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Chapter 1

Introduction

Nowadays, it is difficult even for tertiary education to keep up with the increasingly specialized labor
market requirements. Solutions such as on-the-job trainingmaybe adopted, but these approaches have
high associated risks (e.g., material damage) [6] and may lead to a temporary decrease in workgroup
performance [2].

A notable current trend in virtual learning is personalization of assessment [see, e.g. 13], learning path
[e.g. 5], and even learning content [e.g. 4], driven by artificial intelligence (AI) techniques such as decision
trees, genetic algorithms, fuzzy logic, Bayesian networks, neural networks, or hidden Markov models
[1]. Yet, heavy automation of teaching/training has been regarded with reservations, and many virtual
learning researchers shifted their focus to facilitating real-time collaboration between trainees and tu-
tors via technologies such as virtual classrooms or whiteboarding [9]. Furthermore, UNESCO policies
discourage the replacement of human teachers with AI, as negative effects on learner agency, motiva-
tion, memory, etc. have been highlighted. The need to redefine teacher roles as users of AI techniques
in their didactic activity is emphasized instead [22].

These arguments led us to the conclusion that, instead of having AI substitute instructors, a more effi-
cient approach would be to use AI to connect them to learners, assembling optimized instructor teams
to deliver on-demand training for a specific learner request. Such an approach can be implemented as
a Virtual Organization (VO).

VOs are temporary alliances of geographically dispersed organizations initiated with the purpose of
serving a specific goal [3]). The idea of using a VO for teaching dates back more than two decades
ago (see [16]), but implementations are still scarce, and usually focus on a particular curriculum. To our
knowledge, extant training VO research has yet to address VO structure optimization in response to ad-
hoc requests, i.e., solving the Partner Selection Problem (PSP). PSP is a special case of multi-objective
optimization problem (MOP). We assume a typical PSP scenario: the initiator of a project organizes an
auction for the n activities the initiator is not willing/able to perform in-house, seeking to optimize the
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combination of bids. Table 1.1 summarizes the notations we use for PSP throughout the thesis.

Table 1.1: Notations.
Notation Definition
n number of project activities
A set of project activities
P set of edges indicating project activity precedence constraints
mi number of partner bids placed for project activity i ∈ A
Cij cost of partner bid j ∈ {1, . . . ,mi} for project activity i ∈ A
Qij quality rating of partner bid j ∈ {1, . . . ,mi} for project activity i ∈ A
Dij duration of bid j ∈ {1, . . . ,mi} for project activity i ∈ A
TC total cost of project
AQ average project quality
TD total project duration
StAvij availability window start time of partner bid j ∈ {1, . . . ,mi} for project activity

i ∈ A
EndAvij availabilitywindowend timeof partner bid j ∈ {1, . . . ,mi} for project activity i ∈ A
STi scheduled start time of project activity i ∈ A
R set of all resources required by project goals
RRir amount of resource r ∈ R required by project activity i ∈ A
RCr capacity of resource r ∈ R

We will consider the following formulation of multiobjective PSP:

minimize TC =
n∑

i=1

mi∑
j=1

β
(j)
i Cij (1.1)

maximizeAQ =

∑n
i=1

∑mi
j=1 β

(j)
i Qij

n
(1.2)

minimize TD = max
i∈A,

j∈{1,...,mi}

{STi + β
(j)
i Dij} (1.3)

subject to:
mi∑
j=1

β
(j)
i = 1, ∀i ∈ A (1.4)

STi + β
(j)
i Dij ≤ Deadline,

∀i ∈ A, j ∈ {1, . . . ,mi}
(1.5)

STi + β
(j)
i Dij ≤ STk,

∀i ∈ A, k ∈ A s.t. (i, k) ∈ P, j ∈
{1, . . . ,mi}

(1.6)

∑n
i=1

∑mi
j=1 β

(j)
i Cij ≤ Budget (1.7)
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STi ≥ StAvij , ∀i ∈ A,

j ∈ {1, . . . ,mi} s.t. β(j)
i = 1

(1.8)

STi +Dij ≤ EndAvij , ∀i ∈ A,

j ∈ {1, . . . ,mi} s.t. β(j)
i = 1

(1.9)

∑n
i=1 a

t
iRRir ≤ RCr, ∀r ∈ R,

t ∈ {1, . . . , Deadline}
(1.10)

where

β
(j)
i =

{
1, if partner bid j is chosen for project activity i
0, otherwise

ati =

{
1, if project activity i is in progress at time t
0, otherwise

In the formulation above, Equations (1.1)–(1.3) define the criteria/objectives. Equation (1.1) minimizes
the total project cost. Equation (1.2) maximizes the average quality of the selected partner bids. Equa-
tion (1.3) minimizes project duration. Constraint (1.4) ensures that only one bid is selected for each ac-
tivity in the project. Constraint (1.5) states that no activity end time should exceed the imposed project
deadline. Constraint (1.6) enforces the time precedence relationships between project activities. Con-
straint (1.7) guarantees the total project cost does not exceed the allocated budget. Constraints (1.8) and
(1.9) impose that activities take place in the time windows imposed by the selected bids for the project
activities in question. Constraint (1.10) ensures that the required amount of any resource in use at any
time during the project does not exceed the given capacity of the resource.

Many approaches have been proposed for solving MOPs (see [11]) and PSP. Currently, one of the ap-
proaches deemed most suitable are global search (population-based) heuristics [14]. We describe our
proposed adaptation of a recent meta-heuristic, an algorithm we named Multiobjective Symbiotic Or-
ganisms Search for Scheduling (MOSOSS), in section 4.1.

