘‘An empirical
assessment of machine learning approaches for triaging reports of a Java
static analysis tool,’’ in Proc. 12th IEEE Conf. Softw. Test., Validation
Verification (ICST), Apr. 2019, pp. 288–299.

[6] M. Sharma, A. Tandon, M. Kumari, and V. B. Singh, ‘‘Reduction of
redundant rules in association rule mining-based bug assignment,’’ Int.
J. Rel., Qual. Saf. Eng., vol. 24, no. 6, Dec. 2017, Art. no. 1740005.

[7] G. Murphy and D. Cubranic, ‘‘Automatic bug triage using text
categorization,’’ in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., 2004,
pp. 1–6.

[8] A. Goyal and N. Sardana, ‘‘Machine learning or information retrieval
techniques for bug triaging: Which is better?’’ E-Informatica Softw. Eng.
J., vol. 11, no. 1, pp. 117–141, 2017.

[9] S. N. Ahsan, J. Ferzund, and F. Wotawa, ‘‘Automatic software bug
triage system (BTS) based on latent semantic indexing and support
vector machine,’’ in Proc. 4th Int. Conf. Softw. Eng. Adv., Sep. 2009,
pp. 216–221.

[10] W. Wu, W. Zhang, Y. Yang, and Q. Wang, ‘‘DREX: Developer
recommendation with K-nearest-neighbor search and expertise ranking,’’
in Proc. 18th Asia–Pacific Softw. Eng. Conf., Dec. 2011, pp. 389–396.

[11] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, ‘‘Assigning
change requests to software developers,’’ J. Softw., Evol. Process, vol. 24,
no. 1, pp. 3–33, Jan. 2012.

[12] S. Banerjee, Z. Syed, J. Helmick, M. Culp, K. Ryan, and B. Cukic,
‘‘Automated triaging of very large bug repositories,’’ Inf. Softw. Technol.,
vol. 89, pp. 1–13, Sep. 2017.

[13] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘Why so
complicated? Simple term filtering and weighting for location-based bug
report assignment recommendation,’’ in Proc. 10th Work. Conf. Mining
Softw. Repositories (MSR), May 2013, pp. 2–11.

[14] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘Improving
automatic bug assignment using time-metadata in term-weighting,’’ IET
Softw., vol. 8, no. 6, pp. 269–278, Dec. 2014.

[15] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, ‘‘A time-based
approach to automatic bug report assignment,’’ J. Syst. Softw., vol. 102,
pp. 109–122, Apr. 2015.

[16] M. Alenezi, K. Magel, and S. Banitaan, ‘‘Efficient bug triaging using text
mining,’’ J. Softw., vol. 8, no. 9, pp. 2185–2190, Sep. 2013.

[17] J. M. Alonso-Abad, C. López-Nozal, J. M. Maudes-Raedo, and
R. Marticorena-Sánchez, ‘‘Label prediction on issue tracking systems
using text mining,’’ Prog. Artif. Intell., vol. 8, no. 3, pp. 325–342,
Sep. 2019.

[18] P. Ardimento, N. Boffoli, and C. Mele, ‘‘A text-based regression
approach to predict bug-fix time,’’ in Complex Pattern Mining. 2020, doi:
10.1007/978-3-030-36617-9_5.

[19] A. Hindle, A. Alipour, and E. Stroulia, ‘‘A contextual approach towards
more accurate duplicate bug report detection and ranking,’’ Empirical
Softw. Eng., vol. 21, no. 2, pp. 368–410, Apr. 2016.

[20] A. Kaur and S. G. Jindal, ‘‘Text analytics based severity prediction of
software bugs for apache projects,’’ Int. J. Syst. Assurance Eng. Manage.,
vol. 10, no. 4, pp. 765–782, Aug. 2019.

[21] L. Chen, X. Wang, and C. Liu, ‘‘Improving bug assignment with bug
tossing graphs and bug similarities,’’ in Proc. Int. Conf. Biomed. Eng.
Comput. Sci., 2011, pp. 421–427, doi: 10.1109/ICBECS.2010.5462287.

[22] L. Chen, X. Wang, and C. Liu, ‘‘An approach to improving bug
assignment with bug tossing graphs and bug similarities,’’ J. Softw., vol. 6,
no. 3, pp. 421–427, Mar. 2011.

[23] M. Chen, D. Hu, T. Wang, J. Long, G. Yin, Y. Yu, and Y. Zhang, ‘‘Using
document embedding techniques for similar bug reports recommenda-
tion,’’ in Proc. IEEE 9th Int. Conf. Softw. Eng. Service Sci. (ICSESS),
Nov. 2018, pp. 811–814, doi: 10.1109/ICSESS.2018.8663849.

[24] R. Chen, S.-K. Guo, X.-Z. Wang, and T.-L. Zhang, ‘‘Fusion of multi-
RSMOTE with fuzzy integral to classify bug reports with an imbalanced
distribution,’’ IEEE Trans. Fuzzy Syst., vol. 27, no. 12, pp. 2406–2420,
Dec. 2019.

[25] D. Hu, M. Chen, T. Wang, J. Chang, G. Yin, Y. Yu, and Y. Zhang,
‘‘Recommending similar bug reports: A novel approach using document
embedding model,’’ in Proc. 25th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2018, pp. 725–726.

[26] J. Jiang, D. Lo, J. Zheng, X. Xia, Y. Yang, and L. Zhang, ‘‘Who
should make decision on this pull request? Analyzing time-decaying
relationships and file similarities for integrator prediction,’’ J. Syst. Softw.,
vol. 154, pp. 196–210, Aug. 2019.

[27] M. R. Resketi, H. Motameni, H. Nematzadeh, and E. Akbari, ‘‘Automatic
summarising of user stories in order to be reused in future similar
projects,’’ IET Softw., vol. 14, no. 6, pp. 711–723, Dec. 2020.

[28] J.-W. Park, M.-W. Lee, J. Kim, S.-W. Hwang, and S. Kim, ‘‘CosTriage:
A cost-aware triage algorithm for bug reporting systems,’’ in Proc. Nat.
Conf. Artif. Intell., 2011, p. 139.

[29] D.-G. Lee and Y.-S. Seo, ‘‘Improving bug report triage performance using
artificial intelligence based document generation model,’’ Hum.-Centric
Comput. Inf. Sci., vol. 10, no. 1, Dec. 2020, Art. no. 26.

