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1. Introduction

1.1 Towards Data-Driven Medicine: Overview, Challenges and Future

Medical imaging is a gold-standard non-invasive procedurewidely used in the diagnostic process.
It produces detailed images of the internal structures of the human body for clinical purposes, such
as disease prevention, diagnosis, treatment planning, and monitoring.

Nowadays, medical imaging has become an increasingly important part of the healthcare do-
main by facilitating early detection and improving patient well-being. The accuracy of the diagnosis
depends to a large extent on the quality of the acquired image but, more importantly, on the inter-
pretation of medical images. In terms of healthcare physicians’ interpretation, the process is highly
complex and prone to error due to the physicians’ experience, subjectivity, and the level of fatigue.
To these is added the extensive variations that exist between patients, the imaging complexity, and
the heavy workload.

Over the past couple of years, due to technological progress and driven by the necessity to im-
prove efficiency in the healthcare system, much effort has been invested in providing solutions for
automated medical image interpretation. Although in practice, the medical imaging interpretation
relies heavily on the physicians’ expertise, with the experience and years of practice, this process
becomes automatic to a certain extent. Thus, medical image analysis can very well be formulated
for computer programs. Combining the power of computer science with the clinicians’ knowledge
to tackle the interpretation problem in medicine is a crucial step in improving the decision-making
process.

Consequently, Artificial Intelligence (AI) for medicine has been introduced as a fast-growing com-
puter science field with the potential to increase the likelihood of using automatic systems in clinical
practice in the near future. AlthoughAI implies cognitive computing, current technologies are far from
achieving the ideal intended intelligence. In the best case, AI provides algorithmic means to under-
stand, detect, and recognize patterns in large datasets. Machine Learning (ML) is the application of
AI that relies upon data mining and statistics to enable computers to learn from vast amounts and
various forms of data without being explicitly programmed [1].

The ability to extract meaningful insights from large datasets make ML-based solutions well-
suited to solve complex data analysis problems, includingmedical image-basedanalysis. Implement-
ing and adoptingML in healthcare-related problems presentsmultiple challenges. Since patient data
have to be collected andmanually annotated bymedical experts, gathering enough suitable data and
annotations remains one of the most biggest barriers to ML integration in the healthcare industry.

Despite being one of the fastest-growing sectors in the global economy, with the market being
expected to reach $6.6 billion by 2021 [2], the biomedical industry is one of the main laggards in
the adoption of data-driven solutions and practices. The gap takes place in an area that produces
extremely abundant collections of valuable data. While biomedical data are abundant, they are chal-
lenging to circulate due to ethical and legal constraints.

Medical AI-systems have demonstrated their ability to improve clinical decisions, increase pa-
tient safety, and reduce costs, but they are still virtually absent from day-to-day clinical care, as data
to develop and train them exist, but are locked inside hospitals firewalls. With the currently adopted
regulations, such as the European Union’s General Data Protection Regulation (GDPR), several con-
cerns have been raised about data privacy, security, and sharing. Such regulations restrict the use
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or disclosure of personal data, which clearly affects the usage and development of data-driven al-
gorithms. Consequently, as access to sensitive data is required in medical ML-based applications,
there is an urge to address the data privacy and security concerns in a way that enables the share
of patient-related health information while ensuring the progress and utility of ML in the healthcare
sector.

In recent years, there has been a continuous effort invested in providing solutions that rely on
AI for fast, accurate, and secure processing of medical data for screening, prevention, diagnosis, and
personalized treatment guidance. However, certain challenges remain to be addressed to fully em-
brace these solutions in clinical practice.

1.2 Aims of the Thesis
With the rapid advances in AI technologies, the increased computing power, e.g., graphical pro-

cessing units (GPUs) and cloud computing systems, and the abundance of data, the potential of AI
techniques have begun to be studied in the context of medical data. The traditional clinical work-
flow of medical imaging interpretation consists of three separate stages: (i) raw data acquisition,
(ii) reconstruction of the internal structure of the human body upon the acquired data, and (iii) clini-
cal interpretation of the reconstructed image. However, in combination with ML-based solutions for
clinical decision-making, a new stage, responsible for patient data privacy, integrity, and security, is
required, as shown in Figure 1.1.

Figure 1.1: The process of artificial intelligence-based radiological image interpretation, from data
acquisition to image-based diagnosis.

Given that radiology plays a major role in disease diagnosis and treatment, and knowing that
imaging analysis is time-consuming and susceptible to human-level errors, the focus lies on inves-
tigating the potential benefits of machine learning in the field of medical data, with emphasis on
radiology imaging. Hence, the present thesis contributes to the new development and application of
artificial neural networks in theworkflow ofmedical imaging interpretation. Specifically, it introduces
deep learning-based novel techniques to the fields of image reconstruction, image analysis, and pri-
vacy preservation. The current research aimed to study, implement, test, and validate the usage of
deep neural networks in delivering a fully end-to-end learning-based medical data analysis.

In summary, the following main objectives can be identified:

• Development, implementation, and testing of a learning-based algorithm to enable fast high-
resolution computed tomography image reconstruction from low-dose measurements;

• Development of a clinically-realistic evaluation tool for establishing the quantitative under-
standing of reconstruction quality;
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• Development, implementation, and testing of a deep learning-based computer-aided diagno-
sis system that highlights suspicious findings in breast images;

• Development of a validation methodology for correctness, robustness and performance eval-
uation of the computer-aided diagnosis system;

• Extending existing methodology to two-view breast imaging analysis;

• Development of a secure noise-free homomorphic encryption scheme;

• Development of a generic deep learning library that exploits the homomorphic cryptography as
a mechanism for enabling computations on sensitive data without disclosing patient-related
health information;

• Development of a methodology for evaluating the performance of the deep learning library on
homomorphically encrypted data;

• Development, implementation, and evaluation of a secure and privacy-preserving deep
learning-based X-ray coronary angiography medical images analysis;

• Development, implementation, and evaluation of a secure and privacy-preserving deep
learning-based whole-body circulation hemodynamic analysis;

• Identifying and examining both the level of security and utility of the encryption cryptosystem;

• Strengthening the encryption scheme security, while maintaining the performance and poten-
tial to be used in real-world applications;

• Development and implementation of a secure and privacy-preserving health risk score predic-
tion.

1.3 Thesis Structure and Content
The thesis is organized as follows:
In Chapter 2 a general introduction into the field of deep learning is provided. The chapter covers

the basics of artificial neural networks. Moreover, the current trends in terms of network architec-
tures are described in details, and the main tasks that can be tackled by learning-based models are
captured, all linked by the common thread of using deep neural networks in the healthcare industry.

In Chapter 3 a novel end-to-end deep learning-based framework is proposed for solving inverse
problems inmedical imaging. The framework is designed to encapsulate the knowledge of the phys-
ical model of computed tomography (CT) image formation and to produce high-quality images that
account for human perception through a generative adversarial network with Wasserstein distance
and a contextual loss.

In Chapter 4 a framework is proposed to tackle the breast mass detection in digital breast to-
mosynthesis images. The solution consists of two modules, deep learning-based mass detection,
i.e., identifying the locations of candidate lesions, and mass matching in ipsilateral tomosynthesis
views. To improve the detection robustness, a registration of suspicious candidates provided by
the learning-based model is employed upon the bilateral craniocaudal (CC) and mediolateral oblique
(MLO) views of a breast. The algorithm mimics the radiologist’s image interpretation routine using
the basic notions behind the breast image formation.

Chapter 5 focuses on designing fully automated data-driven personalized-based medicine so-
lutions by protecting the integrity of patient health data. A symmetric-key fully homomorphic en-
cryption scheme is introduced as a potential solution for privacy-preserving computations within
deep learning models. The applicability of incorporating homomorphic encryption into deep learn-
ing is showcased by tackling three different problems: digit recognition, whole body hemodynamic
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analysis, and coronary angiography view classification. For each application, both the training and the
inference phase are addressed and show that both can be performed on homomorphically encrypted
data.

Finally, Chapter 6 draws the final conclusions and summarizes the major findings. Additionally,
it presents the personal contributions, the dissemination of the results, as well as give insights into
the future directions of research.

Portions of this thesis were previously published as part of [3–6].
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2. Deep Learning in Medicine

Since their first appearance in 1943 [7], the functionality of neural networks has continuously
been associatedwith theway people learn and process information. More specifically, theywere de-
signed to emulate the synaptic connections between brain neurons, and later on, became the foun-
dation of deep learning.

2.1 Neural Networks

On a high level, a neural network can be defined as a computational model that maps inputs
to outputs through a composition of layers with interconnected processing blocks (transformations
and activation functions). The architecture of a simple neural network is depicted in Figure 2.1. To
allow for a complex arbitrary functional mapping, non-linear activation functions are typically added
at each processing block. They filter the information that passes through the network, determining
what input signal is relevant to be forwarded to the following layer. Mostly they decide whether a
certain neuron should be activated or not, and without them, the neural network becomes a simple
linear model.
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Figure 2.1: The architecture of a simple neural network described by the input, output, and a hidden
layer in-between. Information flows through all layers, starting from the input layer to the output
layer. Herein, every neuron receives information from all neurons of the previous layer (in literature
called a fully connected layer). The connections θ between the processing blocks are the parameters
that have to be adjusted in accordance with data and the formulated problem. Each processing block
performs a transformation (herein a weighted sum of the input parameters), and the result is passed
to an activation function f that will be used to add non-linear properties in the network. Activation
functions are usually selected from a set of limited functions with certain mathematical properties.
Non-linearity is needed to allow for a complex arbitrary functionalmapping between input andoutput
data.
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Like any othermachine learningmethods, neural networkmodels aimat learning frompast expe-
rience to make predictions based on new observations. In supervised learning, during training phase
the model automatically learns the mapping function (parameters of the model) based on labeled
training examples in an iterative fashion by gradually making an adjustment.

Upon training, the network should be able to provide results that are statistically similar to the
expected ones evenwhen presentedwith input data never encountered by the network during train-
ing. Consequently, neural networks can be used in predicting an output from certain input features,
classifying data, and even localizing patterns or objects in images.

2.2 Going Deeper: Deep Neural Networks
In essence, a deep neural network is nothing else than a neural network model composed of

several layers of processing blocks and organized as an input layer, followed by multiple hidden lay-
ers and an output layer. Over the years, it has been shown that such an architecture facilitates the
modeling of highly complex functions, allowing for the learning of richer intermediate representa-
tions. Hence, the key difference between shallow and deep neural networks is given by the depth of
the models, although not standardized, typically a network with depth higher than two falls into the
deep learning category.

2.3 Deep Learning in Medical Imaging
The current trend inmedicine is towards tailored diagnosis, treatment planning, and disease pre-

vention by identifying and correlating massive amounts of patient data (e.g., symptoms, diagnosis,
treatments, etc.). In medical imaging analysis, deep learning found its way into data-drivenmedicine
as a way of automatically understanding the semantic content of patient images for the diagnosis,
detection, and segmentation of anatomical structures or diseases. Consequently, in recent years,
DL has offered many data-driven solutions designed to tackle different imaging tasks (Figure 2.2),
including segmentation, object detection, classification and, more recently, image generation (e.g.,
enhancement, denoising, reconstruction, registration etc.).
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Figure 2.2: An overview of imaging-related deep learning tasks.
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3. Towards Data-Driven CT Imaging Reconstruc-
tion

3.1 Introduction

X-ray computed tomography (CT) is a standard imagingmodality used in clinical routines to reveal
the internal structures of the human body. There is a clear dependence between the quality of the
tomographic reconstruction and the diagnostic accuracy [8]. One way for obtaining higher quality
CT scans implies an increased radiation dose, which also increases the potential risk of the patient
to develop radiation-related pathologies. Meanwhile, by decreasing the dose, artifacts and noise
are enhanced in the CT scan, deteriorating image quality and, hence, compromising the diagnostic
accuracy.

