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INTRODUUTION

In this thesis, | used CUDA (Compute Unified Device Architecture) technology to optimize and
enhance specific algorithms in various fieldiave structured the main contributions and results into
several major directions, each bringing significantimprovements in its application drgasing parallel
computing capabilities offered by NVIDIA GPUs (Graphics Processing Units). This work is based on six
papers publishedin prestigious scientific journals or presented at international conferences, all indexed
in recognized international databaseand one paper accepted for presentation and publication in the
proceedings of a conference indexed by CORE.

The first major contribution was the development and implementation of new algorithms for
generating random networks, which are essential for modeling and simulating various natural and
social phenomena. Random networks are used in numerous applicationsmf analyzing social
structures to simulating diffusion processes in physics and chemistry. Using CUDA technology allowed
for a significant acceleration in the process of generating these networks. Compared to traditional CPU
(Central Processing Unitpased methods, the proposed solution reduced execution time by
parallelizing the generation operations, resulting in a significant increase in performance and the ability
to handle large scale networks.

The second contribution was the proposal and implementation of algorithms for determining
minimum loss paths in generalized networks. These algorithms are critical in various flow optimization
applications, such as logistics, transportation, and telecommioations networks. Implementing them
on the CUDA platform enabled parallel processing of nodes and edges in the network, significantly
reducing computation time. Instead of processing each path sequentially, GPUs allowed simultaneous
calculations, leadingo much faster optimal solutions. This increased efficiency was demonstrated
through tests on complex networks, where CUDA algorithms reduced the time required to determine
optimal paths compared to traditional CPU solutions.

As a practical application of the minimum loss path determination algorithms, we proposed a
solution for minimizing flow loss in networks. This problem is particularly relevant in the context of
distribution networks for energy, water, or other types of neorks where losses can occur along the
arcs. GPU optimization using CUDA enabled intensive calculations to be performed much faster than
classical approaches. The developed algorithms were tested on laggmle networks and
demonstrated high efficiency imdentifying and minimizing losses. The results showed that the use of
GPUs not only accelerates the computation process but also improves overall performance.

Finally, we applied interpolation methods, such as Inverse Distance Weighting (IDW) and
kriging, using CUDA to generate precise and detailed pollution and geomagnetism maps in a short time.
Interpolation is a crucial method for mapping spatial data, usedyeography, meteorology, and other
Earth sciences. Implementing these methods on GPUs allowed for the parallelization of distance and
weight calculations, significantly speeding up the interpolation process. This acceleration was
particularly useful forarge and complex datasets where traditional calculations would be too slow.

In conclusion, by using CUDA technology, we optimized and enhanced essential algorithms for
various applications, demonstrating that GPUs can bring significant improvements in performance and
scalability of these algorithms. This paper highlights the enoous potential of parallel computing on
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GPUs in solving complex problems and opens new directions for future research in the field. Thus, the
research presented here is not only based on a solid foundation of studies and experiments published
and validated internationally but also demonstratesxensive practical applicability in multiple
scientific and technological domains.

In summary, this thesis is based on the results obtained and published in journals or
proceedings of internationally recognized conferences. Thus, in the domain of the thesis, | have
published:

- 1 1Sl article in an Aist journal

- 2articles in a Scopusndexed journal

- 3articles presented and published in the proceedings of COR&&ssified conferences

- 1 paper accepted for presentatioat a CORE &lassified conference

Table 1presents the classification of these works according to the standards for evaluating
PhD theses in the field of Computer Science, valid at the time of the thesis defense. Furthermore, in
terms of the impact of the results, | highlight that the papers pubhed in the thesis domain have 11
citations (excluding seHcitations), of which:

- 4 citations are in ISlrated journals

- 1 citation in a Scopusndexed journal

- 2citations in the proceedings of COREdIassified conferences

- 3citations of category D.

