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Introduction

Considerations on fractal interpolation theory

Interpolation serves the purpose of recovering a function when only
specific points from its graph are accessible. Traditional interpolation
methods, that use polynomial, rational, exponential, trigonometric or spline
functions, produce interpolation functions that are piece-wise differentiable.
However, these functions are not appropriate for the vast majority of real-
world situations where the data exhibit irregularities and lack smoothness in
their behavior.

Fractal interpolation differs from other conventional types of interpolation
methods because the continuous interpolation function obtained is not
necessarily differentiable at any point. Consequently, fractal interpolation
provides interpolants that are closer to natural world phenomena, thus
proving to be a more versatile tool for fitting real-world data. Moreover,
it provides a broad spectrum of interpolants, ranging from those that are
nowhere differentiable to infinitely differentiable ones. The concept of fractal
interpolation functions was originally introduced by M. Barnsley (see [5] and
[6]) and it has been the subject of extensive research ever since.

Fractal interpolation is a distinctive interpolation method that consists
of constructing a continuous function that passes through all of the points of
a provided system of data, with its graph being the attractor of an iterated
function system. More precisely, Barnsley proved that given a finite real
subset A and a function f : A → R, there exists a continuous function
F : [minA,maxA] → R such that:

a) F|A = f ;

b) there exists an iterated function system whose attractor is the graph
of F .

The function F is called a fractal interpolation function (for short FIF)
corresponding to the set of data {(a, f(a)) : a ∈ A}.

1



The initial results proved by Barnsley regarding FIFs were studied in
depth leading to numerous generalizations and novel research directions.
Among these directions of research, we mention:

a) multivariable fractal interpolation functions which are obtained via
higher dimensional or recurrent iterated function systems (see [8]);

b) hidden variable fractal interpolation functions involving the projection
of the attractors of vector-valued iterated function systems to some
lower dimensional spaces (see [7], [13], [18], [19], [45], [91] and [94]);

c) Hermite or spline fractal interpolation functions (see [58] and [94]);

d) bilinear fractal interpolants which are based on bilinear functions (see
[11]);

e) fractal splines which combine fractal functions and splines (see [9] and
[47]);

f) fractal interpolation surfaces (see [14], [15], [24], [30], [44], [46], [76],
[79], [92], [97] and [102]);

g) generalizations of Barnsley’s fractal interpolation technique for a
countable set of data (see [31], [70], [82], [83], [84], [85], [86] and [93]).

For comprehensive and useful expository accounts of fractal interpolation
one can consult [46] and [63].

Motivation for choosing the theme of the thesis

Fractal interpolation is based on a constructive method, via an iterative
procedure, as opposed to other classical interpolation methods (such as linear,
polynomial, Hermite or spline based methods) that rely on a descriptive
method. Moreover, fractal interpolation allows working both with smooth,
as well as non-smooth approximation, thus being more suitable for real-world
applications.

FIFs have various applications in significant areas of research. Among
them, we mention:

- image compression (see [10] and [25]);

- image upscaling (see [69]);

2



- video image compression (see [1]);

- satellite image data reconstruction (see [20]);

- image encryption (see [100]);

- theory of Schauder bases (see [61] and [64]);

- signal processing (see [60], [62] and [101]);

- fingerprint shape reconstruction (see [3]);

- tumor perfusion reconstruction (see [17]);

- quantification of cognitive brain processes (see [59]);

- financial analysis (see [39]);

- stock price index prediction (see [96]);

- seismic data reconstruction (see [41]);

- rock fracture surfaces (see [98]);

- prediction of river dissolved oxygen in complex watershed (see [42]);

- prediction of wind speed (see [99] and [103]);

- study of epidemics (see [2] and [67]);

- refining the quality of data in the preprocessing step of Machine
Learning prediction algorithms (see [73]).

The versatility of fractal interpolation is underlined by the variety of
applications that use it. Moreover, the theory of fractal interpolation has an
increasing interest among the research community since there are a multitude
of engaging different research directions (for example, the directions of
research a)-g) from the previous section).

The motivation for choosing the theme of the current thesis relies on
the significant interest that fractal interpolation has already proven to have
among the research community and on the growing amount of fields where
fractal interpolation applications arise.
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Structure of the thesis

In this thesis, we present new contributions to fractal interpolation theory,
organized into six chapters. We begin by establishing the fundamental
notation and terminology in the first chapter, followed by a detailed study of
the Read-Bajraktarevic operator in the second chapter. The third chapter
explores the concept of countable fractal interpolation, while the fourth
chapter introduces a novel framework for fractal interpolation. In the fifth
chapter, we introduce a new type of iterated function system, and in the final
chapter, we apply fractal interpolation to real-world scenarios, including an
analysis of Covid-19 spread.

The first chapter is dedicated to collecting the main notation and
terminology that will be used throughout the thesis, as well as some key
concepts that are essential in understanding the contents of the thesis. We
introduce fundamental notions related to generalized contractions, iterated
function systems, the shift space and the canonical projection.

Chapter two is devoted to the study of the Read-Bajraktarevic operator,
a fundamental concept within the field of fractal interpolation theory. The
main results contained in this chapter are part of the paper “Scale-free
fractal interpolation”, “Fractal Fract.” 6 (2022) (see [66]), which is
published in collaboration with Maria Navascués and Vasileios Drakopoulos.
We present some properties of the Read-Bajraktarevic operator in the case
of finite data sets. Moreover, we study the conditions under which the Read-
Bajraktarevic operator produces smooth interpolation functions for a given
set of data.

In the third chapter, there are presented results related to countable
fractal interpolation that are published in the article “A countable fractal
interpolation scheme involving Rakotch contractions”, “Results
Math.” 76 (2021) (see [68]). This chapter is dedicated to FIFs for countable
systems of data that present themselves as the attractor of a countable
iterated function system which has more general constitutive functions. More
precisely, the constitutive functions are Rakotch contractions, thus, they
are not necessarily Banach contractions. We prove that for a countable
set of data, there exists a continuous interpolation function whose graph
is the attractor of a countable iterated function system composed of Rakotch
contractions. In the final part of the chapter, we give some examples of
particular cases of countable iterated function systems involving Rakotch
contractions.

In the subsequent chapter, which constitutes the fourth chapter of this
thesis, we present the contents of the article “A fractal interpolation
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scheme for a possible sizeable set of data”, “J. Fractal Geom.” 9
(2022) (see [55]) that is a joint work with Radu Miculescu and Alexandru
Mihail. Within this chapter, we introduce a more comprehensive framework
for fractal interpolation. Specifically, given a, b ∈ R, a < b, and A ⊆ R such
that {a, b} ∈ A = A ⊆ [a, b] and the interior of A is empty, we prove that
for every continuous function f : A → R, there exist a continuous function
g∗ : [a, b] → R and a possibly infinite iterated function system whose attractor
is the graph of g∗ such that g∗|A= f . In other words, our results prove the
existence of a FIF corresponding to the set of data {(x, f(x)) : x ∈ A}.
Notably, our scheme allows A to be uncountable as is the case of the Cantor
ternary set. As a result, our findings make a substantial contribution to the
field of FIFs.

The fifth chapter introduces a new type of iterated function system, more
specifically interpolation type iterated function system, and presents the
content of the article “Interpolation type iterated function systems”,
“J. Math. Anal. Appl.” 519 (2023) (see [56]) that is published in
collaboration with Radu Miculescu and Alexandru Mihail. We collect several
properties of interpolation type iterated function systems, demonstrating
that such a system has attractor and admits canonical projection. As a
by-product of our results, we establish a fixed point result.

The final chapter is dedicated to applications of fractal interpolation
and contains results from the articles “An analysis of COVID-19
spread based on fractal interpolation and fractal dimension”,
“Chaos Solitons Fractals” 139 (2020) (see [67]) and “A concretization
of an approximation method for non-affine fractal interpolation
functions”, “Mathematics” 9 (2021) (see [16]). In the first part of the
chapter, we present an application of fractal interpolation in retrieving the
missing data registered in the first months (first half of 2020) of the Covid-19
pandemic. Moreover, we employ the box-counting dimension as a measure to
evaluate the complexity of the spread of Covid-19. In the second part of the
chapter, we present two algorithms, one deterministic and one probabilistic,
that allow visualizations of approximations of the FIF obtained via the
scheme presented in chapter three. Thus, the second part of the chapter
presents an application of an approximation technique for FIFs that involve
Rakotch contractions.

In summary, the current thesis presents a comprehensive exploration of
fractal interpolation, covering fundamental concepts, novel frameworks and
real-world applications. Thus, our contribution enhances both the theoretical
knowledge and practical significance of the field.
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Original results contained in the thesis

The main original results contained in the present thesis are the following:

A. A new countable fractal interpolation scheme involving Rakotch
contractions

The main novelty brought in the research field related to FIFs is using
countable iterated function systems composed of Rakotch contractions.
We prove that there exists a FIF that interpolates countable data,
whose graph is the attractor of such a countable iterated function
system.