[30] T. S. Roopa, Y. Purna, and C. Krish, ‘‘A novel approach for bug triaging
with specialized topic model,’’ Int. J. Innov. Technol. Exploring Eng.,
vol. 8, no. 7, pp. 1032–1038, 2019.

[31] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and X. Wang,
‘‘Improving automated bug triaging with specialized topic model,’’
IEEE Trans. Softw. Eng., vol. 43, no. 3, pp. 272–297, Mar. 2017, doi:
10.1109/TSE.2016.2576454.

[32] X. Xie, W. Zhang, Y. Yang, and Q. Wang, ‘‘DRETOM: Developer
recommendation based on topic models for bug resolution,’’ in Proc. 8th
Int. Conf. Predictive Models Softw. Eng., Sep. 2012, pp. 19–28.

[33] W. Zhang, S. Wang, and Q. Wang, ‘‘BAHA: A novel approach to
automatic bug report assignment with topic modeling and heterogeneous
network analysis,’’ Chin. J. Electron., vol. 25, no. 6, pp. 1011–1018,
Nov. 2016.

[34] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Jan. 2003.

[35] W. Zhang, Y. Cui, and T. Yoshida, ‘‘En-LDA: An novel approach to
automatic bug report assignment with entropy optimized latent Dirichlet
allocation,’’ Entropy, vol. 19, no. 5, p. 173, Apr. 2017.

[36] G. Brookes and T. McEnery, ‘‘The utility of topic modelling for discourse
studies: A critical evaluation,’’ Discourse Stud., vol. 21, no. 1, pp. 3–21,
Feb. 2019.

[37] D. Matter, A. Kuhn, and O. Nierstrasz, ‘‘Assigning bug reports using a
vocabulary-based expertise model of developers,’’ in Proc. 6th IEEE Int.
Work. Conf. Mining Softw. Repositories, May 2009, pp. 131–140.

[38] I. Alazzam, A. Aleroud, Z. Al Latifah, and G. Karabatis, ‘‘Automatic
bug triage in software systems using graph neighborhood relations for
feature augmentation,’’ IEEE Trans. Computat. Social Syst., vol. 7, no. 5,
pp. 1288–1303, Oct. 2020.

VOLUME 11, 2023 123935

http://dx.doi.org/10.1007/978-3-030-36617-9_5
http://dx.doi.org/10.1109/ICBECS.2010.5462287
http://dx.doi.org/10.1109/ICSESS.2018.8663849
http://dx.doi.org/10.1109/TSE.2016.2576454

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

[39] J. Xuan, H. Jiang, H. Zhang, and Z. Ren, ‘‘Developer recommendation
on bug commenting: A ranking approach for the developer crowd,’’ Sci.
China Inf. Sci., vol. 60, no. 7, Jul. 2017, Art. no. 072105.

[40] S. Mostafa, B. Findley, N. Meng, and X. Wang, ‘‘Sais: Self-adaptive
identification of security bug reports,’’ IEEE Trans. Depend. Sec.
Comput., vol. 18, no. 4, pp. 1779–1792, Jul. 2021.

[41] W. Zhang, S. Wang, and Q. Wang, ‘‘KSAP: An approach to bug report
assignment using KNN search and heterogeneous proximity,’’ Inf. Softw.
Technol., vol. 70, pp. 68–84, Feb. 2016.

[42] Y. Zhang, Y. Wu, T. Wang, and H. Wang, ‘‘A novel approach for
recommending semantically linkable issues in GitHub projects,’’ Sci.
China Inf. Sci., vol. 62, no. 9, pp. 1–3, Sep. 2019.

[43] J. Anvik and G. C. Murphy, ‘‘Reducing the effort of bug report triage:
Recommenders for development-oriented decisions,’’ ACM Trans. Softw.
Eng. Methodol., vol. 20, no. 3, pp. 1–35, Aug. 2011.

[44] P. Chamoso, G. Hernández, A. González-Briones, and
F. J. García-Peñalvo, ‘‘Recommendation of technological profiles
to collaborate in software projects using document embeddings,’’ Neural
Comput. Appl., vol. 34, no. 11, pp. 8423–8430, Jun. 2022.

[45] A. Ray, M. H. Kolekar, R. Balasubramanian, and A. Hafiane, ‘‘Transfer
learning enhanced vision-based human activity recognition: A decade-
long analysis,’’ Int. J. Inf. Manage. Data Insights, vol. 3, no. 1, Apr. 2023,
Art. no. 100142.

[46] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C.-G. Lee,
‘‘Applying convolutional neural networks with different word repre-
sentation techniques to recommend bug fixers,’’ IEEE Access, vol. 8,
pp. 213729–213747, 2020.

[47] J. Xuan, H. Jiang, Z. Ren, and W. Zou, ‘‘Developer prioritization in bug
repositories,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012,
pp. 25–35.

[48] G. Shani and A. Gunawardana, ‘‘Evaluating recommendation systems,’’
in Recommender Systems Handbook. Springer, 2011, pp. 257–297, doi:
10.1007/978-0-387-85820-3_8.

[49] N. Mishra, S. Chaturvedi, A. Vij, and S. Tripathi, ‘‘Research problems in
recommender systems,’’ J. Phys., Conf. Ser., vol. 1717, no. 1, Jan. 2021,
Art. no. 012002.

[50] M. K. Najafabadi, A. H. Mohamed, and M. N. Mahrin, ‘‘A survey on
data mining techniques in recommender systems,’’ Soft Comput., vol. 23,
no. 2, pp. 627–654, Jan. 2019.

[51] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘A knowledge-based integrated system of hesitant fuzzy set,
AHP and TOPSIS for evaluating security-durability of web applications,’’
IEEE Access, vol. 8, pp. 48870–48885, 2020.

[52] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen, ‘‘Fuzzy set-
based automatic bug triaging (NIER track),’’ inProc. 19th ACMSIGSOFT
Symp., 13th Eur. Conf. Found. Softw. Eng., 2021, pp. 884–887.

[53] A. Goyal and N. Sardana, ‘‘Empirical analysis of ensemble machine
learning techniques for bug triaging,’’ in Proc. 12th Int. Conf. Contemp.
Comput. (IC3), Aug. 2019, pp. 1–6.

[54] M. Wei, S. Guo, R. Chen, and J. Gao, ‘‘Enhancing bug report assignment
with an optimized reduction of training set,’’ in Proc. Int. Conf. Knowl.
Sci., Eng. Manag., in Lecture Notes in Artificial Intelligence, vol. 11062,
2018, pp. 36–47.