Traditionally, analytical and iterativemethods are themain approaches for performing image pro-
cessing, including denoising, inpainting, restoration, and superresolution. The deep learning-based
solutions for image reconstruction generally fall into two categories: (i) image-to-image domain re-
construction, and (ii) data-to-image domain reconstruction. Methods in the former category formu-
late the inverse problem as an image domain denoising task: this is one of the most straightforward
ways of incorporating the learning process into the reconstruction. Usually, the reconstruction con-
sists of two cascaded operations: an initial CT scan is obtained by applying a simple, direct inverse
operator such as filtered back-projection, which is then post-processed by a Convolutional Neural
Network (CNN) to reduce artifacts and noise.

Despite the impressive denoising results obtained in image-to-image reconstruction, detailsmay
be lost during the refinement step, as prior knowledge is usually neglected. Hence, data-to-image
methods that incorporate prior knowledge on imaging physics have the potential of suppressing un-
desired effects, while preserving important details. Hence, more recently, the idea of learning a com-
plete data-driven reconstruction has been investigated in several scientific works [9].

Therefore, methods in the second category aim at learning the entire reconstruction operation
directly from the measured data, in an end-to-end manner. Herein a fully data-driven deep recon-
struction model is proposed to address the low-dose CT reconstruction problem. While the Learned
Primal-Dual algorithm proposed in [10] led to impressive results, the method suffered from a global
over-smoothing effect, caused by themean squaredmetric employed by the optimization procedure.
To overcome this limitation, an adversarial training strategy is proposed to optimize the primal-dual
reconstruction by also encouraging a human perceptual similarity, which enhances structural and
textural details. Moreover, a patch-wise discriminator is adopted to further improve the authentic-
ity of reconstructions: the model is constrained to gradually optimize the synthetic reconstruction
image with emphasis on the region identified as being unrealistic.

3.2 Mathematical Formulation of CT imaging

X-ray computed tomography (CT) is an imaging procedure used to producedetailed3Danatomical
images. Typically, the process of generating a CT image includes two steps: data acquisition and
image reconstruction. The CT imaging process is depicted in Figure 3.1.
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Image acquisition Data formation Image reconstruction CT imaging rendering 

Figure 3.1: The process of CT imaging, from data acquisition to volume rendering.

During the acquisition, an object is placed between the X-ray source emitting a cone beam of X-
rays, and a flat panel detector which captures the X-ray absorption of different tissues (materials)
along a straight line path L. The retrieved information is known as measurement or projection data.
To observe the object from different directions, the source-detector pair is rotated around the object,
capturing hundreds of projections. The projections generated from equally spaced angular positions
are stacked to form a so-called sinogram. The sinograms are then converted into tomographic 3D
image slices during a reconstruction process. Finally, the generated slices are stacked together to
form the 3D image of the patient, which allows for identification and localization of tissues, organs,
abnormalities, etc.

Hence, mathematically, the goal of X-ray tomography can be formulated as recovering the at-
tenuation map of the observed object f ∈ X from measurements g ∈ Y , where X denotes the
reconstruction space and Y represents the measurement space. CT imaging could be considered as
a forward operator (Radon transform) that creates the measurements g from image f , as:

g = H(f), (3.1)

whereH : X → Y is the systemmatrix.
A typical approach for solving the reconstruction algorithm is based on direct inversion, described

in CT imaging by the Radon transform adjoint operator, i.e., back-projection,H∗ : Y → X , as:

f = H∗(g). (3.2)

The reconstruction obtained on the basis of the conventional back-projection operator suffers
from strong blurriness.

More recently, model-based iterative reconstruction has emerged as an alternative solution.
Starting from an empty image, and incorporating assumptions regarding data acquisition, the al-
gorithm iteratively updates the reconstruction, using both the backward and forward projections, to
minimize an error metric. Hence, X-ray tomography can be formulated as an optimization problem
as follows [11]:

argmin
f∈X

‖(H(f)− g)‖2 + γR(f), (3.3)

where the term on the left is the data fidelity term that measures the discrepancy between the orig-
inal measured projection data g and the synthesized projection data H(f). The term on the right
R : X → R is a regularization term that incorporates prior knowledge of f , introduced to improve
well posedness, with the hyper-parameter γ controlling the balance between prior knowledge and
data fidelity.

The optimization problem formulated in 3.3 is usually addressed using gradient-based methods.
However, the main drawback of an iterative reconstruction algorithm is the large computation time.
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3.3 Data-Driven Image Reconstruction
Thus, learning-based iterative schemes represent a promising alternative for the computationally

demanding classical approach. This data-drivenmethod, relying on deep learning, aims at finding the
parameter θ ∈ Z of the parametric operator (pseudo-inverse)H+

θ based on a training dataset (pairs
of ground truth images and their corresponding measurements) [12], by minimizing an error metric
between the actual and estimated reconstructions, such thatH+

θ (g) ≈ f .
In the learning-based primal-dual reconstruction, an iterative scheme is unrolled into a neural

network, capable of performing full-view reconstruction, starting from raw sinogram data, by alter-
natively updating both the data and the reconstruction.

The neural network combines the information provided by the forward and backward operators
with data specific image filtering, obtained through the convolutional neural network blocks, to gen-
erate an intermediate reconstruction improved at each iteration. Encapsulation of the knowledge on
the physics of image formation has multiple advantages: preservation of more details and reduc-
tion of number of unknowns (leading to a relaxation of the requirement for having a large training
dataset).

Hence, an update function is learned for each iteration in both the image and the data domain:

gi = Gθi(gi−1,H(fi−1), g), (3.4)

fi = Fθi(fi−1,H
∗(gi)), (3.5)

where Gθi and Fθi are convolutional neural networks (Figure 3.2), i = 1, N represents the current
iteration, with the learned pseudo-inverse being the output of the last iteration.

3.3.1 End-to-End Training

The above described problem is traditionally formulated as a regression problem [10], where the
neural network is trained to provide reconstructed images that closely resemble the original images
by minimizing a pixel-wise error metric [e.g., mean squared error (MSE) and mean absolute error
(MAE)], between the actual and the generated reconstructions. Both MSE and MAE tend to be sub-
optimal for the image generation task, encouraging blurriness in images, and discouraging the gen-
eration of textures and structural details [13].

Hence, to generate the reconstructed image, an end-to-end network, Perceptual Primal-Dual
ReconstructionNetwork (Perceptual PD-WGAN) that operates directly on sinogramdata is proposed.
To enable a higher level of details in the reconstructed images, the MSE is replaced by a perceptual
(content) loss [14].

To enforce the generation of images statistically indistinguishable from actual reconstructions,
a generative adversarial network is used. In a generative adversarial setup, two neural networks
are coupled: the first network (generator) tries to generate high-quality images from sinogram data,
the second network (discriminator) has to distinguish between actual image samples (from the real
data distribution), and generated image samples. The two networks are trained jointly, following
competing objectives.

For training stability, aWasserstein generative adversarial network (WGAN)with gradient penalty
[15] is adopted, whose overall goal is to minimize the Wasserstein distance between the true data
distribution and the generated data distribution. Thus, the problem is formulated as follows: given a
sample f from the reconstructed image distributionPf , and g from the sinogramdata distributionPg ,
the generator G learns to map data from one distribution Pg to another Pf , while the discriminator
D estimates the probability of a generated sample to be part of the real distribution Pf . In the end,
the learning objective for WGAN can be formulated as: the generatorGmaximizes the probability of
mistakes made by the discriminator (i.e., probability of successfully fooling the discriminatorD):

min
G

max
D

Ladversarial = Lcritic + λLpenalty, (3.6)
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Lcritic = E
f̃∼Pg

[D(f̃)]− E
f∼Pf

[D(f)], (3.7)

Lpenalty = E
f̂∼Pf̂

[(‖∆f̂D(f̂)‖2 − 1)2], (3.8)

where Lcritic accounts for the Wasserstein distance estimation, and Lpenalty accounts for the gradi-
ent penalty term, whose contribution is being balanced by a weighted parameter λ. In above equa-
tions f̃ = G(g) and represents an image generated by generatorG frommeasurements g, whereas
f̂ describes a sample drawn from a uniform distribution Pf̂ (sampling is performed along straight
lines between pairs of samples from Pf and Pg).

Therefore, the objective of the generator is to make the discriminator believe that a generated
sample is real, thus to minimize:

Lgenerator = − E
f̃∼Pg

[D(f̃)]. (3.9)

The objective of the discriminator is to better distinguish between real and generated samples,
thus to maximize the probability of identifying the data:

Ldiscriminator = E
f̃∼Pg

[D(f̃)]− E
f∼Pf

[D(f)] + E
f̂∼Pf̂

[(‖∆f̂D(f̂)‖2 − 1)2]. (3.10)

While the original WGAN uses a global discriminator, herein a patch-wise discriminator [16] is
employed, which analyzes individual regions from the generated image and predicts a discrimina-
tive score map. The discriminative score provides constructive revisions for the generator, enforcing
additional constraints for the network, leading to higher quality synthesized reconstructions.

Additionally, to encourage the generated images to appear more realistic, a perceptual loss is
defined for the generator, based on the similarity of two images (the distance between high-level
image features extracted from a pre-trained network).

Lcontent = E
g∼Pg ,x∼Pf

[‖(Φ(G(g))− Φ(f))‖22], (3.11)

where Φ is a feature map extracted by the network, G(g) represents the generated reconstruction,
and f is the true tomographic image. The last convolutional layer from the VGG19 network [17] is
employed as a feature extractor.

Given the adversarial lossLadversarial, and the content lossLcontent, a final loss function is defined
as a weighted sum of all individual losses:

min
G

max
D

Lcontent + λ1Ladversarial + λ2Lsupervision, (3.12)

Note that a supervision loss for a direct comparison of images in the reconstruction domain can also
be incorporated as an additional constraint:

Lsupervision = E
g∼Pg ,f∼Pf

[‖G(g)− f‖1], (3.13)

The training procedure for the proposed PD-WGAN network is outlined in Algorithm 3.1.

3.3.2 Network Architecture

The architecture of the proposed Perceptual Primal-Dual Reconstruction Network (Perceptual
PD-WGAN), that addresses the challenging sinogram-based iterative tomographic reconstruction
problem, is depicted in Figure 3.2.
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Algorithm 3.1 PD-WGAN training algorithm
Input: GeneratorGwith parameters θ, DiscriminatorDwith parameters ω, the pre-trained VGG-19

network.
Input: The forward and adjoint operatorsH ,H∗, the number of iterations for the reconstructionN ,

the primal and dual spacesNprimal,Ndual.
Input: The training set {g(j),f (j)}Mj=1, the number of training epochs Nepochs, the batch size b, the

number of iterations for the discriminator and generatorND ,NG, theweighting factorsλ, λ1, λ2,
Adam hyperparameters α, β1, β2.

Output: Updated parameters θ and ω.
1: procedure Train(g,f )
2: Initialize network parameters: θ, ω
3: for epoch = 1, . . . , Nepochs do
4: for critic = 1, . . . , ND do
5: Sample a batch of b training samples: {g(i),f (i)}bi=1 ∼ {g(j),f (j)}Mj=1

6: for i = 1, . . . ,m do
7: Sample a random number: ε ∼ Uniform[0, 1]

8: Generate reconstructed image: f̃ (i) ← G(g(i),H,H∗, N,Nprimal, Ndual)

9: Compute: f̂ (i) ← εf (i) + (1− ε)f̃
i

10: Compute loss: L(i)
D ← D(f̃ (i))−D(f (i)) + λ(‖∆f̂ (i)D(f̂ (i))‖2 − 1)2

11: end for
12: end for
13: Update the DiscriminatorD: ω ← Adam(ω,LD, α, β1, β2)
14: for generator = 1, . . . , NG do
15: Sample a batch of b training samples: {g(i),f (i)}bi=1 ∼ {g(j),f (j)}Mj=1

16: for i = 1, . . . ,m do
17: Generate reconstructed image: f̃ (i) ← G(g(i),H,H∗, N,Nprimal, Ndual)

18: Compute content loss: L(i)
content ← ‖V GG(f̃ (i))− V GG(f (i))‖22

19: Compute supervision loss: Li
supervision ← ‖G(g̃(i))− f i‖1

20: Compute loss: L(i)
G ← λ1L

i
content + λ2L

(i)
supervision +D(f̃ (i))

21: end for
22: end for
23: Update the generatorG: θ ← Adam(θ, LG, α, β1, β2)
24: end for
25: end procedure

3.4 Experiments

To benchmark and evaluate the proposed algorithm, a realistic clinical application was consid-
ered: reconstruction of full-dose computed tomography from simulated low-dose projection data
(sinograms). The training samples contain abdominal CT scans from a dataset made available to
participants in an NIH�, AAPM� and Mayo Clinic�sponsored Low Dose CT Grand Challenge [18]. The
dataset includes volumeswith 3mmand 1mmslice thickness corresponding to full-dose abdominal
CT scans from 10 patients. For the proposed experiments, samples from the 3 mm slice thickness
reconstructions were extracted and the dataset was split at patient level into 2198 512 × 512 CT
slices for training, and 210 CT slices for validation.

