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Contributions to Teaching and Research

Teaching and Student Engagement
I teach courses of Applied Mathematics, Theoretical Mechanics,
Mathematical Analysis, Optimal Control, Multi-physics Simulations,
Dynamic simulation of vehicle systems in Matlab
Mentorship: I am passionate about guiding students through complex
interdisciplinary research projects, helping them connect theoretical
insights with practical applications. Now I coordinate two master
thesis:
- Optimization and Optimal Control in Automotive Systems
- Laplace transform method for solving problems in engineering
domains
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MINIMAL STANDARDS FOR HABILITATION THESIS

SRECENT =Sum(SRI Journal/number of authors) from the last 7 years
=5.008175 >=2.5
S = Sum(SRI Journal/number of authors)=6.958342>=5
117 Times Cited Total.
99 Times Cited Without self-citations.
43 Citations in journals with SRI>=0.5
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Objective: Purpose and Scope of the Thesis

Purpose of the Thesis
The present thesis aims to contribute to the fields of continuum
mechanics and nonlinear dynamics, particularly through theoretical
advancements, innovative numerical methods, and practical
applications.
The thesis bridges theoretical research with real-world applications,
showing how rigorous mathematical frameworks and numerical
methods can solve complex material science problems.
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Main Topics Covered

My reseach spans three main topics:
Advanced theoretical insights in the thermoelasticity of double
porous materials.
Advanced numerical methods for nonlinear dynamical systems.
Innovative modeling approaches in nanomaterials and biomass
analysis.

7 / 69



Chapter 1. Advanced Theoretical Insights in Thermoelasticity of
Double Porous Materials

The first chapter focuses on my research in continuum mechanics,
specifically on thermoelastic materials with double porosity structures
This chapter is an extension of my PhD thesis in Mathematics,
completed in 2019, and presents significant advancements in
understanding the complex interactions between thermal and
mechanical behaviors in materials with double porosity.
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1.1. Some uniqueness results for thermoelastic materials with double
porosity structure
Emin, A. N., Florea, O.A., Craciun, E.M., Continuum Mech.
Thermodyn, 33: 1083–1106, 2021.

Concept: Double porous materials contain two interconnected pore
structures, which can include both microscopic voids and macroscopic
cracks. These materials exhibit complex mechanical and thermal
responses due to their unique structure.
Applications: Relevant in civil engineering (soil mechanics,
geotechnics) and biomechanics (e.g., porous bone structures).
Historical Context: The study of materials with double porosity
starts with models by Barenblatt and has expanded to incorporate
thermoelasticity, taking into both thermal and mechanical
interactions.
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The equations that model material with two porosities are:

ρüi = tji,j + ρFi,

κ1φ̈ = σj,j + p + ρM,
κ2ψ̈ = τj,j + r + ρN,

(1)

It contains: the displacement equations that take into account the direct
forces that act on the body; the stress tensors and the volume fraction
equations for the porosities.
ρ = the density of material; ui =the displacement
κ1, κ2 = the equilibrated inertia coefficients
φ, ψ = the volume fraction fields
σj, τj= the vectors of the equilibrated stress
tij = the stress tensors at the body’s surface ∂B.
p, r = the intrinsic forces, Fi = the direct forces, M = the extrinsic forces
that act on the pores, N = the extrinsic forces that act on the cracks.
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The energy’s equation for the thermoelastic double porous material:

ρT0η̇ = qj,j + ϱδ, (2)

It relates entropy rate changes to heat flux and heat supply over time.
T0 = absolute temperature from the reference configuration
η = the entropy; qj= the heat flux; δ = the heat supply
Using this equation alongside the motion equations (1), we derive the
compresive model shown in (3):

ρüi = (Cjikluk,l + Bjiφ+ Djiψ − βjiθ),j + ρFi,

κ1φ̈ = (αijφ,i + bijψ,i),j − Bijui,j − α1φ− α3ψ + γ1θ + ρM,
κ2ψ̈ = (bijφ,i + γijψ,i),j − Dijui,j − α3φ− α2ψ + γ2θ + ρN,
aT0θ̇ = −T0(βiju̇i,j + γ1φ̇+ γ2ψ̇) + (Kijθ,j),j + ρδ.

(3)
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The initial and boundary conditions for the mixed problem are provided in
(4) & (5). These conditions specify the behaviour of displacements,
volume fractions, entropy and temperature at the initial time and on the
boundaries, respectively.
The initial conditions are:

ui(x0, 0) = u0
i (x0), u̇i(x0, 0) = v0

i (x0),
φ(x0, 0) = φ0(x0), φ̇(x0, 0) = φ̃0(x0), x0 ∈ B̄.
ψ(x0, 0) = ψ0(x0), ψ̇(x0, 0) = ψ̃0(x0)
η(x0, 0) = η0(x0),

, (4)

The boundary conditions are:

ui = ub
i on ∂B1 × [0,∞) , ti = tb

i on ∂Bc
1 × [0,∞) ,

φ = φb on ∂B2 × [0,∞) , λ = λb on ∂Bc
2 × [0,∞) ,

ψ = ψb on ∂B3 × [0,∞) , m = ωb on ∂Bc
3 × [0,∞) ,

θ = θb on ∂B4 × [0,∞) , ν = Ωb on ∂Bc
4 × [0,∞) ,

(5)
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The ordered array (ui, φ, ψ, θ) is a solution for the mixed boundary value
problem of a thermoelastic material with double porosity in the cylinder
Ω0 = B × [0,∞).

We consider the following assumptions to ensure the well - posedness
of the problem, leading to a unique and stable solution.