We further propose an architecture for a holonicmultiagent system (MAS) supporting the full lifecycle of
a training virtual organization (VO) [3]. Our choice of modeling the system as a MAS was motivated by
VO characteristics such as decentralized nature, goal-orientation, auction-based formation, decisions
based on communication and information flow, negotiation processes, etc. [12], [20] As Peña et al. [19]
advocate the use of holons as fundamental elements underlying computing science theory, we mod-
eled both the market and the created VOs as holons, with the latter being subholons of the former. To
our knowledge, this is the first research work that approaches collaborative teaching (not collaborative
learning) by implementing a training VO as a holonic MAS (HMAS) [7].
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Chapter 2

Aim and Objectives

In this thesis, we aim to propose an architecture for a platform capable of supporting the entire lifecycle
of a training VO. For this purpose, we dedicate a special attention to PSP, which is a key problem to be
solved in two of the four phases of the VO lifecycle: formation and reconfiguration. Implementing the
concurrent management of multiple PSP solving processes is an important objective of our work. Fur-
thermore, we also address VO operation and dissolution, by designing coordination and a rating system.

Our approach is to start from a rather general PSP formulation, and develop a generic PSP solver first.
The advantage of such an approach is that it can be applied to a larger set of problems, not only to the
problems stated in this work. Desirably, though, the general solver should be easily adaptable to more
specific problems, and this adaptability is also part of our aim. As such, we chose to develop an heuristic
algorithm which does not require any specific type of objective functions or a specific geometry of the
Pareto front.

Moreover, the concurrent management of training VO requests is part of our aim. First, we address si-
multaneous request management by creating, for each individual request, a dedicated holonic software
agent in charge of handling the auction and other negotiation mechanisms in its inner context. Sec-
ond, after all bids are collected and the Pareto set over the set of bid combinations can be computed,
the Pareto set may contain more than one (sub)optimal solution. This means additional support for the
human decision making process is needed. We aim to address this by creating a separate negotiation
space for each potential training VO the learner may choose, allowing concurrent negotiation.

We further capitalize on the holonic framework to design the other phases of the training VO lifecycle.
During VO operation, our aim is to support instructor collaboration for personalized curriculum planning
by modeling instructors as superholons of instructors in charge of the prerequisites they need. To close
the cycle and facilitate subsequent VO formation processes, we also address quality of service ratings
of the instructors upon VO dissolution. Additionally, we aim to design the platform such that instructors
who become members of one or more training VOs also maintain their initial competitive relationships
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in the education market environment they are part of. The main design principle we propose apply for
this purpose is modeling training VOs as subholons of the education market.

We therefore derive the following specific objectives:

1. O1 — proposing and implementing a novel approach to solving PSP with task scheduling under
time, budget, activity precedence and resource capacity constraints

2. O2— implementing and testing the proposed approach on random PSP instances, simulating an
auction for VO formation

3. O3—designing and implementing aHMASarchitecture for a training VOenvironment for the con-
currentmanagement of training requests through the configuration and support for VO operation,
reconfiguration and dissolution

4. O4 — conducting an experiment to compare the effectiveness of three different organization
structures of the HMAS during the training activity scheduling process.

The remainder of the thesis is organized as follows. The methodology we use to achieve the objectives
is described in Chapter 3. The corresponding results are reported in Chapter 4. An extensive discussion
of these results is presented in Chapter 5. Chapter 6 concludes the thesis.

10



Chapter 3

Research Methodology

Wedeveloped the approach targetedbyobjectiveO1basedona summaryof the theorized and/or empir-
ically demonstrated advantages and disadvantages of extant PSP approaches. Our proposed approach,
detailed in section 4.1, is an adaptation of one of the recent heuristics whose effectiveness in solving
problems similar to the PSP we focus on was empirically demonstrated in multiple studies.

To achieve objective O2, we implemented the proposed algorithm and competing algorithms in Java,
as an extension of the jMetal framework, version 5 1[18]. To test the algorithms against each other,
we simulated VO formation scenarios by randomly generating PSP instances. The algorithm we used
for generating random PSP instances is presented in Appendix A. We then conducted numerical exper-
iments comparing the competing algorithms with respect to a set of performance metrics for Pareto
optimality. These experiments, as well as experiments for objective O4, were conducted on an Acer
computer with 16 GB 1600 MHz DDR3 L Memory and a 2.6 GHz Intel Core i5 processor running Win-
dows 10 Pro operating system.

In pursuit of objective O3, we first designed an agent-based training VO environment using UML use
case diagrams, sequence diagrams and class diagrams. The design is described in the next section.

3.1 Preceptor: AProposedHolonicMultiagentSystemArchitecture for Train-
ing Virtual Organization Environments

In this section, we formulate a specific virtual learning problem, we frame it as a special case of PSP and
propose a solution based on a holonic multiagent system approach, then we describe its design.

1available on https://jmetal.github.io/jMetal

11



3.1.1 Problem Statement

Suppose a person who seeks specific training (e.g., an applicant for a job) requires training for one or
more competences that he/she does not master. The person (which we will refer to as Learner) seeks
an optimal virtual service provider, given a set of training providers (which we will henceforth refer to
as Instructors) who activate on a market (which we will refer to as Education Market), to cover all the
Learner’s specific training needs. The Learner establishes two criteria for optimality: cost and quality,
and emits a tuple V ORequest ∈ N× 2C ×R+

0 ×N, where C denotes the set of all competences listed
on the market. The tuple contains the Learner’s identification number, the required competences to be
trained (A ⊆ C), the budget and the deadline. Additional time constraints come into question because
some of the required competencesmay be prerequisites for others, whichmeans that training for those
competences should be finished before starting training for the competences that depend on them.