[55] Y. Kashiwa and M. Ohira, ‘‘A release-aware bug triaging method
considering developers’ bug-fixing loads,’’ IEICE Trans. Inf. Syst.,
vol. E103.D, no. 2, pp. 348–362, 2020.

[56] J. Lee, D. Kim, and W. Jung, ‘‘Cost-aware clustering of bug reports by
using a genetic algorithm,’’ J. Inf. Sci. Eng., vol. 35, no. 1, pp. 175–200,
2019.

[57] V. Akila, V. Govindasamy, and S. Sharmila, ‘‘Bug Triage based on ant
system with evaporation factor tuning,’’ Int. J. Control Theory Appl.,
vol. 9, no. 2, pp. 859–863, 2016.

[58] Md. M. Rahman, G. Ruhe, and T. Zimmermann, ‘‘Optimized assignment
of developers for fixing bugs an initial evaluation for eclipse projects,’’
in Proc. 3rd Int. Symp. Empirical Softw. Eng. Meas., Oct. 2009,
pp. 439–442.

[59] S. G. Jindal and A. Kaur, ‘‘Automatic keyword and sentence-based
text summarization for software bug reports,’’ IEEE Access, vol. 8,
pp. 65352–65370, 2020.

[60] R. R. Panda and N. K. Nagwani, ‘‘Classification and intuitionistic fuzzy
set based software bug triaging techniques,’’ J. King Saud Univ., Comput.
Inf. Sci., vol. 34, no. 8, pp. 6303–6323, Sep. 2022.

[61] P. M. Vu, T. T. Nguyen, and T. T. Nguyen, ‘‘Fuzzy multi-intent classifier
for user generated software documents,’’ in Proc. ACM Southeast Conf.,
Apr. 2020, pp. 292–295.

[62] C. Gupta and M. M. Freire, ‘‘A decentralized blockchain oriented
framework for automated bug assignment,’’ Inf. Softw. Technol., vol. 134,
Jun. 2021, Art. no. 106540.

[63] R. R. Panda and N. K. Nagwani, ‘‘Multi-label software bug categorisation
based on fuzzy similarity,’’ Int. J. Comput. Sci. Eng., vol. 24, no. 3,
pp. 244–258, 2021.

[64] S. Guo, X. Zhang, X. Yang, R. Chen, C. Guo, H. Li, and T. Li,
‘‘Developer activity motivated bug triaging: Via convolutional neu-
ral network,’’ Neural Process. Lett., vol. 51, no. 3, pp. 2589–2606,
Jun. 2020.

[65] Y. Liu, J. X. Huang, and Y. T. Ma, ‘‘An automatic method using hybrid
neural networks and attention mechanism for software bug triaging,’’
J. Comput. Res. Develop., vol. 57, no. 3, p. 461, 2020.

[66] C. A. Choquette-Choo, D. Sheldon, J. Proppe, J. Alphonso-Gibbs, and
H. Gupta, ‘‘A multi-label, dual-output deep neural network for automated
bug triaging,’’ inProc. 18th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),
Dec. 2019, pp. 937–944.

[67] M. A. Wani, F. A. Bhat, S. Afzal, and A. I. Khan, Advances in Deep
Learning. Springer, 2020.

[68] H. Wu, Y. Ma, Z. Xiang, C. Yang, and K. He, ‘‘A spatial–temporal graph
neural network framework for automated software bug triaging,’’Knowl.-
Based Syst., vol. 241, Apr. 2022, Art. no. 108308.

[69] Y. Liu, X. Qi, J. Zhang, H. Li, X. Ge, and J. Ai, ‘‘Automatic bug triaging
via deep reinforcement learning,’’ Appl. Sci., vol. 12, no. 7, p. 3565,
Mar. 2022.

[70] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
(The Morgan Kaufmann Series in Data Management Systems), vol. 5,
no. 4, 3rd ed. 2011, pp. 83–124.

[71] A. Sajedi-Badashian and E. Stroulia, ‘‘Guidelines for evaluating bug-
assignment research,’’ J. Softw., Evol. Process, vol. 32, no. 9, Sep. 2020,
Art. no. e2250.

[72] E. Kalliamvakou, C. Bird, T. Zimmermann, A. Begel, R. DeLine, and
D. M. German, ‘‘What makes a great manager of software engineers?’’
IEEE Trans. Softw. Eng., vol. 45, no. 1, pp. 87–106, Jan. 2019.

[73] P. L. Li, A. J. Ko, and A. Begel, ‘‘What distinguishes great software
engineers?’’Empirical Softw. Eng., vol. 25, no. 1, pp. 322–352, Jan. 2020.

[74] Y. Fan, X. Xia, D. Lo, and A. E. Hassan, ‘‘Chaff from the wheat:
Characterizing and determining valid bug reports,’’ IEEE Trans. Softw.
Eng., vol. 46, no. 5, pp. 495–525, May 2020.

[75] A. Goyal and N. Sardana, ‘‘An empirical study of non-reproducible
bugs,’’ Int. J. Syst. Assurance Eng. Manage., vol. 10, no. 5,
pp. 1186–1220, Oct. 2019.

[76] B. Alkhazi, A. DiStasi, W. Aljedaani, H. Alrubaye, X. Ye, and
M. W. Mkaouer, ‘‘Learning to rank developers for bug report assign-
ment,’’ Appl. Soft Comput., vol. 95, Oct. 2020, Art. no. 106667.

[77] J. R. Martínez-García, F.-E. Castillo-Barrera, R. R. Palacio, G. Borrego,
and J. C. Cuevas-Tello, ‘‘Ontology for knowledge condensation to
support expertise location in the code phase during software development
process,’’ IET Softw., vol. 14, no. 3, pp. 234–241, Jun. 2020.

[78] M. Nayebi, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe, ‘‘ESSMArT
way to manage customer requests,’’ Empirical Softw. Eng., vol. 24, no. 6,
pp. 3755–3789, Dec. 2019.

[79] L. Kumar, S. Tummalapalli, and L. B. Murthy, ‘‘An empirical framework
to investigate the impact of bug fixing on internal quality attributes,’’
Arabian J. Sci. Eng., vol. 46, no. 4, pp. 3189–3211, Apr. 2021, doi:
10.1007/S13369-020-05095-0.