1 Continuity of coefficients: the constitutive coefficients, the density ρ,
the coefficients of inertia κ1, κ2 must be continuous on B̄;

2 Smoth external functions: the body forces Fi, the extrinsic forces
M,N and the heat supply h must be continuous on the cylinder
Ω0 = B × [0,∞);

3 Boundary conditions: ub
i , φ

b, ψb, θb must be continuous in their
domains

4 External data: tb
i , λb, ωb, Ωb are functions that are continuous in

time and piecewise regular in their domains of definition.
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The Betti reciprocity theorem is a fundamental result in the analysis of the
thermoelastic double porous materials.
It establishes a relation between two systems of external loads H(1),H(2)

and the solutions corresponding to these loads S(1), S(2).

The external loads include: body forces, heat supply, extrinsic forces,
prescribed initial conditions:

H(a) = {F(a)
i , ω(a),N(a), δ(a), u∗(a)i , t∗(a)i , φ∗(a), λ∗(a), ψ∗(a),

ω∗(a), θ∗(a),Ω∗(a), u0(a)
i , v0(a)

i , φ
(a)
0 , φ̃

(a)
0 , ψ

(a)
0 , ψ̃

(a)
0 , η

(a)
0 },

(6)

The solutions consist of: displacements, volume fraction fields, stress
tensors, heat fluxes.

S(a) = {u(a)i , φ(a), ψ(a), θ(a), t(a)ij , σ
(a)
i , τ

(a)
i , q(a)i , r(a), p(a)}, (7)

where: t(a)i = t(a)ij nj, λ(a) = σ
(a)
i ni, ω(a) = τ

(a)
i ni, Ω(a) = q(a)i ni.
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The uniqueness theorem which ensures that the mixed problem for
the thermoelastic double porous materials has unique solution

Theorem
If the assumptions above are fulfilled then the mixed problem for
thermoelastic bodies with double porosity (3) accompanied by the initial
conditions (4) and the boundary conditions (5) admits a unique solution.

This theorem is fundamental for modeling thermoelastic materials in
engineering, ensuring reliable predictions of material behavior under
varying thermal and mechanical loads.
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Next reciprocity theorem is a result derived from Betti reciprocity relation.

Theorem
For two systems of external loads H(1),H(2) with corresponding solutions
S(1), S(2), the following integral relation holds:∫

B
[F(1)

i ∗ u(2)i + ω(1) ∗ φ(2) + N(1) ∗ ψ(2) − 1
ρT0

ξ ∗ ω(1) ∗ θ(2)] dV

+
∫
∂B

[ξ ∗ (t(1)i ∗ u(2)i + λ(1) ∗ φ(2) + ω(1) ∗ ψ(2) − 1
ρT0

Ω(1) ∗ θ(2))] dA

=
∫
B
[F(2)

i ∗ u(1)i + ω(2) ∗ φ(1) + N(2) ∗ ψ(1) − 1
ρT0

ξ ∗ ω(2) ∗ θ(1)] dV

+
∫
∂B

[ξ ∗ (t(2)i ∗ u(1)i + λ(2) ∗ φ(1) + ω(2) ∗ ψ(1) − 1
ρT0

Ω(2) ∗ θ(1))] dA,

(8)

This theorem is essential for:
- Validating the physical consistency of models
- Analyzing the effects of different load scenarios
- Ensuring the robustness of materials under varying operational conditions
in applications like civil engineering and material science
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The following lemma provides an important result for establishing
uniqueness in thermoelastic media with double porosity.

Lemma
Based on the above, the following differential relationship occurs:

d
dζ [

∫
B
(ρui(ξ)ui(ξ) + κ1φ(ξ)φ(ξ) + κ2ψ(ξ)ψ(ξ)) dV + 1

ρT0

ξ∫
0

∫
B

Kijθ∗,i(ξ)θ∗,j(ξ) dV dζ]

−
∫
B
[ρ(ui(2ξ)u̇i(0) + u̇i(2ξ)ui(0)) + κ1(φ(2ξ)φ̇(0) + φ̇(2ξ)φ(0)) + κ2(ψ(2ξ)ψ̇(0) + ψ̇(2ξ)ψ(0))] dV =

=
ξ∫
0

∫
B
[ρFi(ξ − ζ)ui(ξ + ζ) + λ(ξ − ζ)φ(ξ + ζ) + m(ξ − ζ)ψ(ξ + ζ) − 1

ρT0
ω(ξ − ζ)θ(ξ + ζ)] dV dζ

−
ξ∫
0

∫
B
[ρFi(ξ + ζ)ui(ξ − ζ) + λ(ξ + ζ)φ(ξ − ζ) + m(ξ + ζ)ψ(ξ − ζ) − 1

ρT0
ω(ξ + ζ)θ(ξ − ζ)] dV dζ

+
ξ∫
0

∫
∂B

[ti(ξ − ζ)ui(ξ + ζ) + λ(ξ − ζ)φ(ξ + ζ) + m(ξ − ζ)ψ(ξ + ζ) − 1
ρT0

Ω∗(ξ − ζ)θ(ξ + ζ)] dA dζ

−
ξ∫
0

∫
∂B

[ti(ξ + ζ)ui(ξ − ζ) + λ(ξ + ζ)φ(ξ − ζ) + m(ξ + ζ)ψ(ξ − ζ) − 1
ρT0

Ω∗(ξ + ζ)θ(ξ − ζ)] dA dζ.

(9)

This relation demonstrates the balance of energy across the material
volume B, involving mechanical displacements ui, volume fractions ϕ, ψ,
and thermal gradients θ.
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Theorem
If the thermal conductivity tensor Kij is positive definite and the
assumptions above are satisfied, then the mixed problem, consisting of:
the governing equations (3), initial conditions (4), boundary conditions
(5), admits a unique solution.

This theorem guarantees that, under realistic physical assumptions, the
model remains mathematically consistent and reliable for analyzing
complex thermoelastic behavior in double porous materials.

Implications:
Ensures predictability and robustness of material models in
applications like geotechnics and biomechanics.
Forms the basis for validating simulations and theoretical predictions
in complex material systems.
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1.2. Moore–Gibson–Thompson thermoelasticity in the
context of double porous materials

Florea, O.A., Bobe, A., Continuum Mech. Thermodyn.,
33:2243–2252, 2021.