Throughout the rest of the thesis, we will refer to the problem described above as the Instructor Se-
lection Problem (ISP). ISP can be modeled as a bi-objective PSP with the following two objectives to
be simultaneously optimized: (1) total cost, to be minimized; (2) average quality of the training services
composing the VO, to be maximized. The solutions are subject to a deadline and a budget constraint,
are composed of a number of n competence training activities for which an Instructor bid should be
chosen, and the following bid characteristics are considered as decision variables: costs, quality ratings,
availability window start times and end times, and duration of the training service. Only one resource
is required by all training activities: time (number of hours a day the Learner is willing to allocate to the
training activities in the VO). Prerequisite relationships between competences induce the precedence
constraints in the general PSP. Therefore, the problem is a special case of the PSP defined earlier in the
introduction, obtained by dropping the time criterion described by Equation 1.3 and defining the set of
resourcesR as containing one single resource.

The second problem we address is one we call Prerequisite Strategy Problem. We assume that each
competence c ∈ C is characterized by a set of strategies that may be applied in its training. Training
strategies may differ in terms of content selection and/or sequencing, as well as in terms of the selec-
tion of trainingmethods. Another assumptionwemake is that training a competence c1 as a prerequisite
of another competence c2 may require a different approach (i.e., strategy) than training the same com-
petence per se, or as a prerequisite of c3, etc.

LetPc ⊆ C \{c} denote the set of prerequisites for competence c ∈ C and Sp denote the set of training
strategies for prerequisite p ∈ Pc. Then, ∀c ∈ C, p ∈ Pc we define a success function successc,p :
Sp → [0, 1], which associates each strategy for training p as a prerequisite of c with a success rating.
The higher the rating, themore successful the strategy. These success ratingsmay be results of various
aggregations methods applied to evaluations provided by experts in pedagogy, but this is beyond the
scope of this thesis.
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3.1.2 Proposed Solution

To solve ISP and the Prerequisite Strategy Problem, we propose an architecture for a VO environment
we called Preceptor. The proposed architecture supports two user categories: Learners and Instructors,
who use the system according to the use case diagram in Figure 3.1. The proposed VO environment
is a holonic implementation of the Education Market, supporting on-demand creation of training VOs
as subholons. Preceptor may be used to establish the Learner’s personalized learning path using our
proposed adaptation of the Breadth first search [17] for prerequisites of requested competences (the
pseudocode is listed in Appendix B) and it supports all phases of the VO lifecycle: formation, operation,
reconfiguration, and dissolution [3].

After establishing the set A of competences that need training, the Learner may emit a training VO
Request containingA on the Education Market. Figure 3.2 illustrates how Preceptor manages two con-
current VORequests at the same time. Let us assume that VORequest 1 specified a set of competences,
A1, containing three competences, while the set of competencesA2 specified in VORequest 2 contained
four competences. Then, each Potential VO Negotiator created for VO Request 1 should in turn create
three Competence Holons (CHs), whereas each Potential VO Negotiator for VO Request 2 should create
four CHs. A Scheduling Holon (SH) is also created by each Potential VO Negotiator to schedule training
activities.

Once the Learner chooses a VO, the VO RequestManager will proceed to VO configuration. A configured
VOhas the Learner as its head holon. The Instructorswill also be organized in a holarchy according to the
competence holarchy. The sequence diagram in Figure 3.3 illustrates the entire process of VO formation
and initial configuration.
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Figure 3.1: Preceptor Use-Case Diagram
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Figure 3.2: Overview of the Preceptor Holonic Organization for VO Formation
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Figure 3.3: Sequence Diagram Describing VO Formation
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Determiningor approximating theoptimal teamof instructorswho can cover the setAof competences is
an ISP that should be solved in order to reach the configured VO state. To this purpose, the VO Request
Manager will organize an auction for the requested competences. Each Instructor on the Education
Market will place one or more bids for a competence in the VO request if and only if the Instructor is
skilled to provide training for the competence in question. A bid is a tuple of the form:

bid = (InstructorID, c, StAv,EndAv,D, cost, quality) (3.1)

where

InstructorID ∈ N is the identifier of the instructor
c ∈ A is a requested competence the instructor provides training for
StAv andEndAv denote the availability window start time and end time, respectively
D, cost, and quality denote the duration, cost, and quality rating of the training ser-

vice provided by InstructorID for c, respectively.

After closing the auction, the VO Request Manager may proceed to compute the solutions for the VO
Request. Let Bi, i ∈ {1, . . . , n} denote the set of bids for competence training activity i. We define a
solution s to the VO Request as a possible combination of bids, one for each competence. Therefore,
s ∈ B1 × . . .×Bn.

The VO Request Manager then evaluates all possible solutions. Each solution s is evaluated in terms
of two objective functions: total cost and average quality. As the multiobjective nature of this prob-
lem warrants the identification of trade-off solutions, a multiobjective optimization approach must be
adopted. For instance, the MOSOSS algorithm can be used to output an approximation of the Pareto
optimal set of alternative combinations given the set of all possible solutions. For each solution in the
Pareto set, the VO Request Manager spawns a Potential VO Negotiator. For the purposes of reaching
an agreement on a schedule, each Potential VO Negotiator spawns one SH for scheduling and one CH
for each competence training activity. The behavior of the SH in response to a CH scheduling request
is described by the sequence diagram in Figure 3.4. Scheduling attempts of the SH are based on an
adaptation of the scheduling algorithm proposed in Ionescu and Vernic [14] (see the activity diagram in
Figure 3.5).