[80] S. Kumar, A. K. Kar, and P. V. Ilavarasan, ‘‘Applications of text mining in
servicesmanagement: A systematic literature review,’’ Int. J. Inf. Manage.
Data Insights, vol. 1, no. 1, Apr. 2021, Art. no. 100008.

[81] Y. Kim, J. Kim, H. Jeon, Y.-H. Kim, H. Song, B. Kim, and J. Seo,
‘‘Githru: Visual analytics for understanding software development history
through git metadata analysis,’’ IEEE Trans. Vis. Comput. Graphics,
vol. 27, no. 2, pp. 656–666, Feb. 2021, doi: 10.1109/TVCG.2020.
3030414.

[82] S.-Q. Xi, Y. Yao, X.-S. Xiao, F. Xu, and J. Lv, ‘‘Bug triaging based on
tossing sequence modeling,’’ J. Comput. Sci. Technol., vol. 34, no. 5,
pp. 942–956, Sep. 2019.

[83] R. Almhana and M. Kessentini, ‘‘Considering dependencies between bug
reports to improve bugs triage,’’ Automated Softw. Eng., vol. 28, no. 1,
pp. 1–26, May 2021.

123936 VOLUME 11, 2023

http://dx.doi.org/10.1007/978-0-387-85820-3_8
http://dx.doi.org/10.1007/S13369-020-05095-0
http://dx.doi.org/10.1109/TVCG.2020.3030414
http://dx.doi.org/10.1109/TVCG.2020.3030414

R. Bocu et al.: Extended Survey Concerning the Significance of Artificial Intelligence and ML Techniques

[84] Y. Huang, N. Jia, H.-J. Zhou, X.-P. Chen, Z.-B. Zheng, and M.-D. Tang,
‘‘Learning human-written commit messages to document code changes,’’
J. Comput. Sci. Technol., vol. 35, no. 6, pp. 1258–1277, Nov. 2020.

[85] C. Yang, Q. Fan, T. Wang, G. Yin, X.-H. Zhang, Y. Yu, and
H.-M. Wang, ‘‘RepoLike: Amulti-feature-based personalized recommen-
dation approach for open-source repositories,’’ Frontiers Inf. Technol.
Electron. Eng., vol. 20, no. 2, pp. 222–237, Feb. 2019.

[86] K. F. F. Jiechieu and N. Tsopze, ‘‘Skills prediction based on
multi-label resume classification using CNN with model predictions
explanation,’’ Neural Comput. Appl., vol. 33, no. 10, pp. 5069–5087,
May 2021.

[87] S. S. Rathore and S. Kumar, ‘‘A study on software fault prediction
techniques,’’ Artif. Intell. Rev., vol. 51, no. 2, pp. 255–327, Feb. 2019.

[88] E. U. Aktas and C. Yilmaz, ‘‘Automated issue assignment: Results and
insights from an industrial case,’’ Empirical Softw. Eng., vol. 25, no. 5,
pp. 3544–3589, Sep. 2020.

[89] K. K. Bejjanki, J. Gyani, and N. Gugulothu, ‘‘Class imbalance reduction
(CIR): A novel approach to software defect prediction in the presence of
class imbalance,’’ Symmetry, vol. 12, no. 3, p. 407, Mar. 2020.

[90] L. Gong, S. Jiang, and L. Jiang, ‘‘Tackling class imbalance problem
in software defect prediction through cluster-based over-sampling with
filtering,’’ IEEE Access, vol. 7, pp. 145725–145737, 2019.

[91] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, ‘‘The impact
of class rebalancing techniques on the performance and interpretation
of defect prediction models,’’ IEEE Trans. Softw. Eng., vol. 46, no. 11,
pp. 1200–1219, Nov. 2020.

[92] Z. Yuan, X. Chen, Z. Cui, and Y. Mu, ‘‘ALTRA: Cross-project software
defect prediction via active learning and TrAdaBoost,’’ IEEE Access,
vol. 8, pp. 30037–30049, 2020.

[93] A. Goyal and N. Sardana, ‘‘NRFixer: Sentiment based model for
predicting the fixability of non-reproducible bugs,’’ E-Informatica Softw.
Eng. J., vol. 11, no. 1, pp. 109–122, 2017.

[94] H. A. Ahmed, N. Z. Bawany, and J. A. Shamsi, ‘‘CaPBug—A framework
for automatic bug categorization and prioritization using NLP and
machine learning algorithms,’’ IEEE Access, vol. 9, pp. 50496–50512,
2021, doi: 10.1109/ACCESS.2021.3069248.

[95] P. Oliveira, R. M. C. Andrade, I. Barreto, T. P. Nogueira, and
L. M. Bueno, ‘‘Issue auto-assignment in software projects with machine
learning techniques,’’ in Proc. IEEE/ACM 8th Int. Workshop Softw. Eng.
Res. Ind. Pract. (SER IP), Madrid, Spain, Jun. 2021, pp. 65–72, doi:
10.1109/SER-IP52554.2021.00018.

[96] M. Panda and A. T. Azar, ‘‘Hybrid multi-objective Grey Wolf search
optimizer and machine learning approach for software bug prediction,’’
inHandbook of Research on Modeling, Analysis, and Control of Complex
Systems. 2020, doi: 10.4018/978-1-7998-5788-4.

[97] Y. Shi, Y. Mao, T. Barnes, M. Chi, and T. W. Price, ‘‘More with less:
Exploring how to use deep learning effectively through semi-supervised
learning for automatic bug detection in student code,’’ Int. Educ. Data
Mining Soc. [Online]. Available: https://par.nsf.gov/biblio/10340894

[98] A. Yadav, ‘‘Bug assignment-utilization of metadata features along with
feature selection and classifiers,’’ in Applications of Artificial Intelligence
and Machine Learning. 2021, doi: 10.1007/978-981-16-3067-5_7.

[99] Z. J. Szamosvölgyi, E. T. Váradi, Z. Tóth, J. Jász, and R. Ferenc, ‘‘Assess-
ing ensemble learning techniques in bug prediction,’’ in Computational
Science and Its Applications—ICCSA 2021 (Lecture Notes in Computer
Science), vol. 12955. Springer, 2021, doi: 10.1007/978-3-030-87007-
2_26.

[100] A. Sawada, E. Kaneko, and K. Sagi, ‘‘Trade-offs in top-k classification
accuracies on losses for deep learning,’’ 2020, arXiv:2007.15359.