As the proposed network incorporates knowledge on the geometry of the CT system in the form
of forward and backward operators, an imaging model was defined to synthetically generate low-
dose projection data starting from the full-dose reconstructions.
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Figure 3.2: Overall structure of the proposed Perceptual PD-WGAN network for solving a tomo-
graphic problem. The iterative scheme is unrolled intoN = 8 iterations with independently trainable
parameters and 5 filter maps are generated in both the primal and dual path Nd = Np = 5 for
information persistence between iterations.

3.5 Results

The Learned Primal-Dual network trained with mean squared error (PD-MSE) was implemented
as the main reference method of data-driven unrolled networks. The structure of the network was
identical to the one in the original paper [10]. Henceforth, the proposed solution (Perceptual PD-
WGAN) was compared against three reconstruction algorithms, including the classical Filtered Back-
projection (FBP) with Hann window, the TV regularized reconstruction, and the state-of-the-art
Learned Primal-Dual (PD-MSE).
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a) Full Dose GT b) FBP           c) TV           d) PD-MSE e) Perceptual
  PD-WGAN

Figure 3.3: Full-dose tomographic reconstructions: abdominal cross-sectional CT images alongside
a zoomed in region delimited by the red rectangle. The display window is [-500, 200]HU.

3.5.1 Qualitative Evaluation

To assess the quality of the generated reconstructed tomographic images, representative slices
from the testing dataset were selected, and results are depicted in Figure 3.3. As shown in Figure
3.3, the Perceptual PD-WGAN can mitigate the over-smoothing effect to a certain extent. However,
compared to the reference image, there are still some details that appear to be noisy, and structures
that tend to be slightly distorted.

To assess the reconstruction quality, with emphasis on the clinical use, a blinded randomized
reading was performed by three independent readers, from which two were experienced radiolo-
gists. The image quality was assessed on the five-point Likert scale from three perspectives: noise,
artifacts and overall diagnosability.

The computedmeanof readers’ quality ratings alongside the individual scores are shown in Figure
3.4. On the five-point comparative scale, the proposed PD-WGAN reconstruction method achieved
the highest scores on all three criteria. All reviewers agreed that PD-WGAN based reconstructed im-
ages have less noise and artifacts than was perceived for the PD-MSE images. Moreover, in agree-
ment with noise and artifact suppression, readers identified PD-WGAN reconstruction method as
delivering higher quality images for diagnostic acceptability.

3.5.2 Quantitative Evaluation

For a quantitative assessment of reconstruction quality, Table 3.1 displays the mean values and
the standard deviations for two typically used image quality metrics: Peak Signal to Noise Ratio
(PSNR), and Structural Similarity Index Measure (SSIM). Additionally, the reconstruction runtime for
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Figure 3.4: Mean qualitative scores for the three readers on a five-point Likert scale (1 = unnacept-
able, 2 = poor, 3 = acceptable, 4 = good, and 5 = excelent). Themean scores with regard to the overall
image quality for diagnosis, image noise and artifact supression is shown for each reader individually.
Lastly, the overall averaged scores is also depicted.

each of the considered algorithms is also displayed in Table 3.1.

Table 3.1: Quantitative comparison of different reconstruction algorithms.

Method
Evaluation Metrics

Runtime (s)
SSIM PSNR

FBP 0.827±0.018 34.533±1.451 0.452±0.084
TV 0.940±0.002 37.887±1.432 59.581±0.829

PD-MSE 0.954±0.004 42.598±1.312 0.537±0.137
Perceptual PD-WGAN 0.911±0.006 31.375±2.218 0.520±0.176

Although the results obtained by the proposed model are perceptually more similar to the ref-
erence images, this is not reflected by the PSNR and SSIM metrics. However, this is not surprising,
as the proposed tomographic network was trained to minimize a feature-based loss in an adversar-
ial manner, not with the intention of reducing pixel-wise differences, but rather for encouraging the
generation of more realistic images.

While training the Perceptual PD-WGAN is more time consuming, when compared to the prior
Learned Primal-Dual method, the reconstruction runtime is approximately the same, as the adver-
sarial structure of the network is neglected during inference. Furthermore, the data-driven recon-

16



struction is much faster, i.e., two orders of magnitude, than the classical TV regularized iterative
method.

3.6 Discussions and Conclusion
It has been shown in a clinically realistic scenario that a direct inversion operator can be learned

from pairs of measurement-reconstruction samples, without relying on any inversion initialization.
As opposed to denoising deep learning-based post-processing methods, where the inverse problem
is treated as an image-to-image method, the proposed model relies on physical and mathematical
knowledge, and, by resembling the iterative optimization problem, it offers a combination of trac-
ing and understanding the network involvement in image reconstruction. Although promising re-
sults have been reported in literature for learning-based post-processing methods, they are limited
by the information available during the training phase. As most of them are initialized with filtered
back-projection, for low-dose and sparse sampling problems, the information is lost during the initial
reconstruction and cannot be restored. Moreover, compared to post-processing methods, the pro-
posed framework not only embeds prior useful knowledge, but it also allows for the correction to be
performed in both the image and the projection domain.

The proposed method has been evaluated on a low-dose inverse problem, using the Mayo clinic
CT dataset, and obtained promising tomographic images, to be further evaluated for diagnosis, as
compared to the state-of-the-art MSE based Learned Primal-Dual reconstruction network. A run-
time feasible for a routine clinical setting was maintained. In the proposed experiments, Percep-
tual PD-WGAN model led to encouraging qualitative results in terms of noise suppression and tex-
ture preservation, but there is still room for improvement in detail enhancement. The results prove
that the advanced loss function employed in the current work represents a better alternative for
the classical MSE-based optimization, known to produce sub-optimal qualitative results, due to its
over-smoothing tendency. The conclusionwith regard to the reconstruction quality have been drawn
based upon the qualitative and quantitative measurements. Although PSNR and SSIM are no longer
regarded as reliable indicators of image quality, they are still used as a standard evaluation approach.
For a more in-depth validation of the image quality for clinical use, blind readings were performed
by expert radiologists. The results have indicated that the proposed Perceptual PD-WGAN recon-
struction model can increase the perceived quality of the image with regards to overall diagnosabil-
ity, artifact and noise suppression, as evaluated by expert radiologist, which supports the use of the
algorithm for improved data-driven low-dose CT reconstruction.

In conclusion, an end-to-end deep learning based framework is proposed for solving inverse
problems in biomedical imaging, yielding promising results for full-dose tomography reconstruction,
starting from low-dosemeasurements. Theproposeddeep learning-based solution relies on the idea
of unfolding an iterative image reconstruction algorithm into finite iterations represented by a deep
learning network, in which a primal-dual optimization is interpreted as the generator block, within a
Wasserstein Generative Adversarial Network architecture. Furthermore, the framework integrates
prior knowledge information regarding the CT imaging formation, and improves the training strategy
by imposing human image quality perception. The algorithm qualitatively outperforms the previ-
ously proposed approach for data-driven deep learning based on primal-dual unrolled optimization,
and the results provide promising evidence for its performance in inverse problems.
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4. Towards Computer-aided Detection System in
Digital Breast Tomosynthesis

4.1 Introduction
Although breast cancer is known to be one of the leading causes of cancer death among women,

timely diagnosis and treatment can drastically reducemortality [19]. Currently, the primary approach
to assess the early signs of breast cancers is through X-ray mammography. While the use of mam-
mography has shown to significantly reduce the mortality rate, it suffers from high recall rates and
misclassifications [20].

Lately, a newer breast imaging technique, Digital Breast Tomosynthesis (DBT), with the potential
of improving both sensitivity and specificity has rapidly emerged in the field [21]. DBT addresses the
well-known limitations of 2D digital mammography by allowing a volumetric rendering of the breast,
and thus reducing the tissue overlapping effects.

Typically, two standard DBT volumes are acquired of each breast corresponding to a bilateral
craniocaudal (CC) and amediolateral oblique (MLO) views. Hence, the breast is compressed from two
non-orthogonal directions leading to additional useful information. Therefore, in a clinical routine,
the use of a two-view analysis or sometimes even four-views, as shown in Figure 4.1, can improve
the detection and diagnosis of abnormalities [22].
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Figure 4.1: DBT slices of mediolateral oblique (left) and craniocaudal (right) views of a left and right
breast of a patient.

Even through DBT is a rising imaging technique due to its clear advantages in improving breast
cancer assessment in clinical routines, mammography remains the gold standard screening tech-
nique. This is mainly because breast tomosynthesis is still a relatively new technique that comes
at a higher acquisition cost and which, due to the larger amount of contextual information, requires
additional time for interpretation.
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Considering the above, herein a data-driven solution is proposed to tackle the mass detection in
DBT breast volumes. The solution relies on an a deep fully convolutional neural network trained to
localize masses in 2D DBT slices. To leverage the potential of data-driven models in breast imaging
analysis, threemain directions are followed: (i) reducing the DBT lack of data implication, (ii) address-
ing theproblemof imprecisemassboundaries, and (iii) reducing thenumber of false-positive findings.
A two-staged fine-tuning strategy is adopted to solve, to certain extent, the problems that arise due
to the lack of an insufficiently large training DBT dataset. More specifically, the proposed solution
takes into account the idea of features re-usability, where a series of layers are being initialized with
weights that have been previously found by training the network on a different task on millions of
images. The pre-trained model is first adapted to operate on mammography data and further fine-
tuned on DBT data. Moreover, to address the problem of inaccurate transition between lesion and
adjacent tissues, the detection task is formulated to facilitate the DBT mass identification and the
training strategy alongside the loss function are adapted accordingly. Lastly, a two-view assess-
ment framework is proposed to improve the recall rate by reducing the number of false suspicious
findings through geometric mass mapping in DBT views.

4.2 Mass Detection

4.2.1 Problem Formulation

Inmedical imaging tasks oriented onobject-of-interest identification aimat finding andhighlight-
ing regionswhere theobjects of interest reside. Whenemployingdeepneural network in a supervised
manner, the models learn to automatically extract such regions by minimizing an error between the
manually annotated ground truth and the prediction.

(a) (b) (c)

Figure 4.2: DBT ground truth examples: slice showing a mass encoded with (a) box coordinates, (b)
segmentation map, and (c) confidence map.

To reduce the mapping complexity, instead of aiming at directly regressing the coordinates of a
bounding box (Figure 4.2a) or at classifying the image pixels (Figure 4.2b), the detection problem can
be cast as a confidence map-based localization (Figure 4.2c). Hence, the ground truth is encoded as
a 3D Gaussian heatmap (with same size as the observed image) centered at mass location as:

f(x, y, z) = e
− (x−µx)2

0.1σ2
x · e

− (y−µy)2

0.1σ2
y · e−

(z−µz)
2

0.1σ2
z (4.1)
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where x, y, z are 3D image coordinates, µx, µy, µz are the lesion center coordinates as given by the
annotated 3D bounding box, and σx, σy, σz are the width, height and depth of the box. Therefore, a
neural network seeks to minimize a distance metric between the ground truth and predicted confi-
dence map centered at lesion location.

By encoding the information at pixel level, the model can identify multiple objects in an image,
with responses at different spatial locations, without requiring knowledge about the total number
of expected objects. Additionally, as the heatmap provides lower confidence for pixels located at the
object boundaries, it introduces a way of coping for inexact lesion borderlines.

4.3 Deep Learning-based Mass Detection

4.3.1 Clinical Dataset

In order to conduct learning-based experiments, an in-house DBT database is used and split at
patient level into training, validation and test sets. The DBT image partitioning is performed such
that all statistical properties are well preserved across the datasets.