B. A fractal interpolation scheme for possibly sizeable data

We introduce new results that extend Barnsley’s fractal interpolation
technique. More precisely, the main original result that we introduce
states that for a, b ∈ R, a < b and A ⊆ R such that {a, b} ∈ A = A ⊆
[a, b] and

◦
A = ∅, given a continuous function f : A → R, there exists a

FIF that interpolates the data {(a, f(a)) : a ∈ A}. We emphasize the
fact that our results allow the set A to be uncountable (as is the case
of the Cantor ternary set), which is a significant improvement brought
to the theory of FIFs.

C. The concept of interpolation type iterated function system

We introduce a novel concept, that of interpolation type iterated
function system. The new notion emerges from the theory of FIFs.
Within the framework of this newly introduced interpolation type
iterated function system, we establish two significant findings: we
prove that such a system has attractor and that it admits canonical
projection.

Moreover, we provide a correlated fixed-point result that is obtained as
a by-product of our main results.

D. Smooth interpolation functions generated by Read-Bajraktarevic type
operators

We prove that Read-Bajraktarevic type operators could provide smooth
interpolation functions for certain systems of data.
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E. Applications of fractal interpolation

We present an application of fractal interpolation in the study of
epidemics. More precisely, we use fractal interpolation to retrieve
missing data related to the first months of the Covid-19 pandemic and
we utilize the box-counting dimension as a measure to evaluate the
complexity of the spread of Covid-19.

Also, we present a deterministic algorithm and a probabilistic one, that
allow visualizations of approximations of FIF.

Dissemination of the results

The original results mentioned in the preceding section (A, B, C, D
and E) were disseminated in the mathematical community both in the
form of papers published in significant international journals and as oral
communications at conferences, workshops or symposiums, as follows:

A. In the framework of the “7th International Workshop on Nonlinear
Analysis, Fixed Point Theory & Applications”, XGEN conference, on
Wednesday, 19 May 2021, I presented a talk entitled “A countable
fractal interpolation scheme involving Rakotch contractions”.

During the 4th edition of the “International Conference on
Mathematics and Computer Science” (MACOS) held between 15 -17
September 2022 in Braşov, Romania, on Thursday, 16 September 2022,
I delivered the presentation entitled “A countable fractal interpolation
scheme involving Rakotch contractions”.

I published the paper:

C.M. Păcurar, “A countable fractal interpolation scheme involving
Rakotch contractions” in “Results in Mathematics” 76 (2021), 161.

and in collaboration with A. Băicoianu and M. Păun the paper “A
Concretization of an Approximation Method for Non-Affine Fractal
Interpolation Functions” in “Mathematics” 9 (2021), 767.

B. In the framework of the “44th Summer Symposium in Real Analysis”
held between 20 and 24 June 2022 in Paris & Orsay, on Friday, 24
June 2022, I delivered the talk entitled “New Contributions to Fractal
Interpolation Theory”.

I published, in collaboration with R. Miculescu and A. Mihail, the paper
“A fractal interpolation scheme for a possible sizeable set of data” in
“Journal of Fractal Geometry” 9 (2022), 337–355.
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C. In the framework of the “14th International Conference on Fixed Point
Theory and its Applications” held between 11 and 14 July 2023 in
Braşov, Romania, on Thursday, 13 July 2023, I delivered the talk
entitled “Interpolation type iterated function systems”.

I published, in collaboration with R. Miculescu and A. Mihail, the
paper “Interpolation type iterated function systems” in “Journal of
Mathematical Analysis and Applications” 519 (2023), 519, 126747.

D. In the framework of the “International Conference on Approximation
Theory and its Applications”, held between 12-14 September 2022 in
Sibiu, Romania, I delivered an oral presentation with the title “On
some operators appearing in fractal interpolation theory”.

I published, in collaboration with M. Navascués and V. Drakopoulos,
the paper “Scale-Free Fractal Interpolation” in “Fractal and
Fractional” 6 (2022), 602.

E. I published, in collaboration with B. Necula, the paper “An analysis of
COVID-19 spread based on fractal interpolation and fractal dimension”
in “Chaos Solitons and Fractals” 139 (2020).
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1. Preliminaries

The current chapter collects the notation and terminology that are
essential for reading and understanding the current thesis, as well as the
key notions that are of utmost importance for the results contained in the
following chapters.

1.1 Notation and terminology

In the sequel N designates the set {1, 2, ...}.
For a function f : A → B, by Gf we mean the graph of f , i.e. the set

{(a, f(a)) : a ∈ A}.
For a function f : X → X and n ∈ N, we denote the n-times composition

of f with itself by f [n].
For a set of indexes I, a family of functions (fi)i∈I : X → X, and k ∈ N

fixed, we denote by fi1i2...ik the composition of the functions fik , i.e. fi1 ◦fi2 ◦
· · · ◦ fik , where (ij)j∈{1,...,k} ⊆ I.

For a metric space (X, d) and A ⊆ X, we shall use the following notation:
- sup
x,y∈A

d(x, y) := diam(A);

- {A ⊆ X : A ̸= ∅ and A is bounded} := Pb(X);
- {A ⊆ X : A ̸= ∅ and A is closed} := Pcl(X);
- Pb(X) ∩ Pcl(X) := Pb,cl(X);
- {A ⊆ X : A ̸= ∅ and A is compact} := Pcp(X).
Additionally, for A,B ∈ Pb(X) and x ∈ X, we will also use the following

notation:
- inf
a∈A

d(x, a) := d(x,A)

- sup
a∈A

d(a,B) := d(A,B).

Definition 1.1. Let (X, d) be a metric space. For a function f : X → X,
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we define the Lipschitz constant of f as

sup
x,y∈X,x ̸=y

d(f(x), f(y))

d(x, y)
:= lip(f) ∈ [0,+∞].

If lip(f) < +∞, then the function f is called Lipschitz.

For a, b ∈ R, a < b, (Y, ρ) a metric space and α, β ∈ Y , we consider the
sets

{f : [a, b] → Y : f is continuous} := CY ([a, b])

and

{f : [a, b] → Y : f is continuous, f(a) = α and f(b) = β} := Cα,β
Y ([a, b]).

For (Y, ρ) = (R, | · |) we shall use the notation

CR([a, b]) = C([a, b])

and
Cα,β

R ([a, b]) = Cα,β([a, b]).

All of the above spaces of functions, endowed with the uniform metric du
(i.e. du(g, h) = sup

x∈[a,b]
ρ(g(x), h(x)) for every g, h ∈ CY ([a, b])) are complete.

For k ∈ {0} ∪ N, the set

{f : [a, b] → R : f is k times differentiable and f (k) ∈ C([a, b])}

is denoted by Ck([a, b]), where by f (0) we mean f .
Endowed with the norm ∥f∥k = max

p∈{0,1,...,k}
∥f (p)∥∞ =

max
p∈{0,1,...,k}

sup
x∈[a,b]

|f (p)(x)|, Ck([a, b]) is complete.

Let n ∈ N and k ∈ N such that k ≤ n. We consider the partial or
incomplete Bell polynomial (see [12]) given by

Bn,k(x1; . . . ;xn−k+1) =

=
∑

j1+j2+···+jn−k+1=k
j1+2j2+···+(n−k+1)jn−k+1=n

n!

j1! . . . jn−k+1!

(x1

1!

)j1
. . .

(
xn−k+1

(n− k + 1)!

)jn−k+1

.

For f, g ∈ Ck([a, b]), according to the Faà di Bruno formula (see [23] and
[28]), we have

(f ◦ g)(p)(x) =
p∑

i=1

f (i)(g(x))Bp,i(g
(1)(x); g(2)(x); . . . ; g(p−i+1)(x)), (1.1)

for all x ∈ [a, b] and p ∈ {1, 2, . . . , k}.
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1.2 Generalized contractions

Definition 1.2. Let (X, d) be a metric space. A map f : X → X is called
contraction (or Banach contraction) if there exists C ∈ [0, 1) such that

d(f(x), f(y)) ≤ Cd(x, y),

for all x, y ∈ X.

Definition 1.3. (see [34], [48], [72] and [74]) Let φ : [0,∞) → [0,∞) and
(X, d) a metric space. A map f : X → X is called:

i) φ-contraction if
d(f(x), f(y)) ≤ φ(d(x, y)),

for all x, y ∈ X.

ii) Rakotch contraction if it is a φ-contraction, with the function φ such

that the function α : (0,∞) → (0,∞), given by α(t) = φ(t)
t

for every
t > 0 is non-increasing and α(t) < 1 for every t > 0.

iii) Browder contraction if it is a φ-contraction, where the function φ is
non-decreasing, φ(t) < t for every t > 0 and φ is right-continuous.

iv) Matkowski contraction if it is a φ-contraction, where the function φ is
non-decreasing and lim

n→∞
φ[n](t) = 0 for all t > 0.