Theory Overview: The MGT thermoelasticity model introduces a
framework that considers finite thermal wave speeds, crucial for
accurately modeling heat propagation in materials exposed to rapid
temperature changes.
Application to Double Porous Materials: MGT theory has been
adapted to model double porous structures, allowing for the
simulation of interactions between thermal and mechanical fields.
Importance: Essential for applications where materials undergo rapid
temperature fluctuations, such as in geothermal energy systems or
aerospace applications where temperature and mechanical stress must
be tightly controlled to prevent failure.
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The differential Moore-Gibson-Thompson (MGT) equation for
thermoealsticity incorporating the Maxwell-Cattaneo law to account for
finite thermal wave speeds.

γ · c(x)d
3θ

dt3 + c(x)d
2θ

dt2 =
(
Kij(x)θ,i + K∗

ij(x)θ,i
)
,j (10)

γ= the thermal relaxation parameter, ensuring that heat propagation
occurs at finite speeds; c(x)= Specific heat capacity, varying spatially
across the material domain. θ = Temperature field, representing the
thermal state of the material. Kij(x) and K∗

ij(x)= Tensorial coefficients for
thermal conductivity, modeling directional and material-dependent heat
transfer.

The presence of higher-order time derivatives d3θ
dt3 reflects advanced

thermal wave modeling, enabling predictions of rapid thermal
transients.
The coupling with conductivity tensors accounts for anisotropic heat
flow, relevant in materials with directional porosities.
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the initial conditions in the context of MGT theory of thermoelasticity
for materials with double porosity structure

ui(x, 0) = 0; ϕ(x, 0) = 0; ψ(x, 0) = 0; θ(x, 0) = 0
u̇i(x, 0) = 0; ϕ̇(x, 0) = 0; ψ̇(x, 0) = 0; θ̇(x, 0) = 0; θ̈(x, 0) = 0 (11)

These initial conditions provide a baseline for the system, ensuring that the
response is solely due to external inputs, such as applied forces or heat
sources.

The mixed problem for the MGT theory has the boundary conditions:

ui = u∗i on ∂Ω1 × [0, t∗); ti = t∗i on ∂Ωc
1 × [0, t∗)

ϕ = ϕ∗ on ∂Ω2 × [0, t∗); λ = λ∗ on ∂Ωc
2 × [0, t∗) (12)

ψ = ψ∗ on ∂Ω3 × [0, t∗); m = ω∗ on ∂Ωc
3 × [0, t∗)

θ = θ∗ on ∂Ω4 × [0, t∗); ν = Ω∗ on ∂Ωc
4 × [0, t∗)
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The energy equation will have the following form:

ρT0
[
βiju̇i,j + a1ϕ̇+ a2ψ̇ + c(γ

...
θ + θ̈)

]
= (Kijθ,j),i + ρδ (13)

Thermal Inertia ρT0: the material’s resistance to temperature
changes.
Mechanical Coupling βiju̇i,j: the influence of mechanical displacement
gradients u̇i,j on the energy balance.
Porosity Dynamics a1ϕ̇+ a2ψ̇: the contributions from changes in the
volume fractions ϕ, ψ of the two porosity fields.
Thermal Relaxation (γ

...
θ + θ̈): The second θ̈ and first-order θ̇ time

derivatives capture finite propagation speeds of thermal waves
Heat Conduction (Kijθ,j),i: the flow of heat through the material
External Heat Supply ρδ: the contribution of external heat sources to
the overall energy balance.
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The energy function of MGT thermoelasticity is expressed as: E = Ei − ηΦ
Ei= the internal energy, capturing contributions from displacement,
porosities, and thermal fields;
ηΦ= a term accounting for the dissipative effects in the system.

The energy function E will have the following quadratic expression:

E=
1
2Cijklui,juk,l+Bijϕui,j+Dijψui,j+

1
2ϕ,iϕ,j+bijϕ,iψ,j+

1
2γijψ,iψ,j+ (14)

+
1
2α1ϕ

2 + α3ϕψ +
1
2α2ψ

2 +
1
2KijΘ,iθ,j − Aθ̇2 − Bθ̇θ̈ + Cθ̈2

This equation integrates all energy components, such as elastic, thermal, and
coupling terms for porosities ϕ, ψ and temperature gradients θ.

The kinetic energy per mass unit is:

EK(t) =
1
2
[
ρu̇i(t)u̇i(t) + κ1ϕ̇(t)ϕ̇(t) + κ2ψ̇(t)ψ̇(t)

]
(15)

These equations form the backbone of the energy analysis in thermoelastic systems,
connecting displacement, porosity, and temperature dynamics under the MGT
framework. 23 / 69



Energy Variation Theorem
The variation of energy in the MGT thermoelasticity for double porous
materials is expressed by:

d
dt

∫
Ω

(EK+E)dV=ρ
∫
Ω

(
Fiu̇i + Mϕ̇+ Nψ̇

)
dV +

∫
∂Ω

(
tjiu̇i+σjϕ̇+τjψ̇

)
njdA+

+

∫
Ω

(
qiθ̇,j +

1
ρT0

(qi,i + ρδ)(γθ̈ + θ̇)

)
dV− (16)

−
∫
Ω

(
2
3A(γθ̈+θ̇)(γ

...
θ + θ̈)+(2A + B)θ̇θ̈+Bθ̈2+2Cθ̈ ·

...
θ

)
dV

Stability of the System:The theorem demonstrates that if the energy function E is
positive definite, the system remains stable over time, ensuring bounded and predictable
behavior.
Uniqueness of the Solution: The theorem guarantees that the mixed problem has a
unique solution under given initial and boundary conditions, which is essential for
theoretical rigor and numerical simulations.
Real-World Applications: It validates the use of MGT thermoelasticity for advanced
material designs, such as heat-resistant composites and porous structures in civil
engineering and aerospace.
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1.3. Green-Lindsay Thermoelasticity Theory for Double
Porous Materials
Anamaria N Emin, Olivia A Florea Scientific Annals of the ”Ovidius”
University of Constanța. Mathematics Series 2023