Table 4.1 summarizes the DBT breast imaging datasets used in this study.

Table 4.1: DBT data splitting: training, validation and test sets.

Dataset Category
No. of
cases

No. of
volumes

No. of
slices

No. of
unique VOIs

No.
of VOIs

No. of
unique ROIs

Train
Positive 271 345 5375 363 515 M 5785
Negative 871 1318 74011 N/A N/A N/A

Validation
Positive 130 156 2500 176 337 M 2821
Negative 384 531 29213 N/A N/A N/A

Test
Positive 172 228 3528 254 388 M 3740
Negative 573 805 45241 N/A N/A N/A

Figure 4.3: The architecture of the proposed learning-based mass detection model.
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4.3.2 Network Architecture

Herein, an encoder-decoder architecture is proposed to tackle the mass detection problem in
DBTs. The network (Figure 4.3) consists of an encoder i.e., contracting/downsampling path, respon-
sible with the extraction of contextual features and a decoder, i.e., expanding/upsampling path, used
to retrieve the image spatial information. Additionally, skip connections are added between the cor-
responding layers of the two paths to better recover the lost spatial information but also to capture
the fine details. By doing so, the contextual information captured in the expanding path is combined
with the location information that comes from the contracting path. Table 4.2 captures the topology
of the proposed learning-based model.

Table 4.2: Configuration details of the proposed learning-based mass detection model.

Blocks Layers # filters patch size

Input - - (1024,1024,3)
DB+ MaxPooling 2×(3×3 Conv-ReLU) 64 (1024,1024,64)
DB + MaxPooling 2×(3×3 Conv-ReLU) 128 (512,512,128)
DB + MaxPooling 3×(3×3 Conv-ReLU) 256 (256,256,256)
DB + MaxPooling 3×(3×3 Conv-ReLU) 512 (128,128,512)
DB + MaxPooling 3×(3×3 Conv-ReLU) 512 (64,64,512)

Upsampling + UB
3×3 Conv-ReLU
3×3 Conv-ReLU

512
256

(64,64,512)
(64,64,256)

Upsampling + UB
3×3 Conv-ReLU
3×3 Conv-ReLU

512
256

(128,128,512)
(128,128,256)

Upsampling + UB
3×3 Conv-ReLU
3×3 Conv-ReLU

512
128

(256,256,512)
(256,256,128)

Upsampling + UB
3×3 Conv-ReLU
3×3 Conv-ReLU

256
64

(512,512,256)
(512,512,64)

Upsampling + UB
3×3 Conv-ReLU
3×3 Conv-ReLU

128
64

(1024,1024,128)
(1024,1024,64)

Output
3×3 Conv-ReLU
3×3 Conv-sigmoid

32
1

(1024,1024,32)
(1024,1024,1)

# parameters 17M

4.3.3 Network Training Details

Since the data-driven analysis on the complete 3D scan is still challenging to be performed as
both the complexity of the network and the input dimension greatly impact the GPUmemory usage,
herein the focus lies on facilitating the data-driven CADe system development by tackling the mass
detection problem through 2D data analysis. More specifically, the proposed mass detection model
is trained to find the lesion centroid by regressing the heatmap. Due to the high in-plane spatial
resolution, the full-size 2DDBT slices greatly limit the choice of network architecture and complexity.
Thus, for more flexibility, training is performed on sub-regions, rather than on the full-resolution
image.

To tackle the problem of having the number of pixels per structure, i.e., mass and background, not
equally distributed inside the image, rather than finding the proper weights to weight the contribu-
tion of each structure to the final MSE loss function, the DBT mass detection network is optimized
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by maximizing a continuous and differentiable variant of the Jaccard similarity coefficient [23, 24]
between the target image T and the predicted probability map P :

LJaccard = 1−
∑

i Ti · Pi∑
i T

2
i +

∑
i P

2
i −

∑
i Ti · Pi

(4.2)

It should be noted that only the positively labeled training observations contribute to the loss.
Herein a two-stage transfer of knowledge strategy is adopted, as shown in Figure 4.4. First,

starting from a randomly initialized decoder and a pre-trained encoder (weights of the VGG19 [17]
trained on ImageNet [25]), the network is adapted on 2D conventional mammograms to segment
breastmasses. Training is performed on2Dpatches of 1024×1024 size. TheDice loss [26] is adopted
as a segmentation loss function:

LDice = 1−
2
∑

i Ti · Pi∑
i T

2
i +

∑
i P

2
i

(4.3)

Thereafter, the resultant model is further fine-tuned on the final task on DBT data by minimizing the
Jaccard loss.

Figure 4.4: An overview of proposed learning-basedmass detection training pipeline. Theweights of
convolutional layers of a classifier trained on ImageNet images are used to initialize the encoder of
the proposed Unet-like models. Thereafter, the network is adapted to solve the mass segmentation
in conventional 2D mammography images. Finally, the network is further fine-tuned for the mass
detection problem on DBT images.
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4.3.4 Results

Figure 4.5a exemplifies the network responses, i.e., output map, as obtained by the proposed
model. To determine the corresponding final 3D lesion location, the network responses for each
DBT slice are stacked and a mean-shift method is applied. In this stage not only the parameters
of the bounding boxes are obtained but also a certainty measurement, i.e., the confidence score of
the highlighted region as being a mass. Figure 4.5b shows examples of DBT mass detection results
after the post-processing step. As shown in these images, the proposed data-drivenmass detection
model is able to identify masses of various sizes and appearances. However, there are also cases in
which the model was unable to correctly identify the masses, especially when the mass appearance
was hindered by dense breast tissues.

(a)

(b)

Figure 4.5: Examples of response maps as predicted by the mass detector model (a) and (b) the
corresponding mass detection bounding boxes retrieved after the post-processing step. The boxes
markedwith green color represent the annotated bounding boxes andwith blue are depicted the pre-
dicted locations. Each imagedescribes the3DDBTvolume through themaximum intensity projection
across the xy plane.

The performance of the proposed mass detection model is evaluated in terms of the Free Re-
sponseOperating Characteristic (FROC) curve volumewisely. Itmeasures the true-positive rate (TPR)
against the number of false-positive findings per case, i.e., DBT volume. TPR is commonly refereed to
as sensitivity or detection rate in clinical setting and describes the percentage of annotated masses
that have been correctly identified by the model.
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The obtained FROC curve on the test DBT dataset, for a detection threshold T = 0.05, is depicted
in Figure 4.6. The plot indicates a detection rate of 80% at 0.7 FP on average on each DBT volume.
However the balance between the twoquantities can be controlled by altering the decision threshold.
Herein the candidates are filtered based upon the confidence score of the highlighted region.

Figure 4.6: The Free Response Operating Characteristic (FROC) curve for the proposed DBT mass
detection.

4.4 Mass Mapping in Ipsilateral Tomosynthesis Views

To make mass detection more reliable, radiologists combine the information acquired from CC
and MLO views of a breast. A two-view assessment increases the chances of a lesion being seen in
at least one of the views, but also improves the recall rate by eliminating false suspicious findings
through view correlations [27]. However, due to compression and additional depth information, find-
ing corresponding regions on different DBT views, in a clinical setup, is time consuming and prone to
error. Moreover, there are cases where, due to the acquisition geometry, structures seen in a view
may be only partially seen in the second view, as shown in Figure 4.7.

Although a two-viewanalysis of the samebreast can increase the performance of a CADe system,
as shown in 2D mammography studies [22], due to lack of data, most of the learning-based CADe
systems for mass detection in DBT images rely on single view-information. An alternative solution
that mitigates the data availability issue while maintaining the benefits of additional knowledge is
through region correlation between the two views. Hence, instead of modeling a CADe system to
detect a mass based on multiple input information, a mass location mapping stage can be added on
top of a single-view CADe system to improve detection.

4.4.1 Geometric Mass Matching Criterion

Herein, a geometric matching solution that emulates the radiologist’s technique is proposed.
More specifically, the o’clock position of a finding is used to match corresponding regions in CC and
MLO and improve lesion detection. By combining the information assumed from the geometry of the
DBT with the nipple to lesion distance, an intermediary model can be assembled in the form of the
o’clock system (Figure 4.8). Such a system may be used to map regions from one view to the other,
without taking into consideration any compression mechanism or material properties, making the
method fast and intuitive.
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Figure 4.7: DBT mass example: a slice extracted from the CC and MLO tomosynthesis volumes that
contains amass depicted herein with the rectangular box. Themass is clearly visible in theMLO view
(right) but only partially in the CC (left). The region is zoomed in for better visualization.
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Figure 4.8: Quadrants in the o’clock system for the right and left breast.

Given the nature of the DBT breast imaging, the volumetric data provides an intuition about the
position of the lesion in the breast. Therefore, in combination with the ”scrolling” information, it can
be established whether a lesion projected from the MLO view is median or lateral, or if it is superior
or inferior for the CC view. For example, knowing that for an MLO view, X-rays pass from the upper
inner towards the lower outer quadrant and based on the distance between the lesion position (i.e.,
the slice onwhich it is localized) and the edge of the breast, laterality can be infused. Thus, a 2-D slice
of anMLO DBT view enables the first access to the lesion location in terms of superior/inferior direc-
tion, while by sliding through the volume, the location in the medio/lateral direction can be deduced.
The same assumption is valid for CC DBT views but vice-versa. Figure 4.9 illustrates the proposed
geometric pairing procedure.

Thus, given a 3D location in one view, the corresponding 3D location in the ipsilateral view is
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Figure 4.9: An overview of the in-plane (xy-plane) lesion location mapping algorithm from one DBT
view to the other.

determined through a two-stage algorithm, as shown in Figure 4.10. Hence, for a given position
in a view, the first stage of the algorithm provides the 2D corresponding position (in xy-plane) in
the second view by projecting the information into the o’clock system and back to the target view
(Figure 4.9). In order to find the correspondence between the 3D position of lesions on two DBT
views, additional information related to the slice (z-axis) on which the lesion is located is required.
In addition to the 2D information, the o’clock system gives also an intuition about the quadrant in
which the lesion is located. Hence, in the second stage, the exact DBT slice is deduced by using a
correlationmetric between the sub-region extracted from the known lesion location in the input view
and the potential regions from the target DBT volume. Therefore, based on the previously matched
2D location and the quadrant extracted from the lesion position in the o’clock system, a stack of
possible candidates was formed by projecting the lesion location into DBT associated slices.

Tomeasure the image similarity between paired sub-regions, a templatematching approachwas
considered. The normalized cross-correlation between the lesion located in a view (Is) and a paired
region from the target candidate (It) stack was computed as follows:

R =

∑
i,j
(Is(i, j)− Īs)(It(i, j)− Īt)√∑

i,j
(Is(i, j)− Īs)2

√∑
i,j
(It(i, j)− Īt)2

(4.4)

where Īs =
1

NM

∑
i,j

Is(i, j)) and Īt =
1

NM

∑
i,j

It(i, j)) are the means of the patches. Herein, image

Is and It have the same dimensionN ×M , with (i, j) denoting the index of a pixel in the patch.
The patches identified as having themaximum correlation value among all candidates govern the

depth information required for the 3D lesion position mapping in DBT volumes.

27



For changing images, please 
delete them and insert a new 
one over click insert icon 

• To ensure a clean and  
swift workflow with bullet 
points, please use the  
PRE-SET PLACEHOLDERS or 
FORMATTED TEXTBOXES  – 
do not use “normal” 
textboxes that have been 
added via the steps  
 add  textbox.  
These textboxes cannot 
be formatted with the 
automatic formatting step  

• AUTOMATIC 
INDENTATIONS IN 
PLACEHOLDERS are only  
to be done using the tool 
decrease or increase  
the list level                 
 
(or Shift + Alt +  / ) 

• Formatted textboxes/ 
placeholders are available 
in the template – just 
make a copy OR: generate 
a new placeholder by 
following these steps  
 Start  new slide 
 choose layout  
"Content Slide" 

• Placeholders can be 
filled and then copied.  
The copied placeholder 
will keep its formatting  

  In-depth lesion mapping In-plane lesion mapping 

Projection to 
MLO view 

Candidate extraction 
from slices 

Correlation with 
CC lesion region 

MLO region with 
max correlation 

CC lesion mapped 
to MLO 

CC projection to 
o’clock 

Figure 4.10: An overviewof the proposed3D lesion locationmatching in ipsilateral DBT views. The3D
coordinates of a CC lesion are identified in the MLO using the proposed two-stage algorithm. In the
first step, the lesion is mapped in the in-plane space (xy-space) using a geometric matching criterion
and the intermediary o’clock coordinate system. Next, the in-depth (z-axis) information is retrieved
following a correlation metric criterion.