Remark 1.1 (see the diagram on page 144 from [34]).
i) Each Banach contraction is a Rakotch contraction (for a function φ

given by φ(t) = αt for every t ≥ 0, where α ∈ [0, 1)).
ii) Each Rakotch contraction is a Browder contraction.
iii) Each Browder contraction is a Matkowski contraction.
iv) The above two statements ensure that each Rakotch contraction is a

Matkowski contraction.

Definition 1.4. Given a metric space (X, d), an operator f : X → X is
called a Picard operator if it has a unique fixed point x∗ ∈ X and

lim
n→∞

f [n](x) = x∗,

for every x ∈ X.

Theorem 1.1 (see [4]). Given a complete metric space (X, d), if f : X → X
is a Banach contraction, then f is a Picard operator.

Theorem 1.2 (see Theorem 1.2 from [48]). Given a complete metric space
(X, d), if f : X → X is a Matkowski contraction, then f is a Picard operator.
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1.3 Iterated function systems

The concept of iterated function system is a notion due to Hutchinson
(see [33]). His theory created a rigorous theoretical framework for obtaining
fractals. Given this, many research studies addressed the subject.

Definition 1.5. Let (X, d) be a metric space. The function

h : Pb,cl(X)× Pb,cl(X) → [0,∞),

defined as
h(A,B) = max{d(A,B), d(B,A)},

for every A,B ∈ Pb,cl(X), which is a metric, is called the Hausdorff-Pompeiu
metric on X.

Definition 1.6. Let (X, d) be a complete metric space, I a finite set and
the family of continuous functions (fi)i∈I where fi : X → X. The pair
((X, d), (fi)i∈I) is called an iterated function system. In the sequel, we shall
call such a system, for short, IFS.

We refer to such an IFS as S = ((X, d), (fi)i∈I).
The fractal operator associated to the IFS S is the function FS : Pcp(X) →

Pcp(X), defined as

FS(K) =
⋃
i∈I

fi(K),

for every K ∈ Pcp(X).
If the fractal operator FS is Picard, then we say that the IFS S has

attractor and the fixed point of FS is called the attractor of the IFS S. We
denote the attractor by AS ∈ Pcp(X).

1.3.1 Countable iterated function systems

The concept of IFS can be generalized for a countable family of
constitutive functions. Thus arose the concept of countable iterated function
system (see [29], [43], [81] and [87]).

Definition 1.7. Let (X, d) be a compact metric space and fn : X → X be
continuous functions for every n ∈ N. The pair ((X, d), (fn)n∈N) is called a
countable iterated function system. In the sequel, we shall call such a system,
for short, CIFS.
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We refer to such a CIFS as SC = ((X, d), (fn)n∈N).
The fractal operator associated to the CIFS SC is the function FSC

:
Pcp(X) → Pcp(X), defined as

FSC
(K) =

⋃
n∈N

fn(K),

for every K ∈ Pcp(X).
If the fractal operator FSC

is Picard, then we say that the CIFS SC has
attractor and the fixed point of FSC

is called the attractor of the CIFS SC .
We denote the attractor by ASC

∈ Pcp(X).

Theorem 1.3 (see Theorem 4.6 from [86] and Theorem 3.9 from [88]). If the
constitutive functions fn of the CIFS SC = ((X, d), (fn)n∈N) are Matkowski
contractions for the functions φn : [0,∞) → [0,∞) for every n ∈ N such that
sup
n∈N

φn(t) < t for every t ≥ 0, then SC has attractor.

1.3.2 Possibly infinite iterated function systems

A more general concept is that of possibly infinite iterated function
systems. Such systems encompass both the case of finite and countable
number of constitutive and, moreover, accommodate the case of uncountable
infinite number of constitutive functions.

Definition 1.8. Let (X, d) be a complete metric space and a family of
functions (fi)i∈I with the following properties:

- fi : X → X are Banach contractions such that sup
i∈I

lip(fi) < 1,

- the family of functions (fi)i∈I is bounded, i.e. ∪
i∈I

fi(A) ∈ Pb(X) for

every A ∈ Pb(X).
The pair ((X, d), (fi)i∈I) is called a possibly infinite iterated function

system. In the sequel, we shall call such a system, for short, PIIFS.

We refer to such a PIIFS as SI = ((X, d), (fi)i∈I).
The fractal operator associated to the PIIFS SI is the function FSI

:
Pb,cl(X) → Pb,cl(X), given by

FSI
(B) =

⋃
i∈I

fi(B),

for all B ∈ Pb,cl(X).
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Theorem 1.4 (see Theorem 4.1 from [57]). For each SI = ((X, d), (fi)i∈I),
there exists a unique ASI

∈ Pb,cl(X), called the attractor of SI , such that

FSI
(ASI

) = ASI
.

In addition, we have

lim
n→∞

h(F
[n]
SI

(B), ASI
) = 0,

for every B ∈ Pb,cl(X).

1.4 The shift space and the canonical

projection

Let I be a non-empty set and n ∈ N. Throughout the thesis, we employ
the following notation:

- IN := Λ(I)
- I{1,2,...,n} := Λn(I).
Λ(I) is the set of infinite words with letters from the alphabet I and a

standard element ω of Λ(I) has the form ω = ω1ω2...ωnωn+1....
Λn(I) is the set of words of length n with letters from the alphabet I and

a standard element ω of Λn(I) has the form ω = ω1ω2...ωn.
Λ(I) endowed with the distance described by

dΛ(ω, θ) =

{
0, if ω = θ
1

2min{k∈N :ωk ̸=θk} , if ω ̸= θ
,

where ω = ω1ω2ω3...ωnωn+1... and θ = θ1θ2θ3...θnθn+1..., becomes a metric
space.

For m ∈ N and ω = ω1ω2...ωnωn+1... ∈ Λ(I), we shall use the following
notation in the sequel

ω1ω2...ωm := [ω]m.

Let us note that if I is finite, then the metric space (Λ(I), dΛ) is compact.
If I is infinite, then the metric space (Λ(I), dΛ) is complete.

For i ∈ I, we can consider the function τi : Λ(I) → Λ(I) given by

τi(ω) = iω1ω2...ωnωn+1..., (1.2)

for every ω = ω1ω2...ωnωn+1... ∈ Λ(I).

14



Given fi : X → X, i ∈ I, and ω = ω1ω2 . . . ωn ∈ Λn(I), the following
notation will be used in the sequel:

fω1ω2...ωn
:= fω.

In the particular case that I has just one element, let us call it i, we have

f i...i
n times

= f
[n]
i

for every n ∈ N.
The canonical projection associated to an IFS is an onto function that

takes the shift space Λ(I) to the attractor of the IFS considered. The
canonical projection allows alternative characterizations of the attractor of
an IFS and it is a useful tool in the study of fractals.

Definition 1.9. For the IFS S = ((X, d), (fi)i∈I), having attractor, we say
that it admits canonical projection if:

i) For every ω = ω1ω2 . . . ωnωn+1 . . . ∈ Λ(I), lim
n→∞

fω1ω2...ωn(x) - denoted

by π(ω) - exists and does not depend on x ∈ X.

ii) π(ω) ∈ AS for every ω ∈ Λ(I).

iii) The function π : Λ(I) → AS has the following properties:

a) it is continuous;

b) it is onto;

c) π ◦ τi = fi ◦ π for every i ∈ I.

Remark 1.2. The function π from Definition 1.9, iii) is called the canonical
projection from Λ(I) to AS .
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2. The Read-Bajraktarevic
operator

In this chapter, we study Read-Bajraktarevic type operators that are
essential in the fractal interpolation theory. The final part of the chapter
is dedicated to the study of Read-Bajraktarevic type operators that provide
smooth interpolation functions.

2.1 Interpolation functions

2.1.1 Finite systems of data

Let I ⊆ R a real compact and let us consider the finite system of points

Γ = {(xn, yn) ∈ I × R : n ∈ {0, . . . , N}},

where N ∈ N.
If xn−1 < xn for every n ∈ {1, 2, . . . , N}, the system of points Γ is called

a system of data. In this case, let us consider I = [x0, xN ].

Definition 2.1. An interpolation function corresponding to the system of
data Γ is a continuous function f : I → R such that f(xn) = yn, for each
n ∈ {0, 1, . . . , N}.

Let the family of affine homeomorphisms kn : I → [xn−1, xn] be such that

kn(x0) = xn−1 and kn(xN) = xn,

for every n ∈ {1, 2, . . . , N} and there exists ζn ∈ [0, 1) such that

|kn(x)− kn(x
′)| ≤ ζn|x− x′|,

for every x, x′ ∈ I and every n ∈ {1, 2, . . . , N}.
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Let the family of continuous functions Fn : I × R → R be such that

Fn(x0, y0) = yn−1 and Fn(xN , yN) = yn,

for every n ∈ {1, 2, . . . , N}.
For n ∈ {1, 2, . . . , N}, we define Kn : I × R → I × R as

Kn(x, y) = (kn(x), Fn(x, y)),

for every x ∈ I and y ∈ R.