[101] V. Nath, D. Sheldon, and J. Alphonso-Gibbs, ‘‘Principal component anal-
ysis and entropy-based selection for the improvement of bug triage,’’ in
Proc. 20th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Pasadena, CA,
USA, Dec. 2021, pp. 541–546, doi: 10.1109/ICMLA52953.2021.00090.

[102] S. F. A. Zaidi, H. Woo, and C.-G. Lee, ‘‘A graph convolution network-
based bug triage system to learn heterogeneous graph representation
of bug reports,’’ IEEE Access, vol. 10, pp. 20677–20689, 2022, doi:
10.1109/ACCESS.2022.3153075.

RAZVAN BOCU received the B.S. degree in
computer science, the B.S. degree in sociology,
and the M.S. degree in computer science from
the Transilvania University of Brasov, Brasov,
Romania, in 2005, 2006, and 2007, respectively,
and the Ph.D. degree from the National University
of Ireland, Cork, in 2010.

He is currently with the Department of Mathe-
matics and Computer Science, Transilvania Uni-
versity of Brasov, where he is also a Research and

Teaching Staff Member. He is with Siemens Industry Software, Romania.
He is the author or coauthor of more than 60 technical articles, together
with six books and book chapters. In this capacity, he supervises research
projects with strategic business value. He is an editorial reviewing board
member of 28 technical journals in the field of information technology
and biotechnology, which includes prestigious journals, such as Journal of
Network and Computer Applications, IEEE TRANSACTIONSONDEPENDABLEAND

SECURE COMPUTING, International Journal of Computers Communications
and Control.

ALEXANDRA BAICOIANU received the Ph.D.
degree from Babeş-Bolyai University, Cluj-
Napoca, in 2016.

She has been a Lecturer with the Transilvania
University of Braşov, Braşov, Romania, since
2017, teaching various courses and seminars,
where she is currently with the Department
of Mathematics and Computer Science. She is
also with Siemens Industry Software, Romania.
She is a Research Engineer of informatics. She

supervised tens of graduation and dissertations thesis, programming training
courses, programming summer schools, and code/tech camps, some of them
in collaboration with IT companies. She is a member of the Department’s
Machine Learning and Quantum Computing Research Group, founded
in 2018. She has published more than 30 scientific articles and is the
coauthor of six books. She was a part of various scientific projects, among
them it is important to mention Advanced Technologies for Intelligent
Urban Electric Vehicles, Powerful Advanced N-level Digital Architecture
(PANDA), Intelligent Motion Control under Industry4.E (IMOCO4E),
Artificial Intelligence and Earth Observation for Romania’s agriculture
(AI4AGRI), Digital Technologies and Artificial Intelligence (AI) Solutions
projects (DiTArtIS), and New Modular Electrical Architecture and Digital
platforM to Optimize Large Battery Systems on SHIPs (NEMOSHIP). Her
research interests and expertise are in the field of machine learning, formal
languages and compilers, algorithms, remote sensing and Earth observation
data, autonomous driving, and electric and hybrid vehicles.

ARPAD KERESTELY is currently with Siemens
Industry Software, Romania. He is also a Research
and Development Engineer. He was a part of vari-
ous scientific projects, among them it is important
to mention Advanced Technologies for Intelli-
gent Urban Electric Vehicles, Powerful Advanced
N-level Digital Architecture (PANDA), Intelligent
Motion Control under Industry4.E (IMOCO4E),
Artificial Intelligence and Earth Observation for
Romania’s Agriculture (AI4AGRI), Digital Tech-

nologies and Artificial Intelligence (AI) Solutions projects (DiTArtIS), and
New Modular Electrical Architecture and Digital platforM to Optimize
Large Battery Systems on SHIPs (NEMOSHIP). His research interests
and expertise are in the field of machine learning, formal languages and
compilers, and algorithms.

VOLUME 11, 2023 123937

http://dx.doi.org/10.1109/ACCESS.2021.3069248
http://dx.doi.org/10.1109/SER-IP52554.2021.00018
http://dx.doi.org/10.4018/978-1-7998-5788-4
http://dx.doi.org/10.1007/978-981-16-3067-5_7
http://dx.doi.org/10.1007/978-3-030-87007-2_26
http://dx.doi.org/10.1007/978-3-030-87007-2_26
http://dx.doi.org/10.1109/ICMLA52953.2021.00090
http://dx.doi.org/10.1109/ACCESS.2022.3153075

AI-Based Visualization of Remotely-Sensed
Spectral Images

Ioana Cristina Plajer∗, Alexandra Baicoianu† and Luciana Majercsik‡
Faculty of Mathematics and Informatics

Transilvania University of Braşov, Romania
∗ ioana.plajer@unitbv.ro, † a.baicoianu@unitbv.ro, ‡ luciana.carabaneanu@unitbv.ro

Abstract— With the increase in multispectral and
hyperspectral satellite data availability, the necessity of
interpreting and processing such data is also growing. Satellite
imagery can be used in a wide range of fields, from military
and defence applications to ecology, agriculture and forest
management. As multi- and hyperspectral images cannot be
directly interpreted either by the human eye or by usual
computer displays, a visually-consistent mapping of these images
is necessary. In this paper we propose an approach based on an
artificial intelligence (AI) model for spectral image visualisation
in the RGB color space. The visualization is performed by a
fully-connected neural network trained on the popular CAVE
dataset which we consider being suitable for visualization, as
it has a significant color diversity in the visible domain. The
coloring method was applied on a hyperspectral PRISMA image.
The study offers a visual interpretation of the results obtained
with the proposed architecture. The results are promising and
will be further used for the true mapping of agricultural areas.

Key words: spectral images, satellite data, RGB, neural network,
PRISMA satellite, CAVE dataset, linear interpolation

I. INTRODUCTION

Each type of material has a unique spectral fingerprint,
which means that light is absorbed differently by objects
with different properties. Multispectral (MS) and hyperspectral
(HS) sensors can capture tens or even hundreds of spectral
bands therefore they are much more sensitive to small changes
in an object’s reflectance or radiance. In the images produced
by such sensors, objects are described by additional parameters
besides the descriptive geometric data, as each pixel also
contains spectral information about the chemical composition
of the objects compared to RGB images. For this reason, the
former is increasingly used in many remote sensing fields
such as agriculture [1], [2], [3], forestry [4], [5], ecology
and environmental monitoring [6], and military and industrial
applications.