Table 1Published Works and Corresponding Scores, According to PhD Thesis Evaluation
Standards 2018.10.01Present, Citations (excluding seititations)

No.| No. of Article Title Journal / Proceeding International | Score?! | Citations
authors Database
1. 2 Adaptation of Mathematics ISI- A 8p 3
Random Binomial
Graphs for Testing
Network.
2. 1 Advances in CUDA Bulletin of the Scopus 2p 1
for computational Transilvania
physics University of Brasov.
Series IlI:
Mathematics and
Computer Science

! Standarde de evaluare a tezelor de doctoralttps://www.cs.ubbcluj.rofinvatamant/programe-
academice/doctorat/standarde evaluare teze-de-doctorat/
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3. 3 IDW map builder Bulletin of the Scopus 2p 3
and statistics of air Transilvania
pollution in Brasov| University of Brasov.
Series Il
Mathematics and
Computer Science
4. 3 Fast CUDA ICCSA Lecture Notes| COREC 2p -
Geomagnetic Map in Computer Science
Builder
5. 3 Finding minimum | ISPDGC IEEE Xplore COREE 2p 4
loss path in big
networks
6. 4 New approach for IASID- AC COREC 1p -
the generalized
maximum flow
problem
Total 17p 11

InTable 2 we have presented the fulfillment of the current national minimum standards for
awarding the title of Doctor in the field of Computer Science. Thus, in the thesis domain, | have

published:
1 1 paperinan ISrated journal

2 papers in a Scopusndexed journal

4 papers presented at international conferences, of which 3are in ISI, CORE C, Scopus,

DBLP, IEEE/Springer, etc.

Table 2 Fulfillment of National Minimum Standards for Awarding the Title of Docter
Computer Science Committée

No. ofpapers

No. Criteria Type of paper| published by the
author
Publication or acceptance for publication is| 1
(with proof of acceptance) of at least one
1. article in ISlindexed journals from the
UEFISCDI list or BCOPUSndexed Scopus 2
journals.
9 Participation in and presentation of at leas 4

two scientific papers at international
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conferences, as proven by the conferenct
program.

Recognized conferences are those indexg

in the following databases: SCOPUS, IEE

ACM, SPRINGER, DBLP, CiteSeerX,

Zentralblatt, MathSciNet, COPERNICUS]
EBSCO, and ProQuest.

(of which 3 1S,
CORE C, Scopu:
DBLP,
IEEE/Springer
etc.)
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Chapter 1. HighPerformance Computing orGPU

In this chapter,a literature reviewpublished in my work $pridon Advances in CUDA for
Computational Physics 2023)s presented. It provides a summary of the most important research
results from recent years regarding GPU programming. Additionally, the most wielbbwn methods of
GPU programming are compared, highlighting the advantages and limitations of GPU programming
using CUDA technology.

1.1. Overviews

High- Performance Computing (HPC) is a field of computer science that focuses on using
systems and technologies to perform complex or computationally intensive calculations at superior
speeds and efficiency. This field often deals with solving difficult pfems and handling massive
amounts of data in the shortest possible time. One of the most accessible methods to achieve this is
by using Graphics Processing Units (GPUS).

Table 1.1provides a comparative overview of CPUs and GPUs. In short, GPU programming
offers many benefits, including parallel processing, energy efficiency, eeffectiveness, and flexibility.
However, it also requires specialized knowledge and experience, haditamhal overhead for data
transfer, anddoes not applyto all types of applications. Additionally, the performance gains of GPU
programming are limited by hardware constraints, and larggeale applications may require specialized
hardware or multiple GPUs to achieve optimal performance.

The efficiency of a GPU can be directly proportional to the number of GPU cores. Due to this,
GPUs can fully benefit from Moore's Law or the constant increase in integration density. GPU
performance continues to improve at a rate of 1.5 times per year2b17, the performance gain over
CPUs was 10100 times, depending on the application. By 2025, this is estimated to be nearly 1,000
times. Thus, while Moore's Law has slowed down for CPUs, and some even say it has ended, the
growth in GPU computing power atdinues to keep pace (Huang 2023).