The notion of a system of data can be generalized to that of a countable
system of data as follows.

2.1.2 Countable systems of data

Let (Y, d) be a compact metric space and let us consider the countable
system of points

∆ = {(xn, yn) ∈ R× Y : n ∈ {0} ∪ N}. (2.1)

The system of points defined in relation (2.1) is called a countable system
of data if the sequence (xn)n∈{0}∪N is strictly increasing and bounded, and
the sequence (yn)n∈{0}∪N is convergent.

We establish the following notations

x0 = a, lim
n→∞

xn = b, y0 = m, lim
n→∞

yn = M.

Definition 2.2. In the context described above, a continuous function f :
[a, b] → Y such that f(xn) = yn, for each n ∈ {0}∪N is called an interpolation
function corresponding to the countable system of data ∆.

Let ∆ = {(xn, yn) ∈ [a, b] × Y : n ∈ {0} ∪ N} be a countable system of
data.

For each n ∈ N, let ln : [a, b] → [xn−1, xn] be a homeomorphism for which
there exists Ln ∈ [0, 1) such that

i) |ln(x)− ln(x
′)| ≤ Ln|x− x′| for every x, x′ ∈ [a, b];

ii) ln(a) = xn−1 and ln(b) = xn;

iii) sup
n∈N

Ln < 1.

For each n ∈ N, let Wn : [a, b] × Y → Y be a continuous function such
that
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j) Wn(a,m) = yn−1 and Wn(b,M) = yn;

jj) lim
n→∞

diam(ImWn) = 0.

For n ∈ N, we define fn : [a, b]× Y → [a, b]× Y as

fn(x, y) = (ln(x),Wn(x, y)),

for every x ∈ [a, b] and y ∈ Y .

2.2 Read-Bajraktarevic type operators

2.2.1 The Read-Bajraktarevic operator for the finite
case

Let us consider the context from section 2.1.1 and the space Cy0,yN (I)
endowed with the uniform metric du. In the sequel, we will use the notation:

Cy0,yN (I) = C.

Let T : C → C be the Read-Bajraktarevic operator defined as

T (f)(x) = Fn(k
−1
n (x), f(k−1

n (x))),

for every f ∈ C and every x ∈ [xn−1, xn].
The operator T is well defined and

T (f)(xn) = yn,

for every f ∈ C and every n ∈ {0, 1, . . . , N}.

The following theorem proves that under certain conditions, the Read-
Bajraktarevic operator T has a unique fixed point that is an interpolant for
the data Γ.

Theorem 2.1. In the previous context, let Fn be Matkowski contractions
in the second variable, i.e. there exist the non-decreasing functions φn :
[0,∞) → [0,∞) such that lim

m→∞
φ
[m]
n (t) = 0 for all t > 0 and

|Fn((x, y))− Fn((x, y
′))| ≤ φn(|y − y′|)

for all x ∈ I and y, y′ ∈ R. If the map φ : [0,∞) → [0,∞) defined as
φ(t) = sup

n∈{1,2,...,N}
φn(t) is such that lim

m→∞
φ[m](t) = 0 for every t > 0, then

the operator T is a Matkowski contraction, and consequently, it has a unique
fixed point f∗ ∈ C that is an interpolant for the data Γ.
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2.2.2 The Read-Bajraktarevic operator for the
countable case

Let us consider the context from section 2.1.2. We consider the space
Cm,M

Y ([a, b]) endowed with the uniform metric du. We will denote Cm,M
Y ([a, b])

by C.
Let ∆ be a countable system of data noted as in (2.1).
For f ∈ C, we consider the function Tf : [a, b] → Y given as follows:

Tf (x) =

{
Wn(l

−1
n (x), f(l−1

n (x))), if x ∈ [xn−1, xn], n ∈ N
M, if x = b.

Since Tf is well defined and Tf ∈ C, the operator T : C → C, defined as

T (f) = Tf

for every f ∈ C is well defined.

2.2.3 Smooth interpolation functions

Even though fractal interpolation is significantly important for modeling
irregular and non-smooth data, that require functions which are not
differentiable at any point, it also encompasses smooth functions. More
precisely, this entails functions that are k-times continuously differentiable
that seamlessly traverse a given set of data points. The current section
presents results that are part of [66].

Let k ∈ N be arbitrary, but fixed. Let a, b ∈ R, a < b and the real
interval I = [a, b]. For N ∈ N, N > 1, let us consider xi ∈ [a, b] for
every i ∈ {0, 1, . . . , N} such that x0 = a, xN = b and xi−1 < xi for every
i ∈ {1, 2, . . . , N}. We will denote by Ii the interval [xi−1, xi] for every i ∈
{1, 2, . . . , N}.

We consider the finite system of data

∆′ = {(xi, yi,p) ∈ I × R : i ∈ {0, 1, . . . , N}, p ∈ {0, 1, . . . , k}}.

Let us consider li : I → Ii defined as

li(x) =
xi − xi−1

b− a
x+

bxi−1 − axi

b− a
= aix+ bi,

for every x ∈ I.
Let us consider Si ∈ Ck(I) and Ri ∈ Ck(R), where i ∈ {1, 2, . . . , N}.

For f ∈ Ck(I) such that f (p)(xi) = yi,p for every i ∈ {0, 1, . . . , N} and
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p ∈ {0, 1, . . . , k}, let the family of continuous mappings Wi : I × R → R,
defined as

Wi(x, y) = f(li(x)) +Ri(y)− Si(x),

for every (x, y) ∈ I × R and every i ∈ {1, 2, . . . , N}.
Suppose that for every i ∈ {1, 2, . . . , N} and p ∈ {1, 2, . . . , k} the

following conditions are satisfied:

S
(p)
i (a) =

p∑
j=1

R
(j)
i (y0,0)Bp,j(y0,1; y0,2 . . . ; y0,p−j+1), (2.2)

S
(p)
i (b) =

p∑
j=1

R
(j)
i (yN,0)Bp,j(yN,1; yN,2 . . . ; yN,p−j+1), (2.3)

Si(a) = Ri(y0,0) and Si(b) = Ri(yN,0),

where Bp,j are the Bell polynomials defined in section 1.1.
Let us consider

Ak(I) = {g ∈ Ck(I) : g(p)(a) = y0,p and g(p)(b) = yN,p for every p ∈ {0, 1, . . . , k}},

and endow it with the norm ∥ · ∥k (defined as in section 1.1).
Let the Read-Bajraktarevic type operator D : Ak(I) → Ak(I) be defined

as usual by

D(g)(x) = Wi(l
−1
i (x), g(l−1

i (x))),

= f(x) +Ri(g(l
−1
i (x)))− Si(l

−1
i (x)),

for every x ∈ Ii and every g ∈ Ak(I).

Proposition 2.1. The operator D is well defined.

Theorem 2.2 (see Theorem 5. from [66]). In framework mentioned above,
there exists fR ∈ Ck(I) satisfying the following functional equations:

(fR)(p)(x) = f (p)(x)+

+ a−p
i

p∑
j=1

R
(j)
i (fR(l−1

i (x)))Bp,j((f
R)(1)(l−1

i (x)); . . . ; (fR)(p−j+1)(l−1
i (x)))−

− a−p
i S

(p)
i (l−1

i (x)) = f (p)(x) + a−p
i (Ri ◦ fR)(p)(l−1

i (x))− a−p
i S

(p)
i (l−1

i (x)),
(2.4)

for every i ∈ {1, 2, . . . , N}, p ∈ {1, . . . , N}, x ∈ Ii, and

fR(x) = f(x) + (Ri ◦ fR)(l−1
i (x))− Si(l

−1
i (x)), (2.5)

for every x ∈ Ii. The function fR interpolates the data ∆′.
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3. A countable fractal
interpolation scheme
involving Rakotch
contractions

A direction of interest regarding FIFs centers around the utilization of
fixed point results that extend beyond Banach’s well-established theorem
(see Theorem 1.1) to guarantee the existence of the FIF. Historically, after
Barnsley’s pioneering work, many extensions of fractal interpolation relied
predominantly on the Banach fixed point theorem to establish the existence
of FIFs. However, recent developments have opened up new possibilities
by employing alternative fixed point theorems. In this context, notable
contributions have emerged, from which we mention that of S. Ri who used
Rakotch contractions to obtain new results (see [75]), J. Kim et al. who
resorted to Geraghty contractions (see [38]) and S. Ri and V. Drakopoulos
who extended the results to surfaces (see [77]). These advancements highlight
the diversification of mathematical tools and techniques used in the pursuit
of FIF existence, offering new avenues for exploration in this area of research.