Theory Overview: Green-Lindsay thermoelasticity theory also
extends classical thermoelastic models to accommodate finite thermal
wave speeds, providing a way to predict and manage thermal
responses under stress.
Specific Application: By applying Green-Lindsay theory to double
porous materials, this research advances understanding of how these
materials react to coupled thermal and mechanical loading.
Engineering Relevance: This model is instrumental in fields that
deal with high thermal and mechanical stress, including civil and
aerospace engineering.
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Based on the Green-Lindsay theory the heat flux components are:

qi = −θ0(biθ̇ + Kijθ,j). (17)

qi= Heat flux vector; θ0=Reference temperature; bi= Heat transfer
coefficients; Kij= Thermal conductivity tensor; θ̇= Time derivative of
temperature.
This equation highlights the dependency of heat flux on both temperature
gradients θ,j and rate of temperature change θ̇.

the quadratic form of the Helmholtz energy:

ω = 1
2Cijkluk,lui,j + Bijφui,j + Dijψui,j − βijui,j(θ + αθ̇)+

+1
2aijφ,iφ,j + bijφ,iψ,j +

1
2δijψ,iψ,j +

1
2α1φ2 + 1

2α2ψ2+

+α3φψ − γ1φ(θ + αθ̇)− γ2ψ(θ + αθ̇)+

+1
2c(θ + αθ̇)2 + biθ0θ̇θ,i +

1
2θ0Kijθ,iθ,j.

(18)

The equation incorporates elastic, porosity ϕ, ψ, and thermal coupling
effects. 26 / 69



the energy equation becomes:

ρβij ˙ui,j + ργ1φ̇+ ργ2ψ̇ + ρaθ̇ + ρcαθ̈ + biθ̇,i + Kijθ,ij −
ρδ

θ0
= 0. (19)

This equation captures the equilibrium between thermal and mechanical
energy contributions in the system.

The energy variation theorem for Green-Lindsay thermoelasticity in
double porous materials
The energy balance for double porous materials is described as:

d
dt
∫
B
(ξc + ω) dV = ρ

∫
B

(
Fiu̇i + Mφ̇+ Nψ̇ + h

θ0

(
θ + αθ̇

))
dV+

+
∫
∂B

(
tjiu̇i + σjφ̇+ τjψ̇

)
ni dA + 1

ρ

∫
∂B

[
qi
θ0

(
θ + αθ̇

)
+ qiθ̇

]
ni dA +

∫
∂B

biθ0θθ̈ni dA.

(20)

If the energy function ω is positively defined, then the mixed problem for
double porous bodies admits a unique solution.
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Chapter 2. Advanced Numerical Methods in Nonlinear Dynamical
Systems

The thesis investigates complex dynamical systems through advanced
numerical methods.
By analyzing systems like the double pendulum with fractional
derivatives, and the motion of a bead on a rotating wire, the thesis
delves into both chaotic and periodic behaviors that traditional
models often overlook.
This work demonstrates the importance of numerical methods in
capturing non-linear behaviors, which are otherwise analytically
challenging, providing deeper insights for engineering and physics
applications.
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2.1. Fractional Features of a Double Pendulum System
Florea, D Baleanu, J Asad in Dynamic Systems and
Applications 30 (2), 305-320, 2021

Figure 1 presents a double pendulum system, which consists of two masses
m1,m2 connected by two lightweight rods b1, b2. This mechanical system
demonstrates rich dynamics, including chaotic and periodic behavior,
making it an ideal case study for investigating nonlinear dynamical systems.

Figure 1: The double pendulum system
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the kinetic and potential energies of the system:

T =
1
2 (ω1 + ω2) b2

1φ̇
2
1 +

1
2ω2b2

2φ̇
2
2 + ω2b1b2 cos (φ1 − φ2) φ̇1φ̇2, (21)

This equation describes the system’s kinetic energy. It combines the
effects of the angular velocities of the masses and the interaction between
the two pendulums.

V = − (ω1 + ω2) gb1 cosφ1 − ω2gb2 cosφ2. (22)

This represents the gravitational potential energy. It considers the relative heights of the
pendulums with respect to a reference point.

the classical Lagrangian Lc = T − V

Lc = 1
2 (ω1 + ω2) b2

1φ̇
2
1(t) + 1

2ω2b2
2φ̇

2
2(t) + ω2b1b2 cos (φ1(t)−

−φ2(t)) φ̇1φ̇2(t) + (ω1 + ω2) gb1 cosφ1 + ω2gb2 cosφ2.
(23)

Using the Lagrangian framework allows for a comprehensive analysis of the
system’s behavior, including chaotic dynamics under certain conditions.
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The classical Lagrangian is reformulated using Caputo’s fractional
derivative, providing a generalized model for systems with memory effects.
The fractional Lagrangian Lf is given by:

Lf =
(ω1+ω2)b2

1(C
a Dαt φ1(t))

2
+ω2b2

2(C
a Dαt φ2(t))

2

2 +

+ω2b1b2 cos (φ1(t)− φ2(t))C
a Dα

t φ1(t)C
a Dα

t φ2(t)+
+ (ω1 + ω2) gb1 cosφ1(t) + ω2gb2 cosφ2(t).

(24)

(C
a Dα

t φ1(t)
)
= Caputo fractional derivative. ϕ1(t), ϕ2(t)= Angular

positions of the double pendulum components. α= Fractional order
parameter, capturing memory and hereditary effects in the system.