4.5 Results

The proposed framework for 3D position mapping in ipsilateral DBT views has been applied on
DBT samples for which both CC andMLO volumes are available. The algorithmwas first evaluated in
terms of position correlation performances and secondly, the impact on joining the two-view infor-
mation of the mass detection model was investigated.

4.5.1 DBT Position Correlation

Given the 3D lesion position in one view, the corresponding position in the second view was es-
timated and compared with the known, annotated, position. For each case, the mapping has been
performed and evaluated in both directions: CC to MLO and MLO to CC. Figure 4.11 shows a visual
comparison of mass position mapping.

Considering the lesion mapping from both directions, the square root of the average of squared
differences between the estimated 3D position of masses and the actual ones was found to be ap-
proximately 21.9 mm. The absolute average distance along each axis (Figure 4.12) illustrates that
the differences between the actual and matched lesions in the axial plane were marginally longer in
the y-direction, as compared to the x-direction.

4.5.2 Two-view Fusion for Mass Detection

Formass detection registration, first, the deep learning-basedmodel proposed in Section 4.2 has
been independently applied on the CC and MLO DBT volumes to identify possible masses. Next, the
responses generated in one viewwere used to predict the corresponding locations in the second view
using the proposed geometric mass matching criterion.

For testing cases in which both CC and MLO views were available, the performance of the mass
detection algorithm was slightly improved by using the joint two-view responses provided by the
single-view deep learning-based mass detection model. More specifically, results showed a 13%
increase in specificity at a cost of 4% decrease in sensitivity. However, the balance between false-
positive rate and true-positive rate can be controlled by altering the threshold at which a finding is
considered to be suspicious (high certainty), as outlined in Figure 4.13.
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Figure 4.11: Results of mass position correlation from (a) CC to MLO and (b) MLO to CC tomosyn-
thesis of four different patients (represented by columns). Mass positions marked with green color
represent the landmarks defined by the radiologist and with red are depicted the positions derived
with the proposed method.

4.6 Discussions and Conclusion

Herein the automatic mass detection problem in DBT images has been addressed. More specifi-
cally, the effectiveness of a fully 2D end-to-endmethod based on deep convolutional neural network
for clinical diagnosis has been investigated. To address the mass detection problem using data-
driven solutions, three issues have been addressed: (i) lack of data, (ii) rough annotations, and (iii)
false-positive reduction. To mitigate the lack of data implication when dealing with deep networks,
a strategy known as fine-tuning has been adopted at two levels. Instead of aiming at training the
model from scratch on the small available DBT dataset and to avoid overfitting, the knowledge ex-
tracted froma large computer vision dataset has been incorporated into themodel as a starting point.
The pre-trainedmodel has been first used to learn to segmentmasses in conventional 2Dmammog-
raphy images. Thereafter, fine-tuned for mass detection on DBT images. To improve and facilitate
DBT mass identification, the problem has been formulated in a way that reduces the implication of
inaccurate mass boundaries. Moreover, both the training strategy and the loss function have been
adapted particularly for the considered dataset. However, because of the nature of the lesion’s ap-
pearance, a high false-positive rate have been identified in breast imaging related CAD systems. To
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Figure 4.12: Bar graph representation of the absolute average distance between actual andmatched
3Dmasses along the x-axis, y-axis, and z-axis, respectively. Given the presence of landmarks in both
CC and MLO DBT views, for each case, the mapping was analyzed from both directions: CC-MLO and
MLO-CC. The error bars represent the standard deviation. DBT volumes are characterized by a (0.34
× 0.34× 1) mm resolution.
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Figure 4.13: Influence of confidence threshold used in location correlation between DBT standard
views on TP and FP rate. The threshold controls the value from which a finding is considered suspi-
cious (high certainty). The alteration of these quantities is expressed starting from the performances
obtained by the single-view CADe system on mass detection.

reduce the false-positively detectedmasses by the proposed data-driven solution, a framework that
leverages the information provided by the DBT two views of a breast, i.e., CC and MLO, has been fur-
ther proposed.

In conclusion, the proposed data-driven framework obtained promising results for the challeng-
ing problem of mass detection in DBT volumes. Moreover, the two-view assessment framework
have shown the potential but also the need of incorporating additional information in the mass de-
tection process. More specifically, it improved the recall rate by eliminating false suspicious findings
through view correlations. To further enhance the robustness of deep learning-based mass detec-
tion, additional work should be invested in developing an end-to-end fully data-driven framework
that combines the two steps.
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5. Towards Privacy-Preserving Deep Learning
based Medical Applications

5.1 Introduction

Machine learning relies extensively on existing and future patient data to deliver accurate and re-
liable results [28]. Thus, as access to sensitive plaintext data is required in deep learning-based ap-
plications, privacy and security concerns have been raised [29]. Moreover, the currently adopted reg-
ulations towards confidentiality guarantees for personal data manipulation (e.g., GDPR in EU, HIPAA
in USA) urge for the adoption of more effective privacy-preserving techniques.

Driven by the difficulties that arise in practice when employing deep learning over encrypted data
and also by the inefficiency of current solutions, a privacy-preserving solution that increases the
efficiency of the encrypted models in real-world applications is investigated. The proposed method
enables: (i) computations over rational numbers, (ii) faster operations and, (iii) results comparable
to those obtained with the unencrypted model. During the assessment of the proposed solution’s
feasibility for delivering reliable results, it was shown that the performance does not decrease when
deep neural networks operate on data encrypted using theMORE homomorphic encryption scheme.
Privacy-preserving deep learning algorithms are applied and evaluated on the classic benchmarking
application of digit classification, and on two personalized medicine applications.

5.2 Related Work

5.2.1 Privacy-Preserving Techniques for Machine Learning

A few attempts have been made to address the challenge of data privacy-preserving in machine
learning-based analysis through Homomorphic Encryption (HE). This special type of encryption al-
lows data to be encrypted while it is beingmanipulated. Hence, it aims at keeping the data private by
allowing a third party to process the data in the encrypted form without having to reveal the under-
lying information. By preserving the mathematical structures that underline the data, HE represents
a promising solution for guaranteeing privacy while still maintaining full utility.

5.2.2 Homomorphic Encryption

With Gentry’s first introduction of a Fully Homomorphic Encryption (FHE) scheme [30], numer-
ous variations of the original strategy were proposed in literature [31]. Most of these schemes are
known for their efficiency in terms of security, but they are computationally intensive and only a
limited number of operations can be performed before decryption is no longer possible. This clearly
restrains their usability in real-world applications. With computations being several orders ofmagni-
tude slower than the plaintext counterparts, the accumulated noise that limits the overall number of
operations that can be performed and all computations being implemented moduloN , pose a great
challenge for the synergy of deep learning and data analysis. While recent advances inHE led tomany
variants of encryption schemes, no currently available scheme can manipulate rational numbers.
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As a consequence, a variant of a matrix-based method, called MORE (Matrix Operation for Ran-
domization or Encryption) [32] was adapted in the current work. As compared to currently studied
schemes, in the context of privacy-preserving networks [33], [34], [35], MORE is noise-free (un-
limited number of operations can be performed on ciphertext data), and non-deterministic (multiple
encryptions of the same message and with the same key result in different ciphertexts). Moreover,
both division and multiplication operations can be performed over encrypted data. In order to ad-
dress the floating-point precision limitation, the MORE encryption scheme was adapted to directly
support floating-point arithmetic.

5.3 Matrix-based Data Randomization

Following the MORE approach, a numerical value is encrypted as a matrix and matrix algebra is
employed to provide a fully homomorphic behavior, which satisfies both addition and multiplication
properties. As a consequence, all operations performed on ciphertext data become matrix opera-
tions, e.g., addition of plaintext scalars will result in the addition of ciphertext matrices. The matrix
order represents a parameter controlling the trade-off between security and efficiency: by increas-
ing the scheme complexity (i.e., the order of the regular matrix used to encrypt a message) security
is improved at a cost of slightly longer running times. MORE encryption scheme can be directly gen-
eralized to n by nmatrices, however, for simplicity, the 2 by 2 setup is summarized in Table 5.1.

Table 5.1: MORE encryption scheme setup over rational numbers.

Message Scalar valuem ∈ R
Secret key generation Invertible matrix S ∈ R2×2

Matrix construction M =
(
m 0
0 r

)
, where r ∈ R is a random parameter

Encryption operation Encryption(m) = C = SMS−1

Decryption operation Decryption(C) = K = (S−1CS)

Message recovery m = K(1,1)

5.3.1 Performing Operations over Encrypted Data

The MORE scheme allows for algebraic operations to be performed on encrypted matrices, i.e.,
given two encrypted matrices C1 = SM1S

−1 and C2 = SM2S
−1, for multiplication

C1C2 = SM1S
−1SM2S

−1 = SM1M2S
−1, (5.1)

which is the encryption of the multiplicationM1M2, and for addition

C1 + C2 = SM1S
−1 + SM2S

−1 = S(M1 +M2)S
−1. (5.2)

Similarly, this property holds true for subtraction and division, but also for operations involving un-
encrypted scalars, making the scheme fully homomorphic with respect to algebraic operations. A toy
example involving computation over ciphertext data is depicted in Figure 5.1.

In real-world applications, including deep learning-based approaches, non-linear (e.g., exponen-
tial, logarithmic, square root, etc) functions need to be performed. When an encryption scheme is
constrained on using only algebraic operations, the typical approach to support a broader spectrum
of operations involves an approximation operation of the non-linear function by finite polynomial
series (e.g., truncated Taylor series). The MORE scheme allows for a simple approach for performing
such operations. A toy example demonstrating the computation of logarithmic operation overMORE
ciphertext data is presented in Figure 5.2. Moreover, Algorithm 5.1 shows how, given any ciphertext
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C ∈ R2×2, the twomethods can be used to formulate the function f(x) = 1

1 + e−x
defined onx ∈ R,

under the MORE assumptions. This function is known as the logistic sigmoid function and is widely
used in neural networks for its non-linear properties.
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Figure 5.1: Addition example for MORE encryption scheme.
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Figure 5.2: Logarithmic example for MORE encryption scheme. Two scenarios are depicted: (1) the
straightforward matrix logarithm approach and (2) the eigen decomposition method.

5.4 Deep Neural Networks over Encrypted Data

In this section aspects of privacy-preserving deep neural networks are described. The proposed
method is based on the MORE homomorphic encryption scheme and enables both the training and
exploitation of classical neural network models directly on homomorphically encrypted data.

5.4.1 Method

The proposed workflow based on HE and deep learning is outlined in Figure 5.3. Before being
processed, training data is encrypted with the secret key that is never shared (Algorithm 5.3). There-
after, the deep learning-based model will have access only to the encrypted version of the data (ci-
phertext), while the actual data (plaintext) is detached from the processing unit and remains private
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Algorithm 5.1 Implementation of the sigmoid function under MORE encryption scheme
Input: CiphertextC ∈ R2×2

Output: CiphertextR ∈ R2×2

1: function Sigmoid(C) // Using direct matrix operations
2: R← I2 × (I2 +MatrixExp(−C))−1 // I2 represents the identity matrix
3: return R
4: end function
5: function Sigmoid(C) // Using eigen decomposition
6: L,V ← EigenDecomposition(−C)
7: Lf ← Diag(Exp(L))
8: Cexp ← V ×Lf × V −1

9: R← I2 × (I2 +Cexp)
−1

10: return R
11: end function

on the side of the data provider. Finally, with the homomorphic property underlying the MORE en-
cryption scheme, the direct support for floating-point arithmetic, and with all operations performed
inside the network formulated to ensure applicability on ciphertext data, the network can be trained
directly on ciphertext data following the classical training pipeline. This results in a model that pro-
vides encrypted predictions, which can only be decrypted by the owner of the secret key following
Algorithm 5.4. Once the training phase is finalized, the encrypted form of a model can be employed
to predict new encrypted instances (inference phase), where input samples are encrypted with the
same key as the one used during the training phase. The MORE cryptosystem relies on symmetric
keys. Hence, a secret key, generated following the approach presented in Algorithm 5.2, is used for
both the encryption of the plaintext data and the decryption of the ciphertext data.