Another direction related to FIFs involves considering countable sets of
points instead of finite ones. In this respect, countable fractal interpolation
has been introduced by N. Secelean (see [82]) based on CIFSs (see [29],
[81], [87]). Secelean proved the existence of the FIF for a set of data
∆ = {(xn, yn) ∈ I × R : n ∈ {0} ∪ N} where (xn)n∈{0}∪N is a strictly
increasing bounded sequence with b = lim

n→∞
xn such that I = [x0, b] and

(yn)n∈{0}∪N is a convergent sequence (see [82]). A. Gowrisankar and R.
Uthayakumar extended these findings to encompass data characterized by
(xn)n∈{0}∪N being a monotone bounded sequence and (yn)n∈{0}∪N a bounded
sequence (see [31]). This direction of research has seen further development
in subsequent papers, including [83], [84] and [93], highlighting the growing
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interest and advancements in the study of countable fractal interpolation.
In the current chapter, we combine the distinct two lines of research

initiated by Secelean and Ri. In this way, we introduce a new fractal
interpolation scheme for countable systems of data and CIFSs composed
of Rakotch contractions. As a consequence, the findings presented in this
chapter represent an expansion of the results previously established in [75]
and [82], which offer a broader perspective on fractal interpolation. The
contents of the current chapter are based on the results from “A countable
fractal interpolation scheme involving Rakotch contractions”,
published in “Results in Mathematics” by C. Păcurar (see [68]).

3.1 Fractal interpolation functions involving

Rakotch contractions

Let (Y, d) be a compact metric space and let us consider the families of
functions (ln)n∈N, (Wn)n∈N and (fn)n∈N and the family of numbers (Ln)n∈N
defined as in section 2.1.2.

The operator T is the Read-Bajraktarevich operator for the countable
case, introduced in section 2.2.2, for the countable system of data (2.1).

The first result proves that the operator T is a Matkowski contraction
if the functions Wn are Matkowski contractions in the second argument.
Thus, since (C, du) is complete, the next theorem proves that the operator
T has a unique fixed point provided that the functions Wn are Matkowski
contractions in the second argument.

Theorem 3.1 (see Theorem 3 from [68]). Let ∆ = {(xn, yn) ∈ R× Y : n ∈
{0} ∪ N} be a countable system of data. If the functions Wn are Matkowski
contractions with respect to the second argument, i.e. there exists a non-
decreasing function φ : [0,∞) → [0,∞) such that lim

n→∞
φn(t) = 0 for all t > 0

and
d(Wn((x, y)),Wn((x, y

′))) ≤ φ(d(y, y′)) (3.1)

for all x ∈ [a, b] and y, y′ ∈ Y , then T is a Matkowski contraction.

In the next result we will prove that if the functionsWn are Lipschitz with
respect to the first variable and Rakotch contractions in the second variable,
then the functions fn are Rakotch contractions with respect to a metric that
is equivalent to the initial metric on [a, b] × Y . The functions fn are the
constitutive functions of the CIFS that will provide a FIF.
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Theorem 3.2 (see Theorem 4 from [68]). Let ∆ = {(xn, yn) ∈ R × Y :
n ∈ {0} ∪ N} be a countable system of data such that Wn are Lipschitz with
respect to the first variable and Rakotch contractions in the second variable,
i.e. there exist L > 0, and a non-decreasing function φ : [0,∞) → [0,∞)

such that the function α : (0,∞) → (0,∞), given by α(t) = φ(t)
t
, for every

t > 0 is non-increasing and α(t) < 1 for every t > 0, such that

d(Wn((x, y)),Wn((x
′, y′))) ≤ L|x− x′|+ φ(d(y, y′)),

for all (x, y), (x′, y′) ∈ [a, b]× Y , n ∈ N.
Then, fn are Rakotch contractions with respect to the metric dθ described

by
dθ((x, y), (x

′, y′)) := |x− x′|+ θd(y, y′),

for all (x, y), (x′, y′) ∈ [a, b]× Y , where θ =
1−sup

n∈N
Ln

2(L+1)
∈ (0, 1).

Remark 3.1 (see Remark 5 from [68]). Let ∆ = {(xn, yn) ∈ R × Y :
n ∈ {0} ∪ N} be a countable system of data. If the functions fn are
Rakotch contractions with respect to the metric dθ (in particular, if the
conditions stated in Theorem 3.2 are satisfied), then the CIFS SC = (([a, b]×
Y, dθ), (fn)n∈N) has attractor, so there exists a unique ASC

∈ Pcp([a, b] × Y )
such that

FSC
(ASC

) = ASC
.

The next theorem is the main result of the current chapter as it proves
that there exists an interpolation function for a countable system of data,
such that its graph is the attractor of a CIFS. More precisely, the following
result proves the existence of a FIF in the aforementioned context.

Theorem 3.3 (see Theorem 5 from [68]). Let ∆ = {(xn, yn) ∈ R × Y :
n ∈ {0} ∪ N} be a countable system of data such that the functions Wn

satisfy the hypothesis from Theorem 3.2. Then there exists an interpolation
function f∗ corresponding to ∆ such that its graph is the attractor of the
CIFS SC = (([a, b]× Y, dθ), (fn)n∈N).

Theorem 3.4 (see Theorem 6 from [68]). In the context of Theorem 3.3, we
have

lim
n→∞

GT [n](f0) = Gf∗ ,

for every f0 ∈ C.
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3.2 Particular cases of countable iterated

function systems involving Rakotch

contractions

The current section provides some particular cases of CIFSs involving
Banach and Rakotch contractions.

In the context of section 2.1.2, we can choose

ln(x) =
xn − xn−1

b− a
x+

bxn−1 − axn

b− a
,

for every x ∈ [a, b] and for every n ∈ N.
Let us present two ways to choose the functions Wn, provided that Y ⊆

[0,∞):

A.

Wn(x, y) =

(
yn − yn−1

b− a
− dn

M −m

b− a

)
x+dny+

byn−1 − ayn
b− a

−dn
bm− aM

b− a
=

= cnx+ dny + gn,

where dn ∈ [0, 1) such that lim
n→∞

dn = 0, for every n ∈ N.
Wn are Banach contractions with respect to the second variable, which

implies that they are Rakotch contractions on the second variable for the
function φ given by φ(t) = c · t for every t ≥ 0.

In this case, the functions fn are as follows:

fn(x, y) =

(
xn − xn−1

b− a
x+

bxn−1 − axn

b− a
,(

yn − yn−1

b− a
− dn

M −m

b− a

)
x+ dny +

byn−1 − ayn
b− a

− dn
bm− aM

b− a

)
,

for every n ∈ N and every x ∈ [a, b], y ∈ Y .

B.

Wn(x, y) = cnx+
y

1 + ny
+ gn,

where

cn =
yn − yn−1

b− a
− 1

b− a

(
M

1 + nM
− m

1 + nm

)
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and

gn = yn−1 − a
yn − yn−1

b− a
+

a

b− a

M

1 + nM
− b

b− a

m

1 + nm
,

for every n ∈ N.
Wn are Rakotch contraction with respect to the second variable for every

n ∈ N.
In this case, the functions fn can be chosen as follows:

fn(x, y) =

(
xn − xn−1

b− a
x+

bxn−1 − axn

b− a
,(

yn − yn−1

b− a
− 1

b− a

(
M

1 + nM
− m

1 + nm

))
x+

y

1 + ny
+

+yn−1 − a
yn − yn−1

b− a
+

a

b− a

M

1 + nM
− b

b− a

m

1 + nm

)
,

for every n ∈ N and every x ∈ [a, b], y ∈ Y .
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4. A fractal interpolation
scheme for a possibly
sizeable set of data

In this chapter, we extend Barnsley’s fractal interpolation method. We
consider a, b ∈ R, a < b, A ⊆ R such that

{a, b} ⊆ A = A ⊆ [a, b]

and additionally, we require that the interior of A, denoted as
◦
A, is empty.

Our central result asserts that for every continuous function f : A → R there
exist a continuous function g∗ : [a, b] → R and a PIIFS whose attractor is the
graph of g∗ and such that g∗|A = f . In other words, our main result ensures

the existence of a FIF corresponding to the set of data {(a, f(a)) : a ∈ A}.
If A is finite we obtain Barnsley’s well-established interpolation scheme,

as described in [5]. On the other hand, when A takes the form A = {xn :
n ∈ N} ∪ {b}, where (xn)n∈N is strictly increasing, x1 = a, lim

n→∞
xn = b and

xn ∈ [a, b] for every n ∈ N, we obtain the interpolation scheme presented
by Secelean in [82]. We emphasize the fact that our interpolation scheme
accommodates situations where A can be uncountable, as it is the case of
the Cantor ternary set.

The main tool to address the challenges concerning the step between
countable and uncountable data is the theorem concerning the structure of
open subsets of R. This theorem provides a sequence (In)n∈N of open disjoint
intervals having the property that

[a, b]∖ A = ∪
n∈N

In.

Subsequently, via this sequence, we consider an operator

T : Cf(a),f(b)([a, b]) → Cf(a),f(b)([a, b]).
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The most challenging aspect that arises within the context of uncountable
data is proving that T is well defined, that is ensuring that T (g) ∈
Cf(a),f(b)([a, b]) for each g ∈ Cf(a),f(b)([a, b]) (see Proposition 4.1), because
we have to overcome some technical difficulties.