The visualization of MS and HS data as RBG images is
extremely important because an RGB image serves as an
interface between the human eye and the multidimensional
data space, helping the viewer to correlate pixel areas to the
surface features they represent. To generate realistic RGB
images using spectral images, a number of visualization meth-
ods have been proposed in literature, such as band selection
[7][8], PCA based methods [9] or, more recently, machine
learning [10][11]. However, research in this field is still quite
scarce. For this reason, one of the main objectives of our

investigation was to obtain meaningful corresponding RGB
images for MS and HS images using a fully-connected neural
network (FCNN) trained for this task.

The spectral image sensors provide images with a large
number of contiguous spectral channels per pixel and the
sources from which these images come are diverse, therefore
visualizing these massive datasets is not simple and straight-
forward. The process of visualization has a particular value
for users who need to evaluate the importance of data, which
is why we have proposed in this study a suitable architecture
for this assignment. As the human visual perception is not
necessarily a linear process, the use of a linear color space to
represent images might result in an unpleasant effect on the
human observer, generating the impression of high contrast
between the darker and the lighter areas. Furthermore, pairs of
colors which in the RGB color cube are at the same Euclidean
distance might be perceived totally different by humans, the
RGB cube thus being a perceptually-nonlinear space [12].
Taking this into consideration, the nonlinearity of a neural
network (NN) could provide a good way of modeling the
transform function from multispectral to tridimensional RGB,
in order to offer a perceptually proper interpretation for human
users.

The aim of this article is to provide answers to some
research questions within the context of spectral image vi-
sualization. One of the open questions is if an AI model
is capable of learning the correspondence between MS or
HS reflectance curves and RGB triplets. The results of our
experiments confirm that by training a NN to learn the RGB
equivalent for spectral pixels, visually consistent RGB images
can by generated. Two important considerations should be
mentioned here. The first one is that at the moment, the
interpretation of the results has been done from a visual point
of view and considering some common metrics. The second is
that the network testing was done using a single HS satellite
image, and this should be extended to test other satellite
images. Another open concern in the field of spectral image
visualization is to discover what are the main characteristics
of a data set suitable for optimal coloring results. As our tests
have shown, in order to have a good coloring, it is important
to use for the training of the NN a dataset with a significant
color diversity in the visible domain. The amount of data
on which training is done must be large enough and correct
standardization before training is extremely important. A third

issue considered was to feature the advantages of coloring
spectral images using a NN over other alternative visualization
techniques. We can mention among these advantages the
relatively easy adaptability through an interpolation process
to inputs having a different spectral resolution. Another ad-
vantage of a NN is its non-linearity, the network being thus
able to emulate the nonlinear visual perception of human users
and so to enhance the coloring output. Furthermore enhancing
the training data set could be an option to achieve improved
visual results.

II. DATASETS

The high-resolution spectral information provided by multi-
and hyperspectral imagery has changed the way we think
about environmental and ecosystem phenomena. More and
more such data are becoming available for scientific and
practical purposes, and analysing them is a first step in
better understanding the phenomena mentioned above. Various
datasets are available and known including CAVE [13], UGR
[14], UEA Colour Group datasets [15]. For this study we chose
the CAVE dataset, which is well known in literature, because
it offers a good diversity of colors, the images were acquired
in controlled environment and for each MS image an RGB
correspondent is available. For testing we used a HS image
provided by the relatively new PRISMA satellite.

A. CAVE Dataset

The CAVE high-resolution MS image dataset [13] contains
32 images of indoor scenes. Each MS image has a resolution
of 512 × 512 pixels and covers a wavelength range in [400
- 700 nm], sampled at 10 nm intervals, providing a total
of 31 channels. Each scene has also a unique corresponding
color image representation, rendered under a neutral daylight
illuminant and displayed using sRGB values. Some samples
from CAVE dataset are displayed in Figure 1.

Fig. 1: RGB images from the CAVE database.

B. PRISMA Image

The PRISMA image used for testing is one of the images
captured by the Italian Space Agency (ASI)’s PRISMA hy-
perspectral satellite on 18th of October 2022 in the north of
Brasov county, Romania. The hyperspectral sensors of the
satellite are able to recall images in a wavelength range of
239 spectral bands between [400 - 2500 nm], 66 in the Visible
Near Infra Red [400 - 1010 nm], and 173 in the Short Wave
Infra Red [920 - 2500 nm], with a spectral sampling interval
smaller than 12 nm. The images have a spatial resolution of

1000 × 1000 pixels, with a ground sample distance of 30 m
[16]. The spectral bands used in the experiments are in the
visible domain from 406 nm to 713 nm, roughly 8 nm sampled.

III. THE PROPOSED AI MODEL ARCHITECTURE

In practice, a number of classical algorithms are commonly
used to visualize MS images, for example by using band
selection or linear color formation models. These approaches
presume the choice of the appropriate illuminant and the
modelling of the nonlinearity of human perception by gamma
correction. The results of these algorithms often present low
visual quality. As mentioned in the introduction, a NN ap-
proach could as well simulate the nonlinear human perception
as offer a general solution for MS images acquired by different
systems.

A. Model Description

Multispectral pixel
with N wavelengths FCNN RGB pixel

Fig. 2: Model pipeline.

As the coloring for visualization of the MS images can be
formulated as a regression problem, it seems appropriate to
use for this purpose a FCNN, inspired by the one proposed
in [17]. As the number of wavelength present in the CAVE
dataset used for training the model are 31, this is the number
of neurons in the input layer of the network. The network is
constructed with 3 fully connected hidden layers and an output
layer containing three neurons, one for each of the RGB color
channels. Thus, the model estimates for each MS pixel input
an RGB output, see Figure 2.

B. Training of the Model

The FCNN model was trained on all the pixels of all the
images in the CAVE dataset, collected into a single randomly
shuffled set. This set was partitioned into train and test set and
the model was trained until the loss decay on both train and
test set was stabilized. During each training epoch randomly
selected pixel batches of the training set were passed through
the network, using PyTorch data loader. The training stages
can be synthesized by the following methodology.

Training Steps
1) Loading of all the pixels from all the images into one

dataframe [18].
2) Random shuffling of all the pixels.

3) Partitioning of the set into train set - 75% of the pixels
- and test set - 25% of the pixels.

4) Standardization of the training using the PyTorch stan-
dard scaler and using the transformation on test dataset
[19].

5) Training the model with random batches of 2048 pixels.