In its initial state in the scheduling process, the CH is not scheduled. In parallel, it attempts to compute
its schedule by emitting a schedule request to the SH and listens for end time notifications from CHs in
charge of its prerequisites, as well as for complete feasible schedule notifications from the Potential VO
Negotiator. After the SH replies a proposed start time, the CHwill update its earliest start time and check
its availability. If available, the CH will broadcast the computed activity end time in its default context.
Its schedule state will also be updated so as to indicate successful scheduling. A failure message will be
broadcast otherwise. When all CHs are scheduled, the SH will check the feasibility of the schedule (i.e.,
∀c1 ∈ A, ∀c2 ∈ A∩Pc1 , startT imec2 + durationc2 ≤ startT imec1 , where startT imec and durationc

denote the start time and duration of the training activity for competence c ∈ A, respectively).
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Figure 3.4: Sequence Diagram Describing the Behavior of the Scheduling Holon

When a SH reaches a complete and feasible schedule, it emits the schedule to the Potential VONegotia-
tor, which in turn emits it to the VO Request Manager. In case the Potential VO Negotiator is informed
by the SH that no feasible schedule can be generated for the potential VO, the Potential VO Negotiator

18



Figure 3.5: Activity Diagram Describing a Schedule Attempt of the Scheduling Holon

sends a failure message to the VO Request Manager.

Finally, after collecting all schedules (and failure messages, if that is the case) from Potential VO Nego-
tiators, the VO Request Manager retains the potential VOs that are feasible in terms of schedule and
asks the Learner to choose the one he/she prefers. A detailed view of the instructor selection use case
is offered in Figure 3.6.
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Figure 3.6: Sequence Diagram Describing how Preceptor Handles Instructor Selection
20



For the chosen potential VO to become an operational training VO, each Instructor agent that placed
a winning bid for the VO should be notified by the VO Request Manager of its individual schedule, the
address of the Learner agent, and the addresses of its immediate superholons and subholons. The In-
structor agents are multi-part holons [8]). First of all, they preserve their status as subholons of the
Education Market. This allows them to keep listening for VO Requests that might be of interest given
their training skills. Second, by joining the inner context of the Learner, they become subholons of the
Learner. Third, they aggregate zero or more superholons and zero or more subholons among the other
Instructors in the training VO. These latter holonic relationships are dictated by the prerequisite relation-
ships between competences. Each Instructor agent, for each of the competences it provides training for
in the VO, coordinates the training activity of the Instructor agents that train prerequisites (if any) of the
competence in question. This is the core mechanism of delivering personalized curriculum planning to
the Learner.

A competence may be a prerequisite for more than one other competence in the VO. This means the
Instructor agent that provides training for competence c ∈ Awill be coordinated by all Instructor agents
in the VO that train any other competence for which c is a prerequisite. Each of these superholons may
indicate another preferred strategy, because whenever p ∈ Pc1 ∩ Pc2 , c1, c2 ∈ A, c1 ̸= c2, it is possible
that successc1,p ̸= successc2,p.

Our proposed solution is the following: each of the superholons should transmit its success rating func-
tion to its subholons (in charge of training prerequisites). A subholon that provides training for prereq-
uisite pwill then select the strategy s0 ∈ Sp that maximizes

∑
c∈{c1∈A|p∈Pc1}

successc,p(s).

As shown in Figure 3.7, each Instructor agent will perform the training activity (or activities) it was se-
lected for in the VO—i.e., corresponding to its winning bid(s). A reconfiguration request is an exten-
sion point for the training VO operation use case. Contracts with subholons may be renegotiated if the
Learner decides.

If the request is one of dismissal or replacement, theVORequestManagerwill ask the Learner to rate the
training service provided for the given competence. Upon receipt of a Learner reply containing the rating,
the VO Request Manager will update the knowledge base with the rating for the provided competence
training service in the form of a tuple (Instructor, competence, crt_rating). This tuple will be sent to
the Knowledge BaseManager agent, which keeps track of all ratings for all Instructor-competence pairs.
After the Knowledge Base Manager agent receives the update message from the VO Request Manager,
the new rating will be calculated using Equation 3.2b:

rating0 =∞ (3.2a)

ratingn+1 =
n ∗ ratingn + crt_rating

n+ 1
, ∀n ≥ 0 (3.2b)
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Figure 3.7: Sequence Diagram Describing VO Operation

If the Learner’s reconfiguration request was either one of replacement or one of addition, the original
VO Request will be updated by replacing the initial set of competences (A) with the competence in the
reconfiguration request. The system will re-enter the Instructor Selection use case with this updated
VO Request (see Figure 3.8).
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Figure 3.8: Sequence Diagram Describing the Processes Involved in the Reconfiguration Extension of
the VO Operation Use Case

Whenever the Learner explicitly requests dissolution, or the training VO is left without Instructors, or all
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training activities have finished, the training VO dissolves (see Figure 3.9).

Figure 3.9: Sequence Diagram Describing Training VO Dissolution

We implemented the designed training VO environment as a HMAS platform coded in the SARL pro-
gramming language, version 12 [21]. Our choice was motivated by the native support for holonic multi-
agent systems offered by SARL [7]. As a runtime environment for the HMAS we implemented in SARL,
we used the recommended Janus platform [8]. Janus was developed with the aim of being suitable
for large, modular applications. Its design is based on the CRIO metamodel, adopting the principle of
separation of roles from the holons playing them.

3.2 Case Study

Finally, to achieve objective O4, we tested the Preceptor architecture using a case study described as
follows. A Learner requests training for one competence: Behavior Modeling and Simulation in Virtual
Environments. The Learner andPreceptor interact in order to establish the entire list of competences the
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Learner actually needs training for. The corresponding competence trainingVO that should be configured
should therefore have a holonic structure such as the one represented in Figure 3.10.

Figure 3.10: Case Study: Competence Holarchy

We tested theproposedorganization structureofPreceptor during scheduling (“heterarchy”/decentralized)
against two alternative organization structures (“hierarchy”/centralized and “holarchy”/holonic). The
three organization structures differ with respect to the behavior of the Potential VO Negotiator, of the
SH and of the CHs. In the hierarchical organization structure, scheduling is the exclusive responsibility
of the Potential VO Negotiator (see Figure 3.11). In the holarchy structure each CH becomes a super-
holon of all CHs in charge of any of its immediate prerequisites. As illustrated in the sequence diagram
in Figure 3.12, the CH and the SH will interact by sending proposals until they reach an agreement.