The results contained in the current chapter, which are based on the
paper “A fractal interpolation scheme for a possible sizeable set of
data” that I published in collaboration with R. Miculescu and A. Mihail in
“Journal of Fractal Geometry” (see [55]), are more general than the results
previously existing in the literature.

4.1 Some technical results

Let us consider a, b ∈ R, a < b and A ⊆ R having the following properties:

i) {a, b} ⊆ A = A ⊆ [a, b];

ii)
◦
A = ∅.

Then there exists a sequence (In)n∈N of open disjoint intervals such that

[a, b]∖ A =
⋃
n∈N

In.

where
In = (αn, βn),

for every n ∈ N.
We study separately the accumulation points of A ∩ (x,∞), respectively

A ∩ (−∞, x), and the points that are not accumulation points.

Remark 4.1 (see Remark 3.2. from [55]). a) If x ∈ A is not an accumulation
point of A ∩ (x,∞), then there exists n ∈ N such that x = αn.

b) In a similar way, if x is not an accumulation point of A ∩ (−∞, x),
then there exists n ∈ N such that x = βn.

Remark 4.2 (see Remark 3.3. from [55]). a) If x ∈ A is an accumulation
point of A ∩ (x,∞), then for every sequence (xk)k∈N ⊆ (x, b)∖ A having the
property that lim

k→∞
xk = x, there exists a sequence ((αnk

, βnk
))k∈N of elements

from the family {(αn, βn) : n ∈ N} such that:

i) x < αnk
< βnk

, for every k ∈ N;

ii) xk ∈ (αnk
, βnk

), for every k ∈ N;
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iii) the set {xk : k ∈ N} ∩ (αnk
, βnk

) is finite for every k ∈ N;

iv) lim
k→∞

αnk
= lim

k→∞
βnk

= x.

b) If x ∈ A is an accumulation point of A ∩ (−∞, x), then for every
sequence (xk)k∈N ⊆ (a, x)∖A having the property that lim

k→∞
xk = x, there exists

a sequence ((αnk
, βnk

))k∈N of elements from the family {(αn, βn) : n ∈ N}
such that:

i) αnk
< βnk

< x, for every k ∈ N;

ii) xk ∈ (αnk
, βnk

), for every k ∈ N;

iii) the set {xk : k ∈ N} ∩ (αnk
, βnk

) is finite for every k ∈ N;

iv) lim
k→∞

αnk
= lim

k→∞
βnk

= x.

4.2 Fractal interpolation functions associated

to possibly sizeable sets of data

We consider the functions ln : [a, b] → [αn, βn] given by

ln(x) =
βn − αn

b− a
x+

αnb− βna

b− a
= anx+ bn,

for every x ∈ [a, b] and every n ∈ N.

Remark 4.3 (see Remark 3.4. from [55]). For the functions ln, the following
hold:

a) ln(a) = αn and ln(b) = βn for every n ∈ N.

b) l−1
n : [αn, βn] → [a, b] is given by

l−1
n (x) =

b− a

βn − αn

x+
βna− αnb

βn − αn

,

for every x ∈ [αn, βn] and every n ∈ N.

c) l−1
n (αn) = a and l−1

n (βn) = b for every n ∈ N.
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For a continuous function f : A → R, we can consider the functions
gn : R2 → R given by

gn(x, y) =

=

(
f(βn)− f(αn)

b− a
− dn

f(b)− f(a)

b− a

)
x+dny+

bf(αn)− af(βn)

b− a
−dn

bf(a)− af(b)

b− a
=

= cnx+ dny + en,

for every (x, y) ∈ R2 and every n ∈ N, where (dn)n∈N ⊆ [0, 1) is such that

lim
n→∞

dn = 0.

Remark 4.4 (see Remark 3.5. from [55]). For the functions gn, the following
conditions are satisfied:

gn(a, f(a)) = f(αn) and gn(b, f(b)) = f(βn),

for every n ∈ N.

Let us consider the space Cf(a),f(b)([a, b]) endowed with the uniform metric
du. We will denote Cf(a),f(b)([a, b]) by C.

For g ∈ C, let us consider the function Tg : [a, b] → R, given by

Tg(x) =

{
f(x), x ∈ A

cnl
−1
n (x) + dng(l

−1
n (x)) + en, if x ∈ (αn, βn)

.

Remark 4.5 (see Remark 3.6. from [55]). a) We have

Tg(αn) = cnl
−1
n (αn) + dng(l

−1
n (αn)) + en,

for every g ∈ C and every n ∈ N.

b) We have
Tg(βn) = cnl

−1
n (βn) + dng(l

−1
n (βn)) + en,

for every g ∈ C and every n ∈ N.

Proposition 4.1 (see Proposition 3.7. from [55]). In the above framework,
we have

Tg ∈ C,

for every g ∈ C.

Proposition 4.1 allows us to define the operator T : C → C given by

T (g) = Tg,

for every g ∈ C.
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Proposition 4.2 (see Proposition 3.8. from [55]). In the above mentioned
framework, we have

du(T (g1), T (g2)) ≤ (sup
n∈N

dn) du(g1, g2),

for all g1, g2 ∈ C, so T is a Banach contraction with respect to the uniform
metric du.

As (C, du) is a complete metric space, using Theorem 1.1, Proposition
4.2 ensures that there exists a unique g∗ ∈ C such that

T (g∗) = g∗.

Remark 4.6 (see Remark 3.9. from [55]). We have

g∗|A = f .

We are going to prove that there exists a PIIFS whose attractor is the
graph of g∗.

Let us consider the functions fn : R2 → R2 given by

fn(x, y) = (anx+ bn, cnx+ dny + en),

for all x, y ∈ R and n ∈ N.

Remark 4.7 (see Remark 3.10. from [55]).

a) We have sup
n∈N

an < 1.

b) The sequence (cn)n∈N is bounded.

Remark 4.7 allows us to consider

θ ∈

0,

1− sup
n∈N

an

C

 ,

C > 0 being such that |cn| ≤ C, for every n ∈ N and the metric ρ, on R2,
given by

ρ((x1, y1), (x2, y2)) = |x1 − x2|+ θ |y1 − y2| ,

for all (x1, y1), (x2, y2) ∈ R2.
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Proposition 4.3 (see Proposition 3.11. from [55]). In the context described
above, the functions fn are Banach contractions with respect to the metric ρ.

Remark 4.8 (see Remark 3.12. from [55]). a) The metric space (R2, ρ) is a
complete metric space.

b) We have sup
n∈N

lip(fn) ≤ max{sup
n∈N

an + θC, sup
n∈N

dn} < 1.

c) The family (fn)n∈N is bounded since the sequences (an)n∈N, (bn)n∈N,
(cn)n∈N, (dn)n∈N and (en)n∈N are bounded.

In view of Remark 4.8, we can consider the PIIFS (see section 1.3.2.)
SI = ((R2, ρ), (fn)n∈N).

Let us also consider Gg∗ = {(x, g∗(x)) : x ∈ [a, b]} := G.

Theorem 4.1 (see Theorem 3.13. from [55]). In the above mentioned
context, we have

G = ASI
.

We will present some examples of sets A that satisfy the conditions
mentioned above:

A. If A is finite we obtain the classic Barnsley’s interpolation scheme (see
[5]).

B. If A = {xn : n ∈ N} ∪ {b}, where (xn)n∈N is strictly increasing, x1 = a
and lim

n→∞
xn = b we obtain the interpolation scheme presented in [82].

C. We can choose A = {xn : n ∈ N} ∪ {yn : n ∈ N} ∪ {a, b}, where
lim
n→∞

xn = a, lim
n→∞

yn = b, xn ∈ [a, a+b
2
] and yn ∈ [a+b

2
, b] for every n ∈ N.

D. We can choose A to be the Cantor ternary set. This is a significant
example since A is not countable. Therefore, our scheme is a genuine
generalization of the one presented by Secelean in [82].

The final part of the current chapter presents a result which shows that
for every g ∈ C, if n is big enough, the graph of the FIF can be approximated,
as close as we want, by the graph of T [n](g).

Theorem 4.2 (see Theorem 3.14. from [55]). In the context described above,
we have FSI

(Gg) = GT (g), for every g ∈ C.

Theorem 4.3 (see Theorem 3.15. from [55]). In the context mentioned
above, we have lim

n→∞
h(GT [n](g), G) = 0, for every g ∈ C.
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5. Interpolation type iterated
function systems

The current chapter introduces a novel concept of IFS, more precisely,
“interpolation type iterated function system”. The concept is based on the
fundamental characteristics inherent to the IFSs employed in constructing
FIFs. We prove several properties that these systems have. Our main
result states that such a system has attractor and that it admits canonical
projection. Additionally, we provide a correlated fixed point result, that we
obtain as a by-product of our main result.