IV. ANALYSIS AND INTERPRETATION OF RESULTS

Following a set of experiments it proved sufficient to train
the model on 150 epochs. To validate the correctness of the
training method, k-fold cross validation with 10 folds was
used. On each fold the average losses on the training and on
the test were calculated and plotted. The results on most folds
were similar, indicating the correctness of the approach. The
loss decay during training on one of the folds is presented in
Figure 3. It can be seen, that the loss on the training set has a
steep decay, while for similar results on the test set, the model
needs more training.

on train set on test set

Fig. 3: Loss decay on CAVE dataset.

During the k-fold process all the weights were saved and
the best ones were used for coloring all the MS images of
the CAVE dataset. The visual outputs were accurate, further
validating the chosen model. Figure 4 is presenting the color-
ing result on two samples of the dataset together with the
provided RGB label image. One may notice that the two
images are visually identical. The similarity measures for the
pairs of input-output images in the train set confirm the visual
results. The considered quality metrics were Mean Squared
Error (MSE) and Peak Signal-to-Noise Ratio (PSNR). For
MSE the values for the pairs are between [0.09-0.17] and the
values for PSNR are between [55.71-58.45].

The trained model was also used to visualize HS satellite
images obtained from the PRISMA satellite. It must be
mentioned, that the spectral bands of the PRISMA images
differ slightly from those of the images in the CAVE dataset.
We considered from the PRISMA images only the wavelength
in the visual range and linearly interpolated them to fit those
of the CAVE dataset. The coloring of the HS images was
performed by the following procedure.

Inference
1) Load the pixels of the PRISMA image into a dataframe.
2) Linearly interpolate the values as to fit the wavelength

to those of the CAVE images. As the spectral range of
the PRISMA image is very similar to the one of CAVE

FCNN
output

RGB
label

Fig. 4: Coloring of two MS images from the CAVE dataset
using the trained FCNN model.

images, we considered linear interpolation as accurate
enough.

3) Standardize the pixels of the dataframe relative to their
mean and variance using the standard PyTorch scaler.

4) Pass each pixel through the model to predict the corre-
sponding (R,G,B) triplet.

5) Construct the RGB-image with respect to the original
size of the PRISMA image and save as PNG file.

A result of this coloring on a PRISMA image is presented
in Figure 5. Four different product levels of the same PRISMA
image were visualized by the network, each of them presenting
the initial HS image, while the other three present subsequent
levels of correction. Level 1 is a top of the atmosphere radiance
imagery. After the atmospheric correction and geolocation of
Level 1, Level 2B image contains the information about the
reflected radiance of the Earth’s surface, and Level 2C has the
information about the boundary reflection coefficient, aerosol
optical thickness and water vapor map. The last level, Level
2D, represents the image after all the transforms plus orthorec-
tification [16], [5]. According to [16], ”the orthorectification
process foresees the correction of all image distortions caused
by the collection geometry (this includes the optical sensor
characteristics) and the variable terrain”.

As can be seen in Figure 5, the results of the coloring
are promising. The expected natural coloring of the image is
achieved in all four cases, given that the image was acquired
late October. The region of the valley is accurately rendered
and the agricultural parcels can be clearly distinguished.
There are still some artefacts present, probably due to highly
reflective surfaces. This might be due to the fact that the
training dataset was acquired in the indoor environment and
has a specific spectral signature. Another aspect might concern
the interpolation method, opening the research possibility of
other interpolation or mapping methods.

It also can be noticed that after corrections in Level 2, the
slightly blueish coloring of the Level 1 HS image is attenuated,
and the green color of the vegetation is enhanced. The most
pronounced difference in color to the original sample can be
observed after orthorectification. Level 2C leads to a higher

(a) PRISMA image Level 1 (b) PRISMA image Level 2B

(c) PRISMA image Level 2C (d) PRISMA image Level 2D

Fig. 5: Coloring of four products of PRISMA image using the
FCNN model with weights trained on CAVE dataset before
and after corrections.

contrast are more vivid colors. Level 2B and Level 2C images
are the most colorful.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a novel fully connected model for
the task of HS/MS images coloring. The given architecture
has yielded encouraging results. This study was developed
on two known datasets in the field, CAVE and PRISMA,
but we are interested in running additional tests on several
datasets with different characteristics, the indoor category
which is a controlled environment, and also the outdoor variety
which is a natural environment. Such an approach can bring
generality to the solution already offered, but also optimal
and diversified results. However, the proposed network can
further be optimized, for instance, one minor restriction that
we have noticed through testing is that the current model
still generates errors for highly reflective surfaces. In addition,
at this point of the study, visually it can be seen that the
results are meaningful. Still, there is necessary to validate
the results with other different classical (Euclidean Distance,
Mahalanobis Distance, Cosine Similarity, etc) and/or specific
(Structural Similarity Index, Universal Quality Image Index,
etc) metrics. We also want to improve the performance and
results of the model by enhancing the input datasets.

ACKNOWLEDGMENT

This work was funded from the AI4AGRI project enti-
tled “Romanian Excellence Center on Artificial Intelligence
on Earth Observation Data for Agriculture”. The AI4AGRI
project received funding from the European Union’s Horizon

Europe research and innovation program under the grant
agreement no. 101079136. The hyperspectral image from the
PRISMA satellite presented in this paper was kindly provided
by the Italian Space Agency (ASI).

REFERENCES

[1] T. Adão et al., ”Hyperspectral Imaging: A Review on UAV-
Based Sensors, Data Processing and Applications for Agriculture
and Forestry”, Remote Sensing, 2017, Volume 9(11). [Online].
https://doi.org/10.3390/rs9111110.

[2] M. Weiss, F. Jacob, G. Duveiller, ”Remote sensing for agricul-
tural applications: A meta-review”, Remote Sensing of Environ-
ment, Volume 236, 2020, pp. 111402, ISSN 0034-4257, [Online].
https://doi.org/10.1016/j.rse.2019.111402.

[3] J. Zhao et al., ”Deep-Learning-Based Multispectral Image Reconstruc-
tion from Single Natural Color RGB Image—Enhancing UAV-Based
Phenotyping”, Remote Sensing, 2022, Volume 14, pp. 1272. [Online].
https://doi.org/10.3390/rs14051272.

[4] P. Rodrı́guez-Veiga et al., ”Forest biomass retrieval approaches from earth
observation in different biomes”, Int. J. Appl. Earth Obs. Geoinf, 2019,
Volume 77, pp. 53–68.