25



Figure 3.11: Sequence Diagram Describing the Scheduling Process in the Hierarchy Organization Struc-
ture 26



Figure 3.12: Sequence Diagram Describing the Scheduling Process in the Holarchy Organization Struc-
ture
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3.2.1 Hypotheses

We hypothesize that the three organization structures will differ significantly with respect to their com-
putational efficiency, considering three performance measures: (1) elapsed time (in milliseconds); (2)
CPU usage (the percentage of CPU clock ticks used by Preceptor processes out of the total number of
ticks); and (3) memory usage (the percentage of memory used by Preceptor processes). For each per-
formancemeasure, we are interested in two values: the total value for the whole configuration process,
and the value for the scheduling process only.

We expect the execution time for the holarchy structure to be longer, because the CHs also form a hol-
archy, thus inducing delays in communication. Therefore, we hypothesize:

Hypothesis 1. Total configuration time (a) and scheduling time (b) will be significantly longer for the
holarchy organization structure as compared to heterarchy and hierarchy.

In terms of CPU usage, however, we expect the holonic organization to be superior at least to the heter-
archical structure, because holons wait for all information a decision depends on and only communicate
the final decision to other holons. We thus hypothesize:

Hypothesis 2. Total CPU usage (a) and CPU usage during the scheduling process (b) will be significantly
lower for the holarchy organization structure as compared to heterarchy and hierarchy.

In terms of averagememory usage, we expect the hierarchy organization to produce the highest values,
because all data structures are stored in memory simultaneously until the VO negotiator finishes the
scheduling process. As such, we hypothesize:

Hypothesis 3. Averagememory usage during configuration (a) and during the scheduling process (b) will
be significantly higher for the hierarchy organization structures as compared to heterarchy and holarchy.

3.2.2 Experimental Settings

To create experimental settings which can easily be replicated, we randomly generated 8 solutions for
the problem. Let S denote the set of 8 solutions. We can generate the first 50 combinations of 5 so-
lutions from S and assume that each combination is the Pareto set of an unknown set of possible bid
combinations including the bids that compose the solutions in S. The set of randomly generated so-
lutions (S) and the 50 Pareto sets are listed in Appendix C. Each of the 50 generated Pareto sets was
a case in the experiments we conducted to compare the three different organization structures. The
frequency with which CHs checked prerequisite end time notifications in the heterarchy and holarchy
structures was set to once every 100 milliseconds. Experimental results are reported in section 4.2.
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Chapter 4

Results

In this chapter, we first present our novelmethod for solving PSP under time and resource constraints (in
section 4.1), which can be easily adapted to special cases of PSP such as finding the optimal combination
of instructors for a given training request. Then, in section 4.2we report on the resultswe obtained after
using the Preceptor architecture for the training VO request case study described in section 3.2.

4.1 Proposed Approach to the Partner Selection Problem: The Multiobjec-
tive Symbiotic Organisms Search for Scheduling (MOSOSS)

Two major innovations that differentiate MOSOSS from established algorithms used for solving similar
problems are its reliance on specially-designed symbiotic operators (mutualism and commensalism) for
combinatorial optimization and its treatment of unfeasible solutions (MOSOSS operates with partially
scheduled solutions).

Solution encoding was the following:

bid1bid2 . . . bidn︸ ︷︷ ︸
component bids

ST1ST2 . . . STn︸ ︷︷ ︸
scheduled start times

(4.1)

Whenever scheduling an activity is not feasible due to time constraint violations, the activity is sched-
uled such that its end time exceeds the deadline by 1 day. Thus, for every organism, at least a partial
schedule is produced, having the chance of being repaired using symbiotic evolutionary operators dur-
ing subsequent iterations of the algorithm, instead of applying an additional repair method. The symbi-
otic operators (mutualism and commensalism) are specially designed to take advantage of each other’s
composition. They both use the same exploitation mechanism, presented in Algorithm 1.
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Algorithm 1 Exploit(solutioni, solutionj )

Require: solutioni = ((bid
(i)
1 , . . . , bid

(i)
n ), (ST

(i)
1 , . . . , ST

(i)
n ));

solutionj = ((bid
(j)
1 , . . . , bid

(j)
n ), (ST

(j)
1 , . . . , ST

(j)
n )).

Ensure: solution′
i = ((bid

(i′)
1 , . . . , bid

(i′)
n ), (ST

(i′)
1 , . . . , ST

(i′)
n )), a solution obtained by replacing bids in

solutioni with corresponding bids in solutionj .
solution′

i ← solutioni

replace← False
If solutioni has a pending activity, replace bid in i′ with bid in j:
if ∃k s.t. Pendingi = k then

bid
(i′)
k ← bid

(j)
k

evaluate(solution′
i)

if solution′
i ≻ solutioni then

replace← True
end if
if replace = False then
for k ∈ {1, . . . , n} do
if ST (i)

k = −1 or Pendingi = k then
bid

(i′)
k ← bid

(j)
k

evaluate(solution′
i)

if solution′
i ≻ solutioni then

replace← True
end if

end if
end for

end if
else

Reset schedule of solution′
i:

ST
(i′)
k ← −1, ∀k ∈ {1, . . . , n}

Pendingi′ ← NULL
Generate a random number of activities to be replaced, rand ∈ {1, . . . , n}.
Replace bids for rand random activities with corresponding bids from solutionj :
for k ∈ {1, . . . , rand} do