The fractional Hamiltonian Hf(t) represents the total energy (kinetic +
potential) in the fractional framework:

Hf(t) = 1
2(ω1 + ω2)b2

1
(C

a Dα
t ϕ1(t)

)2
+ 1

2ω2b2
2
(C

a Dα
t ϕ2(t)

)2
+

+ω2b1b2 cos(ϕ1(t)− ϕ2(t))
(C

a Dα
t ϕ1(t)

) (C
a Dα

t ϕ2(t)
)
−

−(ω1 + ω2)gb1 cosϕ1(t)− ω2gb2 cosϕ2(t).
(25)
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The equations of motion for the fractional Hamiltonian are:
Equations (26) describe the motion of a double pendulum system within
the Fractional Euler-Lagrange Equations (FELEs) framework,
incorporating fractional derivatives to capture memory effects and dynamic
coupling. It is presented as:

−ω2b1b2 sin(ϕ1(t)− ϕ2(t))
(C

a Dαt ϕ1(t)
) (C

a Dαt ϕ2(t)
)
+ (ω1 + ω2)gb1 sinϕ1(t) =

= (ω1 + ω2)b2
1

C
t Dαb

(C
a Dαt ϕ1(t)

)
+ ω2b1b2

C
t Dαb

(
cos(ϕ1(t)− ϕ2(t))

(C
a Dαt ϕ2(t)

))
ω2b1b2 sin(ϕ1(t)− ϕ2(t))

(C
a Dαt ϕ1(t)

) (C
a Dαt ϕ2(t)

)
+ ω2gb2 sinϕ2(t) =

= ω2b2
2

C
t Dαb

(C
a Dαt ϕ2(t)

)
+ ω2b1b2

C
t Dαb

(
cos(ϕ1(t)− ϕ2(t))C

a Dαt ϕ1(t)
)
.

(26)

These equations generalize classical equations of motion by incorporating
fractional derivatives, enabling the study of systems with hereditary or
memory-dependent effects.
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The figure illustrates the dynamic evolution of a system governed by the
FELE for a fractional order of α = 0.5.
It illustrates the chaotic and complex dynamics inherent in the fractional
double pendulum system.

Case 1: ϕ1 = 0.1, ϕ̇1 = 0, ϕ2 =
0.1, ϕ̇ = 0
Case 2: ϕ1 = 0.1, ϕ̇1 = 0, ϕ2 =
0.8, ϕ̇ = 0
Case 3: ϕ1 = 0.1, ϕ̇1 = 0, ϕ2 =
1.5, ϕ̇ = 0
Case 4: ϕ1 = 0.1, ϕ̇1 = 0, ϕ2 =
3.1, ϕ̇ = 0
Case 5: ϕ1 = 1.5, ϕ̇1 = 0, ϕ2 =
3.1, ϕ̇ = 0

Figure 2: The behavior of the solution
for α = 0.5 in the FELE equations
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2.2. Numerical Study of the Motion of a heavy bead
sliding on a rotating wire
J Asad, O Florea, H Khalilia Bulletin of the Transilvania
University of Brasov. Series III: Mathematics and Computer
Science, 2020

Consider a heavy ball slipping on a rotating wire, with angular frequency
ω. The wire deviated away from the vertical axis by an angle ψ .

Figure 3: Heavy ball sliding on a rotating wire: This system is used to model the
interplay between gravitational, centrifugal, and inertial forces on a constrained
mass, revealing complex dynamics under varying initial conditions. 34 / 69



The kinetic energy and the potential energy of the ball:

T =
1
2m

(
ṙ2 + r2ω2 sin2 ψ

)
(27)

This equation captures the translational and rotational contributions to
the kinetic energy.

V = mgr cosψ (28)

This reflects the influence of gravity on the system based on the radial
position and tilt angle.

The classical Euler-Lagrange equation (CELE) ∂L
∂r −

d
dt

∂L
∂ ṙ = 0

r̈ = rω2 sin2 ψ − g cosψ (29)

This equation describes the motion of the ball in terms of the radial
acceleration r̈ and the forces acting on it, including centrifugal and
gravitational forces.
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The Hamilton system will be:{ ṙ = ∂H
∂p

ṗ = −∂H
∂r = mrω2 sin2 ψ − mg cosψ (30)

H= Hamiltonian function representing the total energy of the system.
p= Momentum conjugate to r.

Figure 4: a graphical representation of the behavior of the radial distance r over
time for a heavy ball sliding on a rotating wire. The graphs consider varying
conditions for the tilt angle ψ = {π

6 ,
π
4 ,

π
2 } and angular velocity ω = {1, 2, 3}.
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2.3. Mathematical and numerical approach for telegrapher
equation
H SHANAK, O FLOREA, N ALSHAIKH, A Jihad ACTA TECHNICA
NAPOCENSIS-Series: APPLIED MATHEMATICS, MECHANICS, and
ENGINEERING, 2020

Transmission line represents a long electrical conductor with resistance R,
inductance L, capacitance C, and conductance G.

Figure 5: a schematic representation of an electrical transmission line described by
the telegraph equation. The model incorporates the physical elements of the line
and their effects on voltage v(x, t) and current i(x, t) over time and distance.
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Telegraph Equation (With Losses)

c2 ∂
2i

∂x2 =
∂2i
∂t2 + (n + m)

∂i
∂t + (nm)i. (31)

x = the distance from sending end of the cable;
v(x, t) = the voltage at any point and any time, on the cable;
i(x + dx, t) = the current at any point and any time, on the cable;
R = the resistance of the cable; C = the capacitance to the ground;
L = the inductance of the cable; G = the conductance to the ground.
n = G

C , m = R
L , and c2 = 1

LC
This equation models the current’s time and spatial evolution, considering
losses from resistance R and conductance G.