The contents of the current chapter are based on the paper
“Interpolation type iterated function systems”, published in “Journal
of Mathematical Analysis and Applications” in collaboration with Radu
Miculescu and Alexandru Mihail (see [56]).

5.1 Auxiliary lemmas

The first section is dedicated to some preliminary lemmas that are
essential in proving the main results of the current chapter.

Lemma 5.1 (see Lemma 2.7. from [56]). We consider two metric spaces
(X, d) and (Y, ρ) and a non-empty finite set I. We suppose that the
collections of self-mappings of Y {Aω,n : ω ∈ Λ(I), n ∈ N} and {Aω,x,n,k :
ω ∈ Λ(I), x ∈ X, n, k ∈ N} are such that:

i)
lim
k→∞

sup
n∈N,ω∈Λ(I),x∈K1,y∈Y

ρ(Aω,x,n,k(y), Aω,n(y)) = 0,

for every K1 ∈ Pcp(X).
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ii) There exists a function b : Λ(I) → Y such that for every K2 ∈ Pcp(Y )
we have

lim
n→∞

sup
ω∈Λ(I),y∈K2

ρ((Aω,1 ◦ . . . ◦ Aω,n)(y), b(ω)) = 0.

iii) There exists C ∈ [0, 1) such that

sup
n,k∈N,ω∈Λ(I),x∈K1

lip(Aω,x,n,k) ≤ C,

for every K1 ∈ Pcp(X).

Then, we have

lim
n→∞

sup
ω∈Λ(I),x∈K1,y∈K2

ρ((Aω,x,1,n◦Aω,x,2,n−1◦. . .◦Aω,x,n−1,2◦Aω,x,n,1)(y), b(ω)) = 0,

for every K1 ∈ Pcp(X) and K2 ∈ Pcp(Y ).

5.2 Interpolation type iterated function

systems

Within this section we give the definition of interpolation type iterated
function system and provide some examples of such systems.

Let us consider the metric spaces (X, d) and (Y, ρ), and

dmax((x1, y1), (x2, y2)) = max{d(x1, x2), ρ(y1, y2)},

for every (x1, y1), (x2, y2) ∈ X × Y . We consider the metric space (X ×
Y, dmax).

Definition 5.1 (see Definition 3.1. from [56]). An interpolation type iterated
function system S consists of:

- two complete metric spaces (X, d) and (Y, ρ)

- a finite family of functions (fi)i∈I such that:

i) For each i ∈ I, there exist the continuous functions gi : X → X
and hi : X×Y → Y having the property that fi : X×Y → X×Y
is given by

fi(x, y) = (gi(x), hi(x, y)),

for every (x, y) ∈ X × Y .
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ii) For every ω ∈ Λ(I), there exists aω ∈ X such that

lim
n→∞

sup
x∈K,ω∈Λ(I)

d(g[ω]n(x), aω) = 0,

for every K ∈ Pcp(X).

iii) There exists C ∈ [0, 1) having the property that

ρ(hi(x, y1), hi(x, y2)) ≤ Cρ(y1, y2),

for every x ∈ X, y1, y2 ∈ Y and i ∈ I.

We refer to such a system as the pair S = ((X × Y, dmax), (fi)i∈I). For
the sake of brevity, in the sequel, we will refer to interpolation type iterated
function system as I-tIFS.

Remark 5.1. a) An example of an I-tIFS is S = ((R2, ∥ · ∥∞), (fi)i∈I)
where there exist ai, bi, ci, di, ei ∈ R, ai, di ∈ [0, 1) such that

fi(x, y) = (aix+ bi , cix+ diy + ei),

for every (x, y) ∈ R2 and i ∈ I.

b) A more subtle example than the first one could be constructed by
taking the functions gi Browder contractions that are not Banach
contractions. To illustrate this, we present another example of I-tIFS:
let S = (([0, 1] × R, | · |), (fi)i∈{1,2}), where there exist ai, bi, ci ∈ R,
bi ∈ [0, 1), such that

fi(x, y) = (sin x , aix+ biy + ci),

for every (x, y) ∈ [0, 1]× R and i ∈ {1, 2}.

c) Let us present two examples of I-tIFSs for which the metric spaces
(X, d) and (Y, ρ) are compact.

The first one is (([0, 1]× [0, 1], ∥ · ∥∞), (fi)i∈{1,2}) where

f1(x, y) =

(
x+ 1

2
,
2x+ y + 1

4

)
and f2(x, y) =

(
x+ 2

4
,
x+ y + 2

4

)
for every x, y ∈ [0, 1].

The second one is (([0, 1]× [0, 1], ∥ · ∥∞), (fi)i∈{1,2}) where

f1(x, y) =

(
x+ 7

8
,
x+ 2y + 1

4

)
and f2(x, y) =

(
sinx,

3x+ 2y + 1

6

)
for all x, y ∈ [0, 1].
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5.3 Properties of interpolation type iterated

function systems

The current section collects results that show properties of I-tIFSs. These
properties are of utmost importance in the proof of the main result, which
states that I-tIFSs have attractor.

Let us consider an I-tIFS S = ((X×Y, dmax), (fi)i∈I) and two collections of
self-mappings of Y {Aω,n : ω ∈ Λ(I), n ∈ N} and {Aω,x,n,k : ω ∈ Λ(I), x ∈
X, n, k ∈ N} given by

Aω,x,n,k(y) =

{
hωn(gωn+1ωn+2...ωn+k−1

(x), y), if k ≥ 2

hωn(x, y), if k = 1

and
Aω,n(y) = hωn(aωn+1ωn+2...ωm...(x), y)

for every y ∈ Y .

Lemma 5.2 (see Lemma 3.5. from [56]). In the context described above we
have

f[ω]n(x, y) = (g[ω]n(x), (Aω,x,1,n ◦ Aω,x,2,n−1 ◦ . . . ◦ Aω,x,n−1,2 ◦ Aω,x,n,1)(y)),

for every x ∈ X, y ∈ Y and n ∈ N, n ≥ 2.

Lemma 5.3 (see Lemma 3.6. from [56]). In the previously mentioned
framework we have

lim
n→∞

sup
n∈N,ω∈Λ(I),x∈K1,y∈K2

ρ(Aω,x,n,k(y), Aω,n(y)) = 0,

for every K1 ∈ Pcp(X) and K2 ∈ Pcp(Y ).

Lemma 5.4 (see Lemma 3.7. from [56]). In the context described above we
have

sup
n,k∈N,ω∈Λ(I),x∈K

lip(Aω,x,n,k) ≤ C,

for every K ∈ Pcp(X).

Lemma 5.5 (see Lemma 3.8. from [56]). In the context described above there
exists a function b : Λ(I) → Y such that

lim
n→∞

(Aω,1 ◦ . . . ◦ Aω,n)(y) = b(ω),
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for every y ∈ Y .
Moreover,

lim
n→∞

sup
ω∈Λ(I),y∈K

ρ((Aω,1 ◦ . . . ◦ Aω,n)(y), b(ω)) = 0,

for every K ∈ Pcp(Y ).

5.4 Interpolation type iterated function

systems have attractor and admit

canonical projection

In this section we establish the main result of the current chapter, which
states that every I-tIFS has attractor and admits canonical projection.

Proposition 5.1 (see Proposition 4.1. from [56]). Let S = ((X ×
Y, dmax), (fi)i∈I) be an I-tIFS such that (Y, ρ) is compact. Then there exists
a function b : Λ(I) → Y such that for every K ∈ Pcp(X × Y ) we have

lim
n→∞

sup
ω∈Λ(I),(x,y)∈K

dmax(f[ω]n(x, y), (aω, b(ω))) = 0.

In the context of the above Proposition, using the notation b(ω) := bω,
we consider the function π : Λ(I) → X × Y , described by

π(ω) = (aω, bω),

for every ω ∈ Λ(I) and

π(Λ(I)) = {(aω, bω) : ω ∈ Λ(I)} := AS .

Proposition 5.2 (see Proposition 4.2. from [56]). Let S = ((X ×
Y, dmax), (fi)i∈I) be an I-tIFS such that (Y, ρ) is compact. Then:

a) π is continuous.

b)
fi ◦ π = π ◦ τi,

for every i ∈ I.

c)
FS(AS) = AS .
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d)
AS ∈ Pcp(X × Y ).

e)

lim
n→∞

F
[n]
S (K) = AS ,

for every K ∈ Pcp(X × Y ).

f) AS is the unique fixed point of FS .

The key findings and implications presented in the preceding Proposition
can be effectively summarized in the following central theorem of this chapter:

Theorem 5.1 (see Theorem 4.3. from [56]). Each I-tIFS S = ((X ×
Y, dmax), (fi)i∈I) with (Y, ρ) compact has attractor and admits canonical
projection.

5.5 A correlated fixed point result

As an additional result arising from Theorem 5.1, particularly in the case
when I has just one element, we obtain the following fixed point result which
is related to Theorem 2.2 from [80].