Generate random activity actk ∈ {1, . . . , n}
if bid(i)actk

̸= bid
(j)
actk

then
bid

(i′)
actk
← bid

(j)
actk

end if
end for
{totalCost′i, totalDuration′

i, avgQuality′i, c
′
i} ← Evaluate(solution′

i)
end if
return solution′

i
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Weconductednumerical experiments (reported in [14]) comparingMOSOSSwith theestablishedMOSOS
and NSGA-II with respect to the following six performance indicators for Pareto optimality: additive ϵ,
GD, IGD, IGD+, HV and∆. Results supported the superiority of the proposed MOSOSS over the compet-
ing algorithms for all performance metrics and for all randomly generated PSP test instances. The test
instances were 15, 5 instances with 3 activities, 5 of themwith 4 activities, and other 5 with 5 activities.
We also demonstrated the greater convergence speed ofMOSOSS, which coveredmore than 90% of the
Pareto set after much fewer iterations than it took the competing algorithms to find any solutions. The
interested reader is referred to [14] for additional details.

4.2 Case Study: On-Demand Response to a Training Virtual Organization
Request using the Preceptor Architecture

In this section, we report the results of the case study described in section 3.2.

Descriptive statistics for the six quality indicators are reported numerically in Table 4.1 and visually in
the figure from Appendix D.

Wewere interested in the existence of differences between organization structures with respect to per-
formance measures. First, we needed to test the effect of our factor (the organization structure, with
three possible values: heterarchy, hierarchy, and holarchy) on each of our dependent variables (the per-
formance measures).

We used the R rstatix package [15] to apply the Friedman test and the post-hoc tests. A significant
result of the Friedman test would imply that at least two of the three organization structures differ with
respect to the dependent variable in question. As reported in Table 4.2, Friedman test results indicated
a significant difference (p < .05) between organization structures only in terms of time and CPU usage.
Average memory usage was not found to differ significantly across the three organization structures.
Hypothesis 3 was therefore not supported.

The next step was to perform pairwise comparisons in order to establish which specific organization
structures differed significantlywith respect to the dependent variables onwhich the organization struc-
ture was proven to display a significant effect. We therefore conducted post-hoc pairwise comparisons
using the Nemenyi-Wilcoxon-Wilcox all-pairs test from rstatix [15]. Results are reported in Tables 4.3–
4.4.

As the tables show, test results indicate significant differences (p < .05) between all pairs for both total
and scheduling time. As expected, with respect to elapsed time, the hierarchical organization outper-
formed heterarchy, which, in turn, was faster than holarchy. Hypothesis 1was therefore fully supported.

However, interpreting the results presented in Table 4.4, both holarchy and heterarchy outperformed hi-
erarchy with respect to total CPU usage (p < .05). Hypothesis 2a was thus partially supported. The dif-
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Table 4.1: Descriptive Statistics for the Performance Measures

Performance Measure Organization Structure Mean SD Median IQR

Time (total)
Heterarchy 1701 95.2 1710 110.0
Hierarchy 1135 88.3 1114 104
Holarchy 2000 145.0 2002 101

Time (scheduling)
Heterarchy 743 78.9 705 106
Hierarchy 153 91.5 150 97.8
Holarchy 1002 142.0 996 99

CPU usage (total)
Heterarchy 11.8 5.76 11 3.75
Hierarchy 13.4 6.67 12 4.75
Holarchy 11.6 4.64 11 3

CPU usage (scheduling)
Heterarchy 17.7 7.67 17 7.75
Hierarchy 19.0 18.2 14.5 14.8
Holarchy 11.6 3.97 11 6

Memory usage (total)
Heterarchy 21.5 6.00 22.0 7.42
Hierarchy 23.1 6.82 22.8 8.30
Holarchy 25.1 8.64 25.2 12.0

Memory usage (scheduling)
Heterarchy 27.7 8.04 27.4 8.88
Hierarchy 32.8 11.6 32.8 12.4
Holarchy 29.0 9.59 30.1 11.2

SD = Standard Deviation; IQR = Interquartile Range

Table 4.2: Friedman Test Results
Performance Measure F p
Time (total) 100 1.93e-22
Time (scheduling) 100 1.93e-22
CPU usage (total) 12.3 0.00217
CPU usage (scheduling) 12.5 0.00190
Memory usage (total) 4.68 0.0963
Memory usage (scheduling) 3.88 0.144

ference between holarchy and heterarchy was not significant. In terms of CPU usage for the scheduling
process, only the difference between holarchy and heterarchy was significant, with holarchy displaying
a more efficient CPU usage. Hypothesis 2b was thus also partially supported.
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Table 4.3: Pairwise Comparisons between Organization Structures: Time
Total time Scheduling time

Organization Struc-
ture

Heterarchy Hierarchy Holarchy Heterarchy Hierarchy Holarchy

Heterarchy - -
Hierarchy 1.7e-06▲ - 1.7e-06▲ -
Holarchy 1.7e-06▽ 2.4e-14▽ - 1.7e-06▽ 2.4e-14▽ -
Notes. Values reported in the table are the p-values for the Nemenyi-Wilcoxon-Wilcox test.
▲ = organization structure on row outperforms organization structure on column;
▽ = organization structure on row is outperformed by organization structure on column;
– = the difference between organization structure on row and organization structure on column is not significant.