The proposed deep learning-based ciphertext data analysis framework is presented in Algorithm
5.6. Additionally, for the sake of comparison and validation, the pipeline used for plaintext data anal-
ysis is provided in Algorithm 5.5. Note that in Algorithm 5.6 all operations performed during training
and prediction are formulated in accordance with Section 5.3 and 5.3.1.

Following this approach, privacy is preserved at three levels: (i) during training, when the external
party processes directly ciphertexts, (ii) during inference, when the data of the patient remains con-
fidential (the algorithm receives as input ciphertexts and generates outputs as ciphertexts), and (iii)

For changing images, please 
delete them and insert a new 
one over click insert icon 

• To ensure a clean and  
swift workflow with bullet 
points, please use the  
PRE-SET PLACEHOLDERS or 
FORMATTED TEXTBOXES  – 
do not use “normal” 
textboxes that have been 
added via the steps  
 add  textbox.  
These textboxes cannot 
be formatted with the 
automatic formatting step  

• AUTOMATIC 
INDENTATIONS IN 
PLACEHOLDERS are only  
to be done using the tool 
decrease or increase  
the list level                 
 
(or Shift + Alt +  / ) 

• Formatted textboxes/ 
placeholders are available 
in the template – just 
make a copy OR: generate 
a new placeholder by 
following these steps  
 Start  new slide 
 choose layout  
"Content Slide" 

• Placeholders can be 
filled and then copied.  
The copied placeholder 
will keep its formatting  

Raw data 

Neuronal Network 

Decrypted results 

Encrypted data 

Encrypted results 

 Secret key 

Client 3rd party 

Figure 5.3: Workflow of the proposed privacy-preserving deep learning-based application relying on
homomorphic encryption.
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Algorithm 5.2 MORE secret key generation
Output: Secret key S ∈ R2×2

1: function KeyGeneration()
2: while True do
3: S ← RandomUniform(size = (2, 2),minval,maxval)
4: if det(S) 6= 0 then // Ensure matrix invertibility
5: break
6: end if
7: end while
8: return S
9: end function

Algorithm 5.3 MORE encryption
Input: Plaintext datam ∈ R
Input: Secret key S ∈ R2×2

Output: CiphertextC ∈ R2×2

1: function Encryption(m,S)
2: M ∈ R2×2 ← zero matrix
3: M(0, 0)← m
4: M(1, 1)← RandomUniform(minval,maxval)
5: C ← S ×M × S−1

6: return C
7: end function

Algorithm 5.4 MORE decryption
Input: CiphertextC ∈ R2×2

Input: Secret key S ∈ R2×2

Output: Plaintext datam ∈ R
1: function Decryption(C,S)
2: K ← S−1 ×C × S
3: m←K(0, 0)
4: return m
5: end function

Algorithm 5.5 Deep learning-based analysis
on plaintext data.
1: function TrainOnPlaintext()
2: Xtrain,Y train ← LoadDataset()
3: Xtrain ← Normalize(Xtrain)
4: BuildModel()
5: Train(Xtrain,Y train)
6: return model
7: end function

8: function PredictOnPlaintext()
9: Xtest ← LoadSamples()
10: Xtest ← Normalize(Xtest)
11: LoadModel()
12: Ỹ test ← Predict(Xtest)
13: return Ỹ test

14: end function

Algorithm 5.6Deep learning-based analysis on ci-
phertext data.
1: function TrainOnCiphertext()
2: Xtrain,Y train ← LoadDataset()
3: Xtrain ← Normalize(Xtrain)
4: S ← KeyGeneration()
5: Xtrainenc ← Encryption(Xtrain,S)
6: Y trainenc ← Encryption(Y train,S)
7: BuildModel()
8: Train(Xtrainenc ,Y trainenc)
9: return modelenc
10: end function

11: function PredictOnCiphertext()
12: Xtest ← LoadSamples()
13: Xtest ← Normalize(Xtest)
14: S ← LoadKey()
15: Xtestenc ← Encryption(Xtest,S)
16: LoadModel()
17: Ỹ testenc ← Predict(Xtestenc )
18: Ỹ test ← Decryption(Ỹ testenc ,S)
19: return Ỹ test

20: end function
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the external party’s deep learning model remains confidential. Consequently, the secure processing
of medical data is performed in such a way that the external party cannot derive knowledge from the
data, and the user is unable to obtain information regarding the machine learning model.

5.5 Experiments

To validate the proposed method three types of deep learning applications were analyzed: re-
gression, binary and multiclass classification. First, a well-known benchmarking application (digit
classification) was addressed, and then the privacy issue was analyzed in two healthcare related
applications by training neural network models on encrypted data, (i) to assess whole-body hemo-
dynamics, and (ii) to distinguish coronary artery angiographic views.

The aim of the conducted experiments was not to achieve deep learning-based state-of-the-
art results for the proposed problems, but to investigate the possibility of maintaining data privacy
while still allowing for computations within a neural network to be successfully performed over the
encrypted version of the data.

5.5.1 Problem Formulation

5.5.1.1 MNIST: A Typical Dataset for Neural Networks

A typical problem studied in the context of neural networks is that of classification. More specif-
ically, the problem of image categorization in accordance with the information depicted in the im-
age. The MNIST (Modified National Institute of Standards and Technology) database [36] contains
images representing handwritten digits and is typically employed as a reference for benchmarking
image classification algorithms (Figure 5.4). The digit recognition problem is framed as predicting the
probability of an image belonging to each of the 10 classes (0-9 digits).

Digit: 0 Digit: 1 Digit: 2 Digit: 3 Digit: 4 Digit: 5 Digit: 6 Digit: 7 Digit: 8 Digit: 9

Figure 5.4: Example images fromMNIST dataset.

5.5.1.2 Whole-Body Circulation Model

To demonstrate the feasibility of the proposed approach within a personalized medicine appli-
cation, a hemodynamic model of the cardiovascular system was chosen. More specifically, a whole
body circulation (WBC)model. Due to the prohibitive computational cost of spatial blood flowmodels
(three-dimensionalmodels in particular), closed-loopmodels of the cardiovascular system rely heav-
ily on lumped parameter modeling techniques, which are based on the analogy between hydraulics
and electricity. The WBC model employed herein, displayed in Figure 5.5, contains a heart model
(left ventricle (LV) and atrium, right ventricle and atrium, valves), the systemic circulation (arteries,
capillaries, veins), and the pulmonary circulation (arteries, capillaries, veins) [37].
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Figure 5.5: Lumped parameter closed-loop model of the cardiovascular system.

The WBC model may be run under patient-specific conditions to compute various clinically rel-
evant measures of interest: arterial resistance, arterial compliance, dead volume of the left / right
ventricle, stroke work, ventricular/atrial/arterial elastance, arterial ventricular coupling, pressure-
volume loop, etc. However, model parameters need to be personalized to match the patient-specific
conditions and state.

The personalization framework employed herein has been previously described in detail [38] and
consists of two sequential steps. First, a series of parameters are computed directly, and next, a fully
automatic optimization-based calibrationmethodestimates the values of the remaining parameters,
ensuring that the personalized computations match the measurements.

The patient-specific input parameters are:

• Systemic circulation: peakaortic systolic pressure, end-diastolic aortic pressure, left ventricular
end-systolic and end-diastolic volumes, left ventricular ejection time

• Pulmonary circulation: peak pulmonary artery systolic pressure, end-diastolic pulmonary
artery pressure, right ventricular end-systolic and end-diastolic volumes, right ventricular ejec-
tion time

The personalized measures of interest determined after running the personalization are:

• Systemic circulation: dead volume of the left ventricle, time at maximum left ventricular elas-
tance, systemic resistance, systemic compliance, ratio of proximal to distal resistance of sys-
temic circulation

• Pulmonary circulation: dead volume of the right ventricle, time at maximum right ventricular
elastance, pulmonary resistance, pulmonary compliance, ratio of proximal to distal resistance
of pulmonary circulation

While the lumped parameter model is computationally very efficient, its personalization requires
hundreds of forward runs, leading to an overall computation time of 30 – 60 seconds for determin-
ing the patient-specific measures of interest on a standard desktop hardware configuration. Thus, a
model capable of outputting in real-time the measures of interest, that would otherwise be deter-
mined using the WBC model, would be a useful tool, even when run under plaintext conditions.

In the context of deep neural network this problem is framed as predicting real-valued quantities
from a set of input parameters.
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5.5.1.3 X-ray Coronary Angiographies

Invasive X-ray Coronary Angiography (ICA) is a diagnostic imaging procedure that provides im-
portant information on the structure and function of the heart, and represents the gold standard
in coronary artery disease imaging [39]. ICA enables the assessment of the anatomical severity of
coronary stenoses either visually or by computer-assisted Quantitative Coronary Angiography (QCA)
[40]. Coronary angiographies are recorded separately and sequentially for the right coronary artery
(RCA) and the left coronary artery (LCA) (Figure 5.6).

An important research area in coronary artery disease is the fully automated post-processing of
coronary angiographies [41], having as objectives:

• Anatomical assessment: automatically determining the anatomical severity of stenoses.

• Non-invasive functional assessment: automatically computing functional diagnostic indices.
[42], [43].

• Reporting: composing medical reports automatically based on the findings in the coronary an-
giographies.

Figure 5.6: (a) Right coronary artery, (b) Left coronary artery.

In many clinical settings based on the use of ICA, automatic LCA / RCA view classification repre-
sents an important pre-processing step.

The X-ray coronary angiography view recognition can be formulated as a binary classification
problem, where a neural network model learns to predict the probability of an image belonging to
the positive class (represented by the value 1).

5.5.2 Ciphertext Database Preparation

To evaluate the performance of the proposed privacy-preserving method, three databases have
been used: images of handwritten digits (MNIST), X-ray coronary angiographies, and synthetically
generated WBC samples. A brief overview of these databases is given in Table 5.2.

To address the challenge of privacy-preserving computations and to evaluate the use of deep
neural network models over encrypted data, for each dataset the input samples, i.e., image or fea-
ture vectors, were encrypted following the MORE encryption strategy, as described in Algorithm 5.3.
A ciphertext representation of a digit extracted from the MNIST database is depicted in Figure 5.7.
Similarly, the target values, i.e., class labels or real-valued quantities, were also encrypted.
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Table 5.2: Overview of databases used for experimental evaluation.

MNIST WBC Angio

Number of training samples 50000 7000 1996 (7984*)
Number of validation samples 10000 1000 680
Number of testing samples 10000 2000 702
*after augumentation
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Figure 5.7: Plaintext digit image with pixels in interval p ∈ [0, 1] shown alongside ciphertext compo-
nents.

5.5.3 Deep Neural Network Models Architecture

To assess the feasibility and effectiveness of deep neural networks to operate directly on homo-
morphically encrypted data three experiments were conducted by training: (i) a CNN for digit recog-
nition on encrypted handwritten images, (ii) a traditional FCNN for real-time hemodynamic analysis,
where both the input feature vector and the ground truth outputs were encrypted, and (iii) a CNN for
encrypted X-ray coronary angiographies view classification. For a comparison of model performance
and convergence, training was also performed on the counterpart models on plaintext data.

Although more efficient alternative deep neural network models (e.g., improved activation func-
tions, greater depth) can be adopted to ensure better convergence and superior performance, herein
the purpose of the experiments was to asses the correctness and effectiveness of different deep
neural networkmodels operating on ciphertext data, as compared to the counterpart models trained
on plaintext data.

5.5.3.1 Deep Neural Network for Handwritten Digit Classification

Starting from the latest results obtained by CNN models on the MNIST digit recognition task, a
CNN was employed on encrypted input-output value pairs. The topology of the proposed privacy-
preserving CNN is described in Table 5.3.