Theorem 5.2 (see Theorem 4.4. from [56]). Let (X, d) be a complete metric
space and (Y, ρ) be a compact metric space, g : X → X and h : X × Y → Y
continuous such that:

i) There exists a ∈ X such that

lim
n→∞

sup
x∈K

d(g[n](x), a) = 0,

for every K ∈ Pcp(X).

ii) There exists C ∈ [0, 1) having the property that

ρ(h(x, y1), h(x, y2)) ≤ Cρ(y1, y2),

for every x ∈ X, y1, y2 ∈ Y .

Then f : X × Y → X × Y , given by

f(x, y) = (g(x), h(x, y)),

for every (x, y) ∈ X × Y , is a Picard operator.
Moreover,

lim
n→∞

sup
(x,y)∈K

dmax(f
[n](x, y), (a, b)) = 0,

for every K ∈ Pcp(X × Y ), where (a, b) is the unique fixed point of f .
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6. Applications of fractal
interpolation

The current chapter is dedicated to applications of fractal interpolation.
The first section is based on the paper “An analysis of Covid-19 spread
based on fractal interpolation and fractal dimension” published
in “Chaos Solitons Fractals” (see [67]), in collaboration with B. Necula
and the second section is based on the paper “A Concretization of
an Approximation Method for Non-Affine Fractal Interpolation
Functions” published in “Mathematics” (see [16]), in collaboration with
A. Băicoianu and M. Păun.

In the first section, the Covid-19 pandemic is regarded from a fractal
perspective. The epidemiological curves are reconstructed using fractal
interpolation upon observing the similarities between the epidemiological
curves and some classical fractals (for example, the graph of the Takagi
function). Moreover, the box-counting dimension is used to assess the
complexity of the evolution of the disease.

In the second section, we study two algorithms, via a probabilistic scheme
and a deterministic scheme, that can be used for obtaining FIFs. We study
the affine and the non-affine cases for the two algorithms and present the
resulting approximation of the FIF that we obtain.

6.1 An analysis of Covid-19 from a fractal

perspective

Examining the spread of the Covid-19 pandemic from a fractal point of
view could yield a more profound understanding of the disease’s intricacies
and how it distinguishes itself from historical epidemics. Viewing the spread
of the epidemic as a fractal structure holds potential advantages for the
medical field, enhancing comprehension of the healthcare crisis induced by
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Covid-19, and it can also be a valuable tool for evaluating the development
of other epidemics.

In this section, we undertake an examination of the Covid-19 pandemic
from a fractal point of view, using fractal interpolation. Additionally, we
use the box-counting dimension, also referred to as Minkowski-Bouligand
dimension, to asses and quantify the spread of the Covid-19 pandemic across
several European countries.

6.1.1 Conclusions

Approaching epidemiological curves as fractals has two main advantages.
Firstly, given the irregularity and challenging to predict nature of the

daily increase in the number of cases, considering them as fractals might
open a new direction for predicting the evolution of the epidemic. Since the
graph is considered a fractal, besides being jagged, it possesses some kind
of fractal architecture that is prone to self-similarity. This similarity plays a
crucial role in assessing the current status and predicting future changes in
epidemiological curves.

On the other hand, treating the epidemiological curve as a fractal and
applying fractal interpolation to the available data can serve as a potent
tool for data reconstruction. In this respect, we need to emphasize that
the number of cases recorded is highly dependent on the number of tests
performed by each country on a certain day. Analyzing the data employing
fractal interpolation we can cover some pieces of data that might be missing
to get a better picture of the epidemic, thereby enhancing our understanding
of the epidemic’s true extent.

6.2 An approximation of fractal interpolation

functions involving Rakotch contractions

The present chapter proposes an implementation of an approximation
method for FIFs that involve both affine and non-affine functions. While
there have been previous studies addressing the computational aspects of the
attractors of IFSs (see [21], [22], [27] and [53]), to the best of our knowledge,
there has been no investigation specifically dedicated to non-affine FIFs in
this context.

To build the approximation of the FIF, we propose two different
algorithms, a probabilistic and a deterministic one.
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6.2.1 Two algorithms for computing the fractal
interpolation function

We propose two algorithms to obtain the FIF associated to an IFS
with affine and non-affine constitutive functions. Algorithm 1 proposes a
Probabilistic Scheme, while Algorithm 2 presents a Deterministic Scheme.
We list the algorithms below as presented in section 4 from [16].

Algorithm 1 The Probabilistic Scheme.

1: Consider an empty set of points P ⊆ R2 and p a significant big signed
positive integer.

2: Generate an arbitrary point (xc, yc) ∈ [0, 1]× [0, 1].

3: Determine P
⋃

{(xc, yc)}.

4: Generate a random signed integer 0 < k ≤ 100.

5: Compute (xc, yc) = fk(xc, yc).

6: Repeat steps 3, 4 and 5 p times.

7: Sort the elements of the set P in ascending order with respect to the first
component of the elements.

8: Plot the function passing through all the points of the set P .

Algorithm 2 The Deterministic Scheme.

1: Consider k the number of initial points, n the number of functions
involved, p the number of steps and define an empty set of points P ⊆ R2.

2: Generate randomly a set K0 of k points in [0, 1]× [0, 1].

3: Determine P
⋃

K0.

4: Compute P = f1(P)
⋃

f2(P)
⋃
. . .

⋃
fn(P).

5: Repeat step 4 p times.

6: Sort the elements of the set P in ascending order regarding the first
component of the elements.

7: Plot the function passing through all the points of the set P .

40



6.2.2 Results of the approximation algorithms

We consider two sequences: (xn)n∈{0}∪N, given by xn = 3
√
n+1√
n+1

, for every

n ∈ {0} ∪ N, which is positive, increasing and convergent and (yn)n∈{0}∪N

given by yn =
|sin ( 180·n

π )|+1
√
n+1

, for every n ∈ {0} ∪ N, which is convergent. Let
m = lim

n→∞
xn = 3 and M = lim

n→∞
yn = 0.

Let the sequence of functions fn : [x0,m]× R → [x0,m]× R, defined as:

fn(x, y) =
(

xn−xn−1

m−x0
x+ mxn−1−x0xn

m−x0
,
(

yn−yn−1

m−x0
− − 1

m−x0

(
M

1+nM
− y0

1+ny0

))
x+

+ y
1+ny

+ yn−1 − x0
yn−yn−1

m−x0
+ x0

m−x0

M
1+nM

− m
m−x0

y0
1+ny0

)
, for every n ∈ N,

which are non-affine in the second argument.
Using the programming language C++, we plot the graph of the

approximation of the FIF in the non-affine case using the two algorithms.

(a) Probabilistic interpolation
scheme, non-affine case with 100
000 points

(b) Deterministic interpolation
scheme, non-affine case with 100 000
000 points

Figure 6.1: Approximation of the FIF

After 100 000 steps, in the probabilistic case, using Algorithm 1, we obtain
the outcome depicted in Figure 6.1(a). The processing time for generating
the data points is 1.039 seconds and the plotting time is 1.3 seconds.

By employing the deterministic Algorithm 2, with the specified
parameters of k = 100, n = 100 and p = 3, we obtain the graph displayed
in Figure 6.1(b). The combined processing time for both computation and
plotting in this particular case is 1474.477 seconds.

6.2.3 Conclusions

The two algorithms considered, the probabilistic one and deterministic
one, yield similar outcomes when used to approximate the FIF in both the
affine and non-affine scenarios. In the case of the probabilistic Algorithm 1,
considerable results are achieved after surpassing 10 000 steps, and the time
required to generate the graph visualization is less than 3 seconds.
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7. Conclusions

In this thesis, we bring new contributions to fractal interpolation
theory. We have demonstrated the existence of FIF via CIFSs composed
of Rakotch contractions. In addition, we have introduced an innovative
fractal interpolation scheme applicable to possibly sizeable set of data
(including uncountable sets of data), proving the existence of a FIF whose
graph is the attractor of a PIIFS. Furthermore, based on the theory of
fractal interpolation functions we have introduced a new type of IFS,
called interpolation type iterated function systems. For this novel I-tIFS
we have proven that it has attractor and admits canonical projection.
Additionally, we presented two applications of FIF, focusing on epidemic
curves (specifically Covid-19) and computational methods for obtaining
approximations of the graph of FIFs.

As regards further development, the present thesis opens certain new
directions of research. One direction of generalization and new research can
be to consider IFSs composed of more general contractions. In this respect,
concerning the results in Chapter 3, we expect that CIFSs composed of
functions that are of a more general contractive type (for example Matkowski
contractions), can be used to obtain the FIF.

Regarding applications of FIF, starting from the results from section 1
of Chapter 6, one direction of research is related to enhancing the accuracy
of Machine Learning prediction algorithms using fractal interpolation in the
preprocessing step.

In conclusion, this thesis significantly advances fractal interpolation
theory by introducing new frameworks and novel concepts. The contributions
enhance both the theoretical foundation and practical relevance of fractal
interpolation.
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