Table 4.4: Pairwise Comparisons between Organization Structures: CPU Usage
Total CPU Usage Scheduling CPU Usage

Organization Struc-
ture

Heterarchy Hierarchy Holarchy Heterarchy Hierarchy Holarchy

Heterarchy - -
Hierarchy 0.0141 ▽ - 0.2456 – -
Holarchy 0.9661 – 0.0065 ▲ - 0.0014 ▲ 0.1386 – -
Notes. Values reported in the table are the p-values for the Nemenyi-Wilcoxon-Wilcox test.
▲ = organization structure on row outperforms organization structure on column;
▽ = organization structure on row is outperformed by organization structure on column;
– = the difference between organization structure on row and organization structure on column is not significant.
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Chapter 5

Discussion

In this thesis, we proposed an approach to offering individualized training via a strategic HMAS, fol-
lowed by suggestions for the design and implementation of a system supporting such functionalities
and numerical experiments comparing three different architectures (organization structures) for sched-
ule negotiation.

Our theoretical arguments and results suggest that an entirely holonic organization pattern during VO
formation not only allows for a more dynamic VO environment, but it is also more efficient in terms of
CPU usage. However, it is more expensive in terms of computational time than a heterarchical or hi-
erarchical organization structure. Experimental results suggest that, though decentralized organization
structures (holarchy and heterarchy) perform better with respect to CPU usage, the hierarchy organiza-
tion structure has an important advantage—that of being faster. Nevertheless, one of the main disad-
vantages of the hierarchical structure is its relative lack of flexibility. If subholons have at most the right
to veto, an agreement with all subholons may be hard to reach. If VO formation and reconfiguration are
entirely centralized, without accepting interrupts from subholons, the Potential VO Negotiator produces
rigid configurations and schedules.

5.1 Utility

Our proposed architecture addresses on-demand personalized curriculum planning. Specifically, it of-
fers support for novices in three major areas: identifying their training needs in terms of competences,
finding an optimal combination of instructors for those competences that require training, and generat-
ing a personalized learning path through the holonic coordination of instructors.

The holonic structure of the platform creates a balance between centralization and decentralization by
allowing holons at different levels of the holarchy to manage their subholons. Modeling VOs as sub-
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holons of the Education Market offers the advantage of allowing simultaneous collaborative relations
(as trainers for competences in the same request) and competitive relations (as bidders for different
requests) between instructors.

5.2 Original Contributions

The most important original contributions of the present thesis can be summarized as follows:

• proposing a framework for on-demand collaborative teaching. We reported on designing and im-
plementing a solution to the growing demand for specialized training which also addresses UN-
ESCO recommendations and recent critical reviews of the role of AI in education, in that it avoids
substituting human teachers with AI.

• proposing an adaptation of a novel heuristic by completely redesigning MOSOS operators so as
to better serve the purpose of solving PSP as a combinatorial MOP with task scheduling under
time, budget, resource and task precedence constraints. We also provide an innovative approach
to task scheduling using global search heuristics, by evolving partially scheduled solutions.

• bridging the gap between VOs and VO environments, by proposing a holonic organization in which
VOs are subholons of the VO environment (“market”). The applicability of this idea may be ex-
tended beyond the scope of this thesis (training), to hypothetically any VO.

• proposing, testing and comparing competing approaches to scheduling negotiation during ISP.
Based on our case study, we highlighted advantages and disadvantages of different organization
structures during these processes.

5.3 Limitations

In the present thesis, we confined ourselves to providing a proof of concept for the purpose of demon-
strating part of the functionality the Preceptor architecture is meant to support. Several important lim-
itations that should be addressed in a future research agenda are listed in the following.

First, the architecture has yet to be validated on real-world scenarios, and stakeholder satisfaction with
the quality of service needs to bemeasured. Additionally,more experiments comparing competing orga-
nization structures during VO formation need to be conducted to analyze the impact of parameters such
as frequency of listening/monitoring tasks and fine-tune them based on results of sensitivity analyses.
Second, more alternative structures for different phases of the VO lifecycle are worth being explored in
future works. Third, a more advanced rating system for training quality should be considered, such as
collaboration ratings.
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5.4 Future Research Directions

Based on the aforementioned limitations, as well as on the architecture’s potential of being extended,
the following directions for a future research agenda can be identified.

First, the behavior of Preceptor during the VO operation phase could be refined in more concrete imple-
mentations of teacher collaboration. In order for them to be effective, these implementations should
be based on an analysis of the needs, opinions and preferences of instructors. For example, data col-
lection efforts could target members of European Universities1, or other instruction providers offering
learner-centered, flexible curriculum design and/or transdisciplinary goal-driven team formation, such
as the EU Business School2, or UNIR3.

Second, given the great emphasis that has constantly been placed in the VO literature on agility, it would
be especially interesting to distinguish between various reconfiguration triggers, such as changes in the
required competences or changes in the schedule imposed by the Learner. The optimal behaviors of
holons involved in the reconfiguration process may differ for different triggers, so each of these scenar-
ios warrants a more detailed analysis.

Third, drawing on the Market of Resources model, future extensions of Preceptor may narrow down
the search for potential VO partners by solving ISP in a two-stage search. First, in the passive stage,
Preceptor could create a list of training offers that are relevant for the required competences and satisfy
the constraints imposed by the Learner. Second, in the active stage, it could notify the Instructor agents
in the list of the training request and allow the Learner to negotiate with them.

Fouth, developing the Preceptor architecture serves as preliminary step to what can be referred to as
E-learning as a Service (EaaS) [10]. Instructor offers are services that could be described and discovered
using the semanticweb. Furthermore, Preceptor lends itself to being extended to aweb-based platform
supporting three user categories: (1) Employers, who need to recruit applicants for a certain job and
use the platform to post the job announcement; (2) Instructors, who could use the platform to post
training offers; (3) Learners, who could subscribe to the platform to read job announcements posted
by employers and post training requests for the required competences they lack. All user interactions
with the platform should be performed via a web interface allowing contributions to the knowledge
base from all user categories. For example, employers could contribute by describing new competences
they require and by specifying prerequisite relationships between these competences. A competence
ontology may be collaboratively developed in this manner.