[5] E. Vangi et al., ”The New Hyperspectral Satellite PRISMA: Imagery
for Forest Types Discrimination,” Sensors, 2021, Volume 21, pp. 1182,
[Online]. https://doi.org/10.3390/s21041182.

[6] L. Du et al., ”A comprehensive drought monitoring method integrating
MODIS and TRMM data,” Int. J. Appl. Earth Obs. Geoinf, 2013, Volume
23, pp. 245–253.

[7] B. Demir, A. Celebi, S. A. Erturk, ”Low-complexity approach for the
color display of hyperspectral remote-sensing images using one-bit-
transform-based band selection”, IEEE Trans. Geosci. Remote Sens, 2008,
Volume 47, pp. 97–105.

[8] S. Le Moan, A. Mansouri, Y. Voisin, J.Y. Hardeberg, ”A constrained band
selection method based on information measures for spectral image color
visualization”, IEEE Trans. Geosci. Remote Sens., 2011, Volume 49, pp.
5104–5115.

[9] H.A. Khan, M.M. Khan, K, Khurshid, J. Chanussot, ”Saliency based
visualization of hyper-spectral images”, Proceedings of the 2015 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
Milan, Italy, 2015, pp. 1096–1099.

[10] P. Duan, X. Kang, S. Li, ”Convolutional neural network for nat-
ural color visualization of hyperspectral images”, Proceedings of
the IGARSS 2019–2019 IEEE International Geoscience and Remote
Sensing Symposium, Yokohama, Japan, 2019, pp. 3372-3375, doi:
10.1109/IGARSS.2019.8900359.

[11] R. Tang, H. Liu, J. Wei, W. Tang,W. ”Supervised learning with convo-
lutional neural networks for hyperspectral visualization”, Remote Sens.
Lett, 2020, 11, pp. 363–372.

[12] C. A. Poynton, A Technical Introduction to Digital Video, John Wiley
& Sons, Inc., 1996, ISBN: 047112253X.

[13] F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar, ”Generalized Assorted
Pixel Camera: Post-Capture Control of Resolution, Dynamic Range
and Spectrum”, Technical Report, Department of Computer Science,
Columbia University CUCS-061-08, 2008.

[14] J. Eckhard, T. Eckhard, E.M. Valero, J.L. Nieves, E. Garrote Contreras,
”Outdoor scene reflectance measurements using a Bragg-grating-based
hyperspectral imager”, Applied Optics, Volume 54 (13), pp. D15-D24,
2015.

[15] UEA Colour Group Datasets, [Online]. Available:
https://colour.cmp.uea.ac.uk/datasets/multispectral.html

[16] ASI. Prisma Products Specification Document Issue 2.3 Date
12/03/2020. [Online]. Available: http://prisma.asi.it/missionselect/docs/
PRISMA%20Product%20Specifications Is2 3.pdf

[17] R.M. Coliban, M. Marincaş, C. Hatfaludi, M. Ivanovici, ”Lin-
ear and Non-Linear Models for Remotely-Sensed Hyperspectral Im-
age Visualization”, Remote Sensing, Volume 12(15), 2020, [Online].
https://doi.org/10.3390/rs12152479.

[18] DataFrame, [Online]. Available: https://pytorch.org/torcharrow/beta/
dataframe.html (accessed on 17.12.2022)

[19] StandardScaler, [Online]. Available: https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.StandardScaler.html (accessed
on 10.11.2022)

	Introduction
	Methodology
	Single texture generation NCA
	Architecture and Inference
	Training of the NCA

	Multi-texture generation
	Regeneration and Grafting

	Results and Discussions
	Results of the experiments
	Multi-texture generation and interpolation results
	Regeneration and grafting results

	Preservation of the genome
	Loss function exploration

	Conclusions
	Fractal interpolation in the context of prediction accuracy optimization
	Introduction
	Materials
	Datasets
	Meteorological Data
	Additional Public Datasets

	Prerequisites
	Fractal Interpolation
	Optuna Framework

	Method and Procedures
	Data Preprocessing Step
	Interpolation Step
	I. Closest Hurst Strategy (CHS)
	Results and Analysis for Closest Hurst Strategy
	II. Optimized Procedure - Closest Values Strategy (CVS)
	Results and Analysis for Closest Values Strategy
	III. Optimized Strategy - Formula Strategy (FS)
	Results and Analysis for Formula Strategy
	Comparison of methods and Results
	Normalization Step
	Stationarity in Time Series Analysis

	Data Splitting Step
	Model Description
	Specific Input Structure of LSTM
	Model Optimization

	Results and Discussions
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

	Medical emergency department triage data processing using a machine-learning solution
	1 Introduction
	2 Materials and methods
	2.1 Problem analysis
	2.2 Data preparation and preprocessing

	3 Models development and evaluation
	4 Computational experiments and results
	4.1 Imbalanced data
	4.2 SMOTE for imbalanced data
	4.3 ADASYN for imbalanced data
	4.4 The simplified problem
	4.5 Memory and CPU usage

	5 Interfacing by the web-based application
	6 Discussion and conclusions
	Ethics statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

	Introduction
	Mathematical Preliminaries
	Iterated Function Systems
	Countable FIFs

	Computational Background
	Applied Technologies. Motivation (Pros)
	Technical Notes on Performance
	Limitations (Constraints)

	Main Results
	Countable Fractal Non-Affine Interpolation Schemes
	Countable Fractal Affine Interpolation Schemes

	Conclusions
	References
	Abstract
	1. Introduction
	2. Methods
	2.1. Geographical and climate setting
	2.2. Dataset acquisition
	2.3. Crop description and color scheme

	3. Data records
	4. Technical validation
	5. Data set value
	5.1. Crop identification: past vs present (problem 1)
	5.1.1. Deep learning approach: identification using ResNet18
	5.1.1.1. Model description and training procedure
	5.1.1.2. Results and discussion

	5.1.2. Classical approach: identification with Random Forests
	5.1.2.1. Model description and training procedure
	5.1.2.2. Results and discussion

	5.2. Early crop identification (problem 2)
	5.2.1. Deep learning approach with ResNet18
	5.2.1.1. Model description and training procedure
	5.2.1.2. Results and discussion

	5.2.2. Early crop identification using Random Forest
	5.2.2.1. Model description and data
	5.2.2.2. Results and discussion
	5.2.2.3. Comparison between deep learning and Random Forest approaches

	6. Conclusions
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	Data availability statement
	References