Ideal Lossless Telegraph Equation
For an ideal lossless transmission line R = 0 and G = 0 the transmission is
governed solely by the inductance L and capacitance C per unit length,
resulting in ideal wave propagation without attenuation.

c2 ∂
2i

∂x2 =
∂2i
∂t2 . (32)
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The evolution in time of the intensity of the current that passes
through the transmission line of the telegrapher
We realized a parallel using the numerical analysis between equation (31)
and equation (32).
i(x, 0) = sin x, ∂i(x,0)

∂t = − sin x,i(0, t) = 0, and i(1, t) = 0

Figure 6: The comparison highlights how losses (represented by R and G)
attenuate the signal in equation (31) compared to the ideal case of equation (32).
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2.4. Numerical aspects of two coupled harmonic oscillators
Jihad Asad, Olivia Florea in The Scientific Annals of Ovidius
University of Constanța. Mathematics Series, 28(1): 5-15, 2020

A two coupled harmonic oscillators of three masses connected linearly
by two springs each of stiffness k.
The setup reflects a molecular system where the central mass M represents
the atom in the middle of a molecule, and the end masses m mimic the
outer atoms. The system can exhibit oscillatory behavior depending on the
initial conditions and the spring stiffness.

Figure 7: a system of three masses connected by two springs, representing a
symmetric linear triatomic molecule CO2.
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The classical Lagrangian L = T − V:

L =
1
2ω1ẋ2

1 +
1
2ω2ẋ2

2 +
1
2ω3ẋ2

3 −
1
2k (x3 − x1)

2 − 1
2k (x2 − x3)

2 (33)

This Lagrangian describes the interaction of the masses through the
springs and their motions.

The classical Euler- Lagrange Equations (CELE’s)

rẍ1 = −Ω2 ((1 + r)x1 + x2) (34)

rẍ2 = −Ω2 ((1 + r)x2 + x1) (35)

where r = M
m , and Ω =

√
k
m .

These equations illustrate the coupled motion of the system, highlighting
the dependency of the second mass’s motion on the first and vice versa.
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Symmetric (Breathing) Mode of Oscillation
Figure 8 illustrates the symmetric mode of oscillation for the system
of two coupled harmonic oscillators with three masses (two identical
end masses m and a central mass M).
The system exhibits oscillations where the displacement of the end
masses is symmetric, creating a ”breathing” effect.
The central mass remains at rest, acting as a node of oscillatory
motion.

Figure 8: The behavior of the solutions of the system in the case when r=1.5 and
Ω =

√
k
m = 0.50
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Asymmetric Mode of Oscillation
Figure 9 depicts the asymmetric mode of oscillation, where the
dynamics differ from the symmetric mode.
This mode highlights the relative motion of the central mass against
the synchronized movement of the end masses.
The central mass’s displacement is scaled inversely by the mass ratio.

Figure 9: The behavior of the solutions of the system in the case when r=1.5 and
Ω =

√
k
m = 0.50
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Chapter 3. Innovative Modeling Approaches in Nanomaterials and
Biomass Analysis

The thesis applies insights from nonlinear dynamics to practical
problems in nanomaterials and biomass combustion.
In nanotechnology, it models the chaotic behavior of Barium Titanate
nanoparticles using a photonic tunneling framework, which is
significant for developing materials in electronics and multiferroic
devices.
For biomass and sustainable energy, the research investigates the
porosity of wood briquettes, highlighting how porosity impacts
combustion efficiency. This work offers potential improvements in
biomass fuel technology, supporting cleaner and more efficient energy
production.
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3.1. Microscopic Hamiltonian and chaotic behavior for
Barium Titanate nanoparticles revealed by photonic
tunneling model

E Godwe, O Florea, R Jarrar, M Justin, J Asad Physics Letters A,
2023

Photon field couplings are formed between many-body electrons. In
our study we will focus on photons whose finite mass is made up of
interacting electrons.
based on Ehrenfest’s theorem, we will use the method of derivation of
semi-quantal dynamics due to the fact that its approach is closer to
the formulations of non-equilibrium static mechanics.
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The explicit form of the dynamics equation from the photonic
tunneling model in ferroelectrics

Dynamics of Photon Position and Momentum
dx
dt =

p
mN , ;

dp
dt = 2k2x2

0x − 2k2x3 − 6k2x ρ2 (36)

Dynamics of Auxiliary Parameters
dρ
dt = ξ;

dξ
dt =

1
4ρ3 + ρ

(
2k2x2

0 − 6k2x2)− 6k2ρ3. (37)

p = the photon’s momentum; x = the photon’s position.
m = the mass of the electron -photon is , N = the average number of
electro-photons in a finite standard block spin
ω = the tunneling frequency for a double well potential appropriate to the
KDP-type crystals.
ρ= Auxiliary parameter related to photonic energy distribution.
ξ= additional parameter capturing the temporal evolution of ρ.
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The effective Hamiltonian associated to Barium Titanate ferroelectric
The Hamiltonian Hext provides a comprehensive description of the total
energy of the system, integrating kinetic, potential, and auxiliary energy
terms.

Hext =
P2

2 +
ξ2

2 + Vext (x, ρ) , (38)

The potential Vext incorporates nonlinear effects, such as quartic terms
(x4, ρ4)) and coupling between position (x) and auxiliary variables ρ.

Vext (x, ρ) =
1
2k2 (x4 − 2x2

0x2 + x4
0
)
+

1
8ρ2 (39)

+ k2ρ2 (3x2 − x2
0
)
+

3
4k2ρ4

These equations are central to studying photonic tunneling in ferroelectric
materials, with applications in nonlinear optics and electronic devices.
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Figure[10] displays the Poincaré sections for a system governed by
photonic tunneling dynamics in ferroelectrics under a double-well
potential. The figure illustrates the chaotic and stable regimes based on
the parameter k, the coupling constant.

Figure 10: Poincare sections in the plane (ξ, x). We set parameters as k = 0.22;
x0 = 10 ;m = 0.00278; with the initial conditions (0.3; 0.3; 0.01; 0.01).

For k < 0.05 the system contains no stable fix point and then becomes
chaotic.
For k > 0.05 the trajectory converges towards the equilibrium point.
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the Lyapunov exponent estimated is positive when the parameter k is
below 0.05, a positive exponent implies the divergence of neighboring
trajectories, i.e. for these values of the system parameters, and we
have a chaotic behavior.
the Lyapunov exponent is negative when the parameter k is over 0.05
that is to say the system is stable in this domain.