5.5.3.2 Deep Neural Network for Real-time Hemodynamic Analysis

Given the nature of the input data, i.e., information represented as a feature vector, and driven by
the need tomodel the decision of the network based on a global dependency between input features,
a fully connected neural network with 3 hidden layers was employed. The topology of the proposed
privacy-preserving FCNN is described in Table 5.4.
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Table 5.3: CNN-MNIST: The topology of the CNN for handwritten digits classification.

Layers Parameters Dimensions
Input - (1,28,28)

Convolution (8,3,3) (8,28,28)
Activation (Sigmoid) - -
Average Pooling (2,2) (8,14,14)
Convolution (16,3,3) (16,14,14)

Activation (Sigmoid) - -
Average Pooling (2,2) (16,7,7)

Flatten - (784,)
Fully Connected 100 (100,)

Activation (Sigmoid) - -
Fully Connected 10 (10,)

Activation (Softmax) - -

Table 5.4: FCNN-WBC: The topology of the FCNN for hemodynamic analysis.

Layers Parameters Dimensions
Input - (9,)

Fully connected 40 (40,)
Activation (Tanh) - -
Fully connected 40 (40,)
Activation (Tanh) - -
Fully connected 40 (40,)

Activation (Sigmoid) - -
Fully connected 12 (12,)
Activation (Linear) - -

5.5.3.3 Deep Neural Network for View Classification in X-ray Coronary Angiography

Motivated by the latest results in data-driven image-based analysis, a deep CNN was adopted
to solve the coronary angiography image recognition task. The topology of the proposed privacy-
preserving CNN is described in Table 5.5.

5.6 Results

5.6.1 Performance

To showcase the ability of the network to learn from ciphertext data, the training loss for the
regression task, as resulted after decryption, is depicted in Figure 5.8a. Similarly, the evolution of
the training and validation accuracy of the privacy-preserving CNN model fed with encrypted X-ray
coronary angiographies, obtained after decryption, is depicted in Figure 5.8b.

The training evolution demonstrates the capability of the proposed method to preserve the cor-
rectness of the computations. Moreover, after decryption, the parameters learned by the model
when trained on ciphertext data were found to be identical up to machine precision to those learned
by the unencrypted model.
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Table 5.5: CNN-Angio: The topology of the CNN for view classification in X-ray coronary angiogra-
phies.

Layers Parameters Dimensions
Input - (1,256,256)

Convolution (4,3,3) (4,256,256)
Activation (Sigmoid) - -
Average Pooling (2,2) (4,128,128)
Convolution (8,3,3) (8,128,128)

Activation (Tanh) - -
Average Pooling (2,2) (8,64,64)
Convolution (16,3,3) (16,64,64)

Activation (Tanh) - -
Average Pooling (2,2) (16,32,32)
Convolution (32,3,3) (32,32,32)

Activation (Tanh) - -
Average Pooling (2,2) (32,16,16)

Flatten - (8192,)
Fully connected 64 (64,)
Activation (Tanh) - -

Dropout 25% -
Fully connected - (1,)

Activation (Sigmoid) - -
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Figure 5.8: (a) Evolution of the training loss for encrypted and unencrypted networks: differences
between the learning curves, caused by floating-point arithmetic, are unnoticeable. (b) Evolution of
the accuracy when training on ciphertext data.

5.6.1.1 MNIST Binary Classification

The default metric used to assess the performance of a classifier on the MNIST dataset is given
by the absolute accuracy of the classification models, i.e., the percentage of correctly labeled digit
images. The unencrypted network achieved a classification accuracy of 98.2% on the testing dataset,
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which was preserved by the encrypted network.
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Figure 5.9: Confusionmatrix of theMNIST digit classification task on the test set. The number on the
diagonal indicates the number of correctly classified images, while the rest represent the misclassi-
fied ones.

Table 5.6: Precision, recall, and F1-score, of the deep neural network-based MNIST digit classifica-
tion.

Digit Precision (%) Recall (%) F1-score (%)

0 97.9 99.0 98.5
1 98.8 99.2 99.0
2 98.5 98.3 98.4
3 98.1 98.5 98.3
4 98.4 98.3 98.4
5 98.2 98.6 98.4
6 98.4 98.0 98.2
7 97.3 97.9 97.6
8 98.3 97.2 97.7
9 97.5 96.4 97.0
Average 98.1 98.1 98.1

Being a multi-class classification problem, the evaluation metrics were computed following the
one-vs-rest strategy. More specifically, to compute the metrics each label was individually consid-
ered positive while the others were set as being negative. The precision, recall, and f1-score for each
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digit class are reported in Table 5.6. To evaluate the digit recognition performance of the proposed
CNNmodel the confusion matrix was computed and is displayed in Figure 5.9.

5.6.1.2 Hemodynamic Analysis

Toevaluate the capability of the deepneural networkmodel to estimate the outputs of thewhole-
body circulationmodel, themean absolute relative error and the Pearson correlation were computed
and the results are displayed in Table 5.7. Scatter plots of themeasured versus predicted parameters,
having the highest and lowest correlation coefficient, are presented in Figure 5.10. The first scatter
plot displays the results of the neural networkmodel obtained for estimating the ratio of proximal to
distal resistance in the systemic circulation. The latter presents the results for systemic resistance
prediction.

Table 5.7: Results of the deep neural network for real-time hemodynamic analysis on the testing
dataset.

Circulation Parameters MAPE (%)
Pearson
correlation (%)

Systemic

Dead volume 7.03 0.9997
Time at max. elastance 0.13 0.9995
Resistance 0.17 0.9999
Compliance 2.45 0.9867

Pulmonary

Dead volume 9.88 0.9991
Time at max. elastance 0.10 0.9994
Resistance 0.32 0.9998
Compliance 0.67 0.9983
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Figure 5.10: Predicted versus ground truth (a) ratio of proximal to distal resistance in the systemic
circulation, and (b) systemic resistance.
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5.6.1.3 X-ray Coronary Angiographies Classification

To assess the accuracy of the coronary angiography view recognition model, the obtained ROC
(receiver operator characteristic) curve is displayed in Figure 5.12. Table 5.8 lists the precision, recall,
and f1-score for both the LCA and RCA labels. Figure 5.11 displays the confusion matrix, portraying
measures of association between the true labels and the deep neural network predictions of LCA and
RCA.
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Figure5.11: Confusionmatrix of theX-ray coro-
nary angiography view classifier.
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Figure 5.12: ROC curve of the view classification
task in X-ray coronary angiography.

Table 5.8: Precision, recall, and F1-score, of deep neural network for hemodynamic analysis.

Label Precision (%) Recall (%) F1-score (%)
LCA 96.0 96.5 96.3
RCA 96.5 96.0 96.2
Average 96.2 96.2 96.2

In the angiographic view classification use case, the CNNnetwork trained on ciphertext data clas-
sified 96.2% of the samples correctly when evaluated on the held-out testing angiographies. When
compared to the unencrypted model, accuracy was identical.

5.6.2 Execution Time

A detailed comparison of the runtime for each of themedical applications is given in Table 5.9. Al-
though deep learningmodels run directly onMOREhomomorphically encrypted data are significantly
slower (up to one order ofmagnitude) during both training and inference, the scheme is currently out-
standingly faster compared to classic FHE schemes where the difference is of around 6 to 7 orders
of magnitude, even when performing very basic algebraic operations.

5.7 Discussion and Conclusions

In the past fewyears, the raised concern for protecting the privacy of sensitivemedical data, while
still encouraging the delivery of personalized medicine solutions, increased the focus on enabling
privacy-preserving computations inside deep neural networks.

The proposed solution aims at ensuring privacy by incorporating a data encryption mechanism
and delivering reliable results, to be used in clinical workflows. The applicability of incorporating the
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Table 5.9: Runtime analysis: mean values and standard deviation of the encrypted and plaintext
networks for the two personalized medicine use cases.

Task Operation
Runtime (s)
on cipertext
data

Runtime (s)
on plaintext
data

Encrypted -
Unencrypted
ratio

Angiographic view
classification

Training
(1 epoch)

1075.47±45.54 34.48±1.12 31.19

Inference
(702 images)

26.36±1.98 0.8±0.06 32.95

WBC hemodynamic
analysis

Training
(1 epoch)

0.66±0.09 0.021±0.001 31.4

Inference
(2000 samples)

0.102±0.01 0.006±0.0009 17

MORE encryption scheme into deep learning models has been showcased by tackling three differ-
ent problems: digit recognition, whole body hemodynamic analysis, and coronary angiography view
classification. Both the training and the inference phasewere addressed, and it was shown that both
can be performed on encrypted data. Two main quantities were tracked: (i) the difference between
results obtained using the classical approach (with no encryption) and results obtained using encryp-
tion, and (ii) computation time differences between the two scenarios. It was demonstrated that the
accuracy of the encrypted model is statistically not discernible from that of the unencrypted model,
and that, by following the proposed strategy, computations over ciphertext data are only slightly
more costly than the ones performed on plaintext data.

In conclusion, experiments showed that employing the MORE fully homomorphic encryption
scheme as a privacy-preserving mechanism enabled the application of deep learning models on en-
crypted datawithout compromising the accuracy at all. Although the runtime increased bymore than
one order of magnitude, the encrypted models are still outputting results in a reasonable amount
of time. With its direct support for computations over rational numbers, and the ability to perform
operationswithout adding noise, the scheme becomes eligible formore complex deep learningmod-
els. Note that the scheme allows for a trade-off between security and efficiency: by increasing the
scheme complexity (i.e., the order of the regular matrix used to encrypt a message) security is im-
proved at a cost of slightly longer runtimes.
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6. Final Conclusions

6.1 Conclusions

When use by physicians, data-driven solutions, and specifically deep neural networks, can bring
major advances in the delivery of care by improving health (e.g., earlier or improved diagnostics, effec-
tive treatment plans, improved disease prevention, personalized medicine, etc.), patient experience
(e.g., lower exposure time, faster diagnosis, non-invasive procedures, etc.), and reducing the cost of
care. Due to the shift towards electronic health records and the current routine clinical workflows,
a patient’s health record information may include hundreds of interrelated and interdependent clin-
ical, genomic, and imaging data, collected through the years. To alleviate the difficulty of analyzing,
interpreting, and synthesizing complex medical data, large-scale data-driven solutions have been
proposed as means of enabling broader insights into the data.

The aim of the research described herein has been to investigate the potential of deep learning-
based models to positively impact healthcare. Specifically, to develop, implement, test, and verify
data-driven solutions for medical imaging analysis. Although machine learning is predominantly in-
tegrated into the development of computer-aided detection and diagnosis systems herein, the ulti-
mate goal is to infuse data-driven solutions in the process of medical imaging analysis starting from
image acquisition, continuingwith secure patient health data sharing and up to the final step of image
interpretation. Hence, the thesis lays out the basis towards the replacement of classical approaches
with fully automated machine learning-based solutions for reduced diagnostic time and improved
accuracy.

Considering first the deep learning-based system for inverse problems developed, implemented,
and tested in Chapter 3: the reconstruction solution has been shown to produce promising results,
as validated by experienced radiologists, for full-dose tomography reconstruction, starting from low-
dose measurements. Moreover, the computed tomography image reconstruction is obtained in a
runtime suitable for a routine clinical setting. Similarly, a fully automatic breast mass detection sys-
tem is developed and validated in Chapter 4. The deep convolutional neural network-based solution
seeks to reduce the workload and improve physician efficiency in interpreting 3D digital breast im-
ages, which is known to pose great challenges in clinical routines.

Although promising results have been achieved over the years in imaging, it is still a long road
ahead for such systems to become completely reliable. A clear bottleneck is given by the current
strict regulations towards data protection. Despite the fact that an abundant amount of data is col-
lected in day-to-day clinical care, it is locked inside hospitals firewalls. Hence, one of the greatest
challenges in the biomedical industry is to develop and provide personalized medical care solutions
without disclosing sensitive patient health-related information. However, these two requirements
are mutually exclusive. To provide reliable personalized medical care solutions, researchers have to
rely extensively on existing patient data, which is challenging to make available. Additionally, there
is a clear need for a joint effort to aggregate data acquired at different healthcare facilities, to con-
tinuously adapt and improve learning-based solutions. However, this implies that sensitive personal
data is shared. Chapter 5 provides a possible solution for guaranteeing data confidentiality for deep
learning-based personal data manipulation. The reported results indicate that the proposed solu-
tion has great potential: (i) computational results are indistinguishable from those obtained with
the unencrypted variants of the deep learning-based applications, and (ii) runtimes increase only
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marginally. It has been introduced as a possible framework for facilitating joint collaboration be-
tween researchers towards faster development of supporting systems for medical decision making.