1see the European Universities Initiative: https://ec.europa.eu/education/education-in-the-eu/european-education-
area/european-universities-initiative_en

2https://www.euruni.edu/
3https://en.unir.net
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5.5 Dissemination of Research

Reviews and original research findings presented in this thesis were also reported in the following list
of publications:

5.5.1 Journal Articles Indexed in the Web of Science

A.-F. IonescuandR. Vernic, “MOSOSS:Anadaptedmulti-objective symbiotic organismssearch for schedul-
ing,” Soft Computing, vol. 25, no. 14, pp. 9591–9607, 2021. WOS:000641235700007

5.5.2 Articles/Book Chapters Indexed in the Web of Science

A.-F. Ionescu, “Methods and algorithms for creating and reconfiguring virtual organizations,” Decision
Making in Social Sciences: Between Traditions and Innovations, Springer, 2020, pp. 49–63.
WOS:000640236300003

5.5.3 Other Chapters in Edited Books

A.-F. Ionescu, “Multi-objective evolutionary algorithms: Decomposition versus indicator-basedapproach,”
in Algorithms as a Basis of Modern Applied Mathematics, Springer, 2021, pp. 69–85.

A.-F. Ionescu and D.-M. Popovici, “Applications of multi-agent systems in social sciences: Virtual enter-
prises as an example,” in Models and Theories in Social Systems, Springer, 2019, pp. 311–325.

5.5.4 International Conference Proceedings Indexed in the Web of Science

A.-F. Ionescu, “Designing virtual learning systems: Current trends and evaluation,” in Proceedings of the
14th International Conference on Virtual Learning (ICVL), 2019, pp. 303–308. WOS:000506084800044

A.-F. Ionescu, “E-learning as a Service: Benefits of the semantic web and SOA for virtual learning,”
in Proceedings of the 14th International Conference on Virtual Learning (ICVL), 2019, pp. 401–407.
WOS:000506084800059

A.-F. Ionescu and D. Sburlan, “AdABI: An adaptive assessment system based on Bayesian inference,”
in Proceedings of the 15th International Scientific Conference on eLearning and Software for Education
(eLSE)—NewTechnologies andRedesigning LearningSpaces, 2019, pp. 288–295. WOS:000473322400039
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5.5.5 Oral Presentations at International Conferences

A.-F. Ionescu and D.-M. Popovici, ”Preceptor: A Proposed Architecture for an On-Demand Virtual Learn-
ing Platform”, paper accepted for presentation at the 23rd International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, SYNASC 2021.
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Chapter 6

Conclusions

To conclude, all objectives of the thesis have been met. In order to achieve objectives O1 and O2, we
reported on conducting a literature review ofmethods and techniques for solving PSP. For achieving O3,
we provided a problem statement and detailed the design of our proposed software solution. To reach
O4, we described a case studywe used to test the developed solution, andwe reported the correspond-
ing results—our proposed algorithm for solving PSP and its validation, as well as experimental tests of
the efficiency of the developed VO environment.

All in all, we canmention several important original contributions of the research presented in this thesis:

• designing and implementing a solution to the growing demand for specialized training: an envi-
ronment for on-demand collaborative teaching.

• explicitly framing VO formation/reconfiguration as special cases of PSP, and integrating the PSP
and multiobjective optimization literatures in the VO framework

• proposing an adaptation of a novel heuristic (MOSOS) for solving PSP with task scheduling under
time, budget, resource and task precedence constraints.

• bridging the gap between VOs and VO environments, by proposing a holonic organization in which
VOs are subholons of the VO environment (“market”).

• proposing, testing and comparing competing approaches to scheduling negotiation during ISP.

The Preceptor architecturemay serve as a basis for the development of aweb platformwith the purpose
of facilitating personalized curriculum planning and on-demand job training. Both learners and instruc-
tors could benefit from the use of the platform, and we argued that future extensions may also serve
employers in search of job applicants. As such, the platform has the potential to connect instructors and
learners to job demands and thus increase employment rate.
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Abstract

The present thesis focuses on on-demand personalized virtual learning, in response to a specific training
request emitted by a learner. The thesis is structured as follows:

In Chapter 1, we provide an introduction to virtual learning and a critical view of the limitations or gaps
in the current developments. A special focus is dedicated to Virtual Organizations as a potential solution
to virtual learning.

In Chapter 2, we state the aim of the thesis—to design, implement and test a market-like environment
for ensuring on-demand individualized training to a learner via a virtual organization (VO)—and derive
specific objectives.

Chapter 3 presents the research methodology we used in our studies. First, we provide the justifica-
tion for our design choices in developing our proposed heuristic for solving multiobjective PSP, then we
frame the instructor selection problem as a special case of PSP and introduce the proposed Preceptor
architecture for a holonic market-like Virtual Organization environment supporting the whole lifecycle
of a training Virtual Organization. Finally, using a case study, we provide a test of the architecture and a
comparison of three competing organization structures that may be used during the schedule negotia-
tion process.

In Chapter 4we first present our newly-developedalgorithm for generic PSP instanceswith task schedul-
ing under time, budget, task precedence and resource constraints, the Multiobjective Symbiotic Organ-
isms Search for Scheduling (MOSOSS). We then analyze the case study, comparing three different or-
ganization structures of the training VOs in the process of VO formation/reconfiguration—heterarchy,
hierarchy, and holarchy. Results of the Friedman test and the Nemenyi-Wilcoxon-Wilcox all-pairs test
revealed that, while a hierarchical organization structure may lead to a shorter execution time as com-
pared to decentralized organization structures, an entirely holonic organization structure may be more
effective with respect to CPU usage.

A discussion of our propositions and results, as well as of limitations and future research directions, is
presented in Chapter 5. The original contributions of the reported research are summarized in Chapter
6, which concludes the thesis.
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