Figure 11: Dynamics with respect to the bifurcation diagram for x0 = 10 under
the effect of the tunneling frequency ω and the maximal Lyapunov exponent for
the set of equations (36) versus the parameter k with the initial conditions (0.3;
0.6; 0.1; 0.1).
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3.2. Indirect evaluation of the porosity of waste wood
briquettes by assessing their surface quality

D Sova, L Gurau, M Porojan, O Florea, V Sandu, M Purcaru Waste
and Biomass Valorization, 1 -15, 2022

Briquettes are porous materials. During immersion, a part of the
pores (voids developed during chips compression) is filled with liquid.
pelletizing and briquetting are the most common processes used for
biomass densification for solid fuel applications.
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the briquettes’ porosity was calculated by using three methods
Hunt determined the oven-dry wood cell porosity (Pd) from the
oven-dry density ( ρOD), the density of the cell wall ( ρcw) and the
density of air ( ρair), by using the following equations:

ρOD = ρcw (1 − Pd) + ρairPd (40)

and
Pd =

ρcw − ρOD
ρcw − ρair

(41)

The density can be expressed as:

ρ = ρcwM (1 − P) + ρairP (42)

where: ρcwM is the density of the cell wall with bound water. The wet
porosity is obtained from Eq. (42), as follows:

P =
ρcwM − ρ

ρcwM − ρair
(43)

51 / 69



A second method, calculating the wood porosity in wet conditions,
based on Siau’s equation is:

P = 1 − ωOD
1000 Vbr.

(0.653 + 0.01M) (44)

where: P is the porosity or the fractional void volume of wood,
0.653×10−3 (m3/kg) is the specific volume of the wood substance, M
(%) is wood moisture content.
The third method used for wood porosity calculation, which was
proposed by Hunt et al. is based on dry cell porosity and moisture
content.
Wet porosity is:

P =
(1 − V%bw)Pd
1 − V%bwPd

(45)

where: V%bw is the bound water volume fraction.
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Chapter 4. Further research
4.1. A qualitative analysis on the double porous
thermoelastic bodies with microtemperature

Florea, OA ; Craciun, EM; Öchsner, A; Emin, AN, CONTINUUM
MECHANICS AND THERMODYNAMICS, Volume36, Nov 2024

The thermal displacement m depends on the temperature variation θ,
between two states of the body

m(x, ξ) =
ξ∫

ξ0

θ(x, s)ds, (46)

This equation represents the cumulative effect of temperature changes
over time on thermal displacement.
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The microthermal displacement νi depends on the variation of
microtemperatures Ti between two states of the body:

νi(x, ξ) =
ξ∫

ξ0

Ti(x, s)ds, (47)

where Ti(x, ξ) = Θi(x, ξ)− T0i. Microthermal displacement νi is influenced
by and influences mechanical displacement fields, creating a feedback loop
between thermal and elastic properties.
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The energy equations for thermoelastic materials with double porosity and
microtemperature effects are formulated as follows:

ρη̇ = Qj,j + ρh,
ρη̇i = Qji,j + ρhi.

(48)

ρ: Density of the material, η: Entropy of the system,
ηi: Microtemperature-related entropy terms,
Qj: Heat flux components,Qji: Microtemperature heat flux
components,
h: Heat supply to the system,hi: Microtemperature heat supply.

These equations are essential for modeling energy transfer and thermal
dissipation in advanced materials, particularly those with complex
microstructural properties.
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We will consider the following hypotheses:
(a) the coefficients from the equations that govern the thermoelastic body
are positive: ρ > 0, K1 > 0, K2 > 0 şi ω > 0,
(b) the free energy is a positively semi-definite function,
(c) the conductivity coefficients Dij are the components of a tensor defined
so that ∃ d0 > 0: Dijζiζj ≥ d0ζiζi, for all ζi.

The initial conditions for the mixed problem of thermoelastic bodies with
double porosity and microtemperature are:

ui(x, 0) = ui0(x), u̇i(x, 0) = ui1(x),
φ(x, 0) = φ0(x), φ̇(x, 0) = φ1(x),
ψ(x, 0) = ψ0(x), ψ̇(x, 0) = ψ1(x),
m(x, 0) = m0(x), ṁ(x, 0) = m1(x),
νi(x, 0) = νi0(x), ν̇i(x, 0) = νi1(x),

(49)

These initial conditions ensure the problem is well-posed, defining a clear starting point
for solving the equations of motion, volume fraction evolution, and thermal effects.
They are critical for guaranteeing uniqueness and stability of the solution.
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the boundary conditions:

ui(x, ξ) = ub
i (x, ξ),

φ(x, ξ) = φb(x, ξ),
ψ(x, ξ) = ψb(x, ξ),
m(x, ξ) = mb(x, ξ),
νi(x, ξ) = νb

i (x, ξ),

(50)

These boundary conditions ensure that the behavior of the system at its
edges or interfaces conforms to external constraints or applied conditions,
such as:
Fixed displacements or movements at the boundaries.
Specified thermal or microthermal effects.
Controlled volume fractions for porous structures.
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Lemma
The influence of the microtemperatures on a double porous thermoelastic
body leads to obtaining a thermic deformation, expressed by the following
equation:

ui,jtij + φ,iσi + ψ,iτi + φp+ ψr+ m,iQi + νi,jQij + ρ(ηṁ + ηiν̇i) =

= Mijklui,juk,l + Bijφ,iφ,j + Cijψ,iψ,j + a1φ2 + a2ψ2

+dijm,im,j + eijklνi,jνk,l + ωṁ2 + Eijν̇iν̇j
+2(Nijui,jφ+ Pijui,jψ + aijklui,jνk,l + Aijφ,iψ,j

+bijφ,im,j + cijψ,im,j + Rijφνi,j + a3φψ + Sijψνi,j).