6.2 Personal Contributions
The personal thesis contributions fall into three major categories:

• Deep learning-based medical imaging reconstruction;

• Deep learning-based diagnosis;

• Privacy-preserving deep learning.

6.2.1 Deep Learning-based Medical Imaging Reconstruction

One of themost active research areas in computed tomography (CT) is to devise strategies to re-
duce radiation exposure, while maintaining high image quality, required for accurate diagnosis. The
recent advancements offered by deep learning-based data-driven approaches for solving inverse
problems in biomedical imaging have led to the development of an alternative method for produc-
ing high-quality reconstructed images from low-dose CT data. While most of the reconstruction
approaches tackle the problem from a post-processing perspective, herein, inspired by the idea of
unfolding a proximal gradient descent optimization algorithm to finite iterations, and replacing the
proximal termswith trainable deep artificial neural networks, an end-to-end solution for reconstruct-
ing full-dose tomographic images directly from low-dose measurements is proposed.

To summarize, the main contributions in this part are:

• design and development of a novel end-to-end framework for inverse-problems in medical
imaging integrating deep convolutional neural networks, the physical model of CT image for-
mation, and adversarial training;

• design and development of an improved learning-based iterative reconstruction framework
incorporating the generative adversarial network with Wasserstein distance and a contextual
loss for higher-quality reconstructed images that account for human perception;

• design, validation and application of the framework on a clinically-realistic scenario;

• design and development of a clinically realistic evaluation tool for physicians-based assess-
ment of the CT image reconstruction quality;

6.2.2 Deep Learning-based Diagnosis

Motivated by recent advances in deep learning across a wide range of areas in healthcare and
by the need for advanced computer-aided diagnosis systems, a breast imaging analysis framework
based on data-driven models (proven to be superior to classical machine learning techniques) is in-
troduced. More specifically, a deep convolutional neural network model is trained in a supervised
manner to highlight suspicious regions in digital breast tomosynthesis (DBT) images. To cope with
the high variance in lesion appearance and the uncertain boundaries, the mass detection problem is
cast as a confidence map detection problem (e.g. heat map centred on the lesion location), instead
of defining the location though the bound box coordinates. Moreover, a training strategy is adopted
to cope with the imbalanced class distribution that appears in the data, and to facilitate small mass
detection. To alleviate the difficulties that arise when dealing with small-sized datasets, an existing
publicly available mammography dataset is adopted to pre-train the model, and improve the gener-
alization capability of the lesion detection solution. Additionally, a novel mass matching framework
is proposed to improve detection, and reduce the false-positive findings.

To summarize, the main contributions of this part are:
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• design and development of an end-to-end framework for mass detection in digital breast to-
mosynthesis images;

• exploration of the confidence map detection formulation for the mass identification problem;

• design and development of a training strategy to exploit the 3D nature of the data;

• design and development of a fine-tuning strategy to improve model generalization;

• design and development of a novel post-processing framework based on mass registration
across breast views for improved detection;

• design, application, and validation of the framework using an in-house imaging database;

• experimental study on assessing the performance.

6.2.3 Privacy-Preserving Deep Learning

Despite the potential of machine learning in enabling personalized medical care applications, the
adoption of deep learning-based solutions in clinical workflows has been hindered in many cases by
the strict regulations concerning the privacy of patient health data. A solution that relies on Fully
Homomorphic Encryption (FHE), particularly on the MORE (Matrix Operation for Randomization or
Encryption) scheme, is proposed as a mechanism for enabling computations on sensitive health
data, without revealing the underlying data. The chosen variant of the encryption scheme allows for
the computations in the neural network model to be performed directly on floating-point numbers,
while incurring a reasonably small computational overhead. For feasibility evaluation, the MNIST
digit recognition task is used to demonstrate that deep learning can be performed on encrypted data
without compromising the accuracy. To evaluate the suitability of the proposed method for health-
care applications, a model is first trained on encrypted data to estimate the outputs of a whole-body
circulation (WBC) hemodynamic model, and then a solution for classifying encrypted X-ray coronary
angiographymedical images is provided. The experimental results underline the potential of the pro-
posed approach to outperform current solutions, by delivering results comparable to those obtained
with the unencrypted deep learning-based solutions, in a reasonable amount of time. The security
aspects of the encryption scheme are analyzed, and it is shown that, even though the chosen en-
cryption scheme favors performance and utility at the cost of weaker security, it can still be used in
certain practical applications, while still, significant limitations remain to be solved in future work.
Lastly, possible solutions to mitigate the proposed scheme vulnerability are studied and a follow-
up scheme with an additional obfuscation layer, Hybrid More, is proposed. Results show that the
scheme security can be strengthened but further improvements are needed to limit the growth of
the introduced noise.

To summarize, the main contributions of this part are:

• design, development and evaluation of a secure noise-free homomorphic encryption scheme
that allows for operations to be performed directly on floating-point numbers;

• design and development of a generic privacy-preserving deep learning library operating on ho-
momorphically encrypted data;

• validation and application of the privacy-preserving deep learning framework on a benchmark
digit recognition task;

• validation and application of the privacy-preserving deep learning framework on whole-body
hemodynamic analysis;

• validation and application of the privacy-preserving deep learning framework on coronary an-
giography image analysis;

49



• experimental study for assessing the performance and security;

• design, development and evaluation of a novel homomorphic encryption scheme (HybridMore)
that combines MORE encryption with an additional obfuscation layer for improved security.

6.3 Dissemination of Research Results

The work undertaken during the PhD studies led to a number of publications in international sci-
entific journals and conference proceedings. Specifically, 5 research papers have been publish as first
author and key contributions have been made to another 4, as follows:

• Vizitiu, A., Nita, C., Puiu, A., Suciu, C., Itu, L., Applying DeepNeural Networks over Homomorphic
Encrypted Medical Data, Computational and Mathematical Methods in Medicine, 2020;

• Vizitiu, A., Nita, C., Puiu, A., Suciu, C., Itu, L., Towards Privacy-Preserving Deep Learning based
Medical Imaging Applications, IEEE International Symposium on Medical Measurements and
Applications (MeMeA), 2019;

• Vizitiu, A., Nita, C., Puiu, A., Suciu, C., Itu, L., Privacy-Preserving Artificial Intelligence: Appli-
cation to Precision Medicine, 41st Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 2019;

• Vizitiu, A., Puiu, A., Reaungamornrat, S., Itu, L., Data-Driven Adversarial Learning for Sinogram-
Based Iterative Low-Dose CT Image Reconstruction, 23rd International Conference on System
Theory, Control and Computing (ICSTCC), 2019;

• Danu, M., Nita, C., Vizitiu, A., Suciu, C., Itu, L., Deep Learning-based Generation of Synthetic
Blood Vessel Surfaces, 23rd International Conference on System Theory, Control and Comput-
ing (ICSTCC), 2019;

• Vizitiu, A., Nita, C., Itu, L., Homomorphic Encryption in Deep Learning-based Applications for
Healthcare Data Analysis, Transylvanian Machine Learning Summer School (TMLSS), 2018;

• Ciusdel, C., Vizitiu, A., Moldoveanu, F., Suciu, C., Itu, L., Towards Real Time Machine Learning-
based Estimation of Fracture Risk in Osteoporosis Patients, International Conference on Opti-
mization of Electrical and Electronic Equipment (OPTIM), 2017 and International Aegean Con-
ference on Electrical Machines and Power Electronics (ACEMP), 2017;

• Suciu, C., Itu, L., Nita, C.,Vizitiu, A., Stroia, I., Lazăr, L., Gîrbea, A., Foerster, U.,Mihalef, V., Patient-
specific Hemodynamic Computations: Application to Personalized Diagnosis of Cardiovascular
Pathologies, pp. 177-227, 2017;

• Ciusdel, C., Vizitiu, A., Moldoveanu, F., Suciu, C., Itu, L., Towards Deep Learning-based Estima-
tion of Fracture Risk in Osteoporosis Patients, 40th International Conference on Telecommu-
nications and Signal Processing (TSP), 2017.

Moreover, the research results have been promoted at a series of conferences and venues and
attracted lots of attention and discussions. Consequently, 3 awards have been earned:

• ”Best Poster Award” for the work conducted towards privacy-preserving deep learning at a
Machine Learning summer school conference organized by Google DeepMind;

• ”Innovation Radar Prize 2019” at ”Industrial & Enabling Tech” category where, as part of the
EU-funded research project H2020 ”My Health – My Data”, the high-potential innovation of
the privacy-preserving framework has been recognized;
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• ”Best Paper Award for Ph.D. students” for the CT deep learning-based reconstruction paper
presented at IEEE ICSTCC conference.

These awards recognize the value of the thesis, but also the research performance and the po-
tential impact of this work on the future of the medical industry.
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Abstract

In recent years, powered by state-of-the-art achievements in a broad range of areas, machine
learning, with emphasis on deep neural networks, has received considerable attention from the
healthcare sector.

The present work focuses on the exploration, development, and evaluation of deep learning-
based solutions for automatic medical data analysis. The final goal of the current thesis is to in-
corporate learning-based solutions in the medical imaging analysis pipeline, starting from image ac-
quisition, continuing with image interpretation and up to secure patient health data manipulation.

To exploit the potential of deep learning-based methods for medical imaging analysis, an ad-
vanced type of breast imaging, three-dimensional mammography has been considered. Moreover,
the reconstruction, which represents the crucial component in producing images of the internal struc-
ture of the human body, has been tackled by integrating deep-learning with physics and acquisition
geometry of computed tomography (CT). To allow for the deep-learning-based analysis to be per-
formed on medical data without disclosing patient-related health information, privacy-preserving
deep learning solutions that operate directly on homomorphically encrypted data have been pro-
posed.

While still far from being deemed trustworthy solutions for practical medical image analysis, the
results hence obtained reflect the potential of learning-based approaches to shaping the future of
the healthcare industry.

În ultimii ani, ca urmare a avansului tehnologic, popularitatea inteligenței artificiale a explodat
afectând un spectru larg al domeniilor de activitate, printre care și sectorul medical.

Lucrarea de față se concentrează pe exploatarea, dezvoltarea și evaluarea soluțiilor bazate pe
rețele neurale adânci (eng. Deep Learning) pentru analiza automată a datelormedicale. Astfel, scopul
final al prezentei teze este de a include soluții bazate pe învățare în procesul de analiză și prelucrare
a imaginilor medicale, pornind de la achiziția imaginii, continuând cu interpretarea acesteia și până la
asigurarea confidențialității datelor cu caracter personal în vederea manipulării acestora.

În acest context, pentru a exploata potențialul modelelor neurale adânci în analiza imagisticii
medicale, s-a propus o metodă de detecție automată a maselor de țesut tumoral la nivelul sânu-
lui din mamografii digitale cu tomosinteză (mamografia 3D). Pentru a demonstra avantajele pe care
rețelele neurale adânci le pot aduce în procesul de formare al imaginilor medicale, reconstrucția, care
reprezintă componenta esențială în reprezentarea structurii interne a corpului uman, este adresată
prin combinarea rețelelor neurale adânci cu noțiunile de bază ale fizicii și geometriei ce descriu sis-
temul de achiziție al tomografiei computerizate (CT). În finalul tezei, s-a propus o soluție care permite
realizarea unor aplicații de medicină personalizată bazate pe inteligență artificială și care, în același
timp, protejează datele personale ale pacienților. Soluția propusă se bazează pe rețele neurale adânci
și pe criptarea homomorfică, un tip special de criptare care permite realizarea de operații, de exemplu
aritmetice, asupra informațiilor criptate.

Deși încă nu au ajuns la nivelul de încredere necesar pentru a putea fi utilizate în practicamedicală,
rezultatele obținute reflectă potențialul soluțiilor bazatepe rețele neurale adânci în conturarea viitorul
sistemului medical.
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