(51)

The lemma emphasizes the interplay between thermal gradients,
microtemperatures, and mechanical displacements, establishing a rigorous
mathematical foundation for the energy interactions within the system.
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Theorem
Let us consider a thermoelastic body with double porosity under the action
of microtemperatures in which the symmetry equations are fullfiled. If the
hypotheses (a)− (c) are simultaneos satisfied, then the mixed problem
with the initial conditions (49) and the boundary conditions (50) admits
at most one solution.

This theorem guarantees:
Predictability: The system’s behavior is uniquely determined by the given
conditions.
Stability: Ensures the model’s reliability for engineering applications.
Physical Consistency: Confirms that the model aligns with real-world
observations, making it a robust framework for studying thermoelastic
materials.
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the study of the existence of the solution of the mixed problem
We will consider an evolution equation defined in a suitable chosen Hilbert
space H. The Hilbert space provides a mathematical framework to
rigorously define the function spaces where the solutions exist.

H =
[
W1,2

0 × L2
]5
, (52)

The Sobolev space W1,2
0 accommodates the displacement fields, which

need to have finite strain energy (derivatives are square-integrable).
The L2 space supports fields like microtemperature variations, ensuring
they are physically measurable (finite energy).
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Theorem
We will consider the vector functions:

U = (ui, vi, φ,Φ, ψ,Ψ,m,Λ, νi,Vi) ,

U′ = (u′i, v′i, φ′,Φ′, ψ′,Ψ′,m′,Λ′, ν ′i ,V′
i) .

(53)

The norm of the scalar product⟨U,U′⟩ = J1 + J2, where

J1 = 1
2
∫
B
(ρviv′i + K1ΦΦ′ + K2ΨΨ′ + ωΛΛ′ + EijViV′

i) dV,

J2 = 1
2
∫
B

F(U,U′) dV, (54)

J1 represents inputs from kinetic and thermal energy.
J2 represents additional interaction terms.
This equivalence is crucial for proving the stability and robustness of
solutions within the Hilbert space framework.
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Pendulum between Two springs using Ms- DTM

Olivia A. Florea, Doaa Shahroor, Rania Wannan and Jihad Asad
Physica Scripta - under review

a pendulum system suspended between two horizontal springs
Multi-Step Differential Transformation Method (Ms-DTM) is used to solve
the nonlinear equations of motion derived from the system’s Lagrangian.
The study highlights the superiority of Ms-DTM in handling the complex
nonlinearities and stiff equations associated with the system, which are
challenging for conventional methods like the Runge-Kutta technique.
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Figure 12: This figure illustrates a mechanical system consisting of a simple
pendulum suspended between two horizontal springs. The system is designed to
study the interplay between rotational and translational motion, influenced by the
elasticity of the springs and the gravitational force.

The kinetic energy (T ) of m and M can easily be shown that:

T =
1
2Mχ̇2 +

1
2mχ̇2 +

1
2mℓ2ϕ̇2 + mℓϕ̇χ̇cosϕ. (55)

the potential energy (V): the gravitational potential energy (Vg), and the potential
energy due to the two springs (Vs).

V = Vg + Vs = −mgℓcosϕ+
1
2κ1χ

2 +
1
2κ2χ

2. (56)

This equation represents the total kinetic energy, accounting for both translational χ
and rotational ϕ movements. 63 / 69



The Euler-Lagrange Equations (ELEs) derived from the dynamics of a
pendulum suspended between two springs are:

χ̈+

(
mℓ

m +M

)
ϕ̈−

(
mℓ

m +M

)
ϕ̇2ϕ+

(
κ1 + κ2
m +M

)
χ = 0. (57)

ϕ̈+
1
ℓ
χ̈+ ω2

oϕ = 0. (58)

Multi-Step Differential Transform Method (MS-DTM)


(k+1)(k+2)Φ(k+2)+1

l (k+1)(k+2)X(k+2)+ω0Φ(k) = 0
(k+1)(k+2)X(k+2)+a(k+1)(k+2)Φ(k+2)+bX(k)−

−
k∑

l=0

k−l∑
s=0

(s+1)(m+1)Φ(s+1)Φ(m+1)Φ(k−s−m) = 0
.

(59)
Where Φ(k) is the differential transformation of the original function ϕ (t)
and X(k) is the differential transformation of the original function χ (t).
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The application of MS-DTM allows us to express the general solution of
the system (59) as follows:

χ(t) =



N∑
k=0

X1(k)(t)k, t∈[0,t1]

N∑
k=0

X2(k)(t−t1)
k, t∈[t1, t2]

N∑
k=0

X3(k)(t−t2)
k, t∈[t2, t3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
N∑

k=0
XM−1(k)(t−tM−2)

k, t∈[tM−2, tM−1]

N∑
k=0

XM(k)(t−tM−1)
k, t∈[tM−1, tM]

. (60)
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ϕ(t) =



N∑
k=0

Φ1(k)(t)k, t∈[0,t1]

N∑
k=0

Φ2(k)(t−t1)
k, t∈[t1, t2]

N∑
k=0

Φ3(k)(t−t2)
k, t∈[t2, t3]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
N∑

k=0
ΦM−1(k)(t−tM−2)

k, t∈[tM−2, tM−1]

N∑
k=0

ΦM(k)(t−tM−1)
k, t∈[tM−1, tM]

. (61)
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we consider the following parameters κ1=1;
κ2 = 1; ℓ = 1; m = 0.1; M = 1.

Figure 13: Time evolution of the function ϕ using the Ms-DTM and Runge-Kutta
methods.

Figure 14: Time evolution of the function χ using the Ms-DTM and Runge-Kutta
methods.
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Conclusions
I will continue advancing research in Continuum Mechanics and
Dynamical Systems.
I will continue mentoring students to achieve excellence in these fields.
I will actively participate in scientific projects that contribute to the
advancement of knowledge and technology.
I am committed to building a strong, vibrant research community.
I aim to make meaningful contributions to the field of Mathematics
and its applications.
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Thank you for your attention!
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