Table 1.1. CPU / GPldomparison

CPU GPU

Up to several dozen very powerful corey  Up to several thousand cores optimized fo

parallelism
Higher frequencies for fast instruction Relatively lower frequencies but efficient
execution parallel operations
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Larger andmore efficient cache memory,
for general processing tasks

Smaller cache memory optimized for large
datasets specific to graphics, in general

Ideal for single thread or lightly multi
threaded compute tasks

Optimized for graphics, parallel processing
and massively parallel algorithms

Lower power consumption, ideal for
portable systems

Higher power consumption

Usually more expensive per core, but th
price can vary based on performance

More affordable per core, but the total cost
can be highedepending on configuration and
graphics performance

Executes instructions for general
processing

Executes parallel operations for graphics ar
intensive computation

It is important to emphasize that CPUs and GPUs are designed for different uses,thed
choice between them depends on the type of tasks that need to be performed.

1.2. Parallel Programming orGPU Applications

Due to their high parallel processing power, GPU programming has found applications in a wide
range of fields. Some of the areas where GPU programming is used in recentresearch include artificial
intelligence (Al) and machine learning (ML), big data asslyscientific simulations, graphics and 3D
rendering, medicine and bioinformatics, or cryptography and securfgjgure 1.J.

Automotive Design
Fluid Dynamics

Medical Imaging

Drug Design Computed Tomography

Molecular Dynamics

Astrophysics
n-body

Options Pricing
Monte Carlo

Weather Forecasting
Atmospheric Physics

Figure 1.1Recent Applications of GPU Programming (Baji 2018)

GPUs enable the rapid transformation and analysis of large datasets (big data) (Chen et al.
2018). This process includes redime data analysis, data processing and filtering, and the application
of machine learning algorithms to large datasets. Consequgnthere is research exploring how GPUs
can be used to accelerate big data processingrExample, various parallelization and optimization
technigues are analyzed to achieve high performance in big data analysis (Wu, Sun et al. 2021) (Kumar
and Mohbey 2022). Algorithms and optimization techniques are also proposed to reduce execution
time and efficiently manage memory in big data analysis operations (Jiang et al. 2015).
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GPU programming is used in computational sciences to accelerate intensive numerical
computations (Prabhu etal. 2011). This includes simulations in physics, chemistry, biology, and other
fields where complex and iterative calculations are performed. In qomtational physics, for instance,
process acceleration is of great importance for obtaining the desired resultsr@al time. GPU
programming is a suitable approach for achieving excellent execution times when massive
parallelization is possible§pridon Advances in CUDA for Computational Physics 2023). Thus, although
many known algorithms used in computational physics have already been parallelized and some of
them are included in the CUDA library (NVIDIA 2019), new methods of optimization and speed
enhancement are still being sought. Execution time is crucial in many computational physics problems,
and therefore any improvement in this direction is still necessary. Hybrid parallel algorithms (@PU)
are continuously developed to achieve higperformance computing results with minimal costs
(Spridon, Advances in CUDA for Computational Physics 2023).

1.3. Technologies for Programming on - CUDA

There are several technologies and platforms available for GPU programming. Among these,
the most important are CUDA (Compute Unified Device Architecture), OpenCL (Open Computing
Language), SYCL (Singéaurce Heterogeneous Programming in C++), and Vulkan.

In the literature, there are several studies comparing GPU programming technologies. For
example, Karimi et al. perforrperformance tests and compare data transfer times to and from the
GPU, kernel execution times, and eftd- end application execution times for both CUDA and OpenCL
on the same graphics card (Karimi, Dickson, and Hamze 2010). Their results are shown ire Higr
As observed from these tests, CUDA performed better in data transfer to and from the GPU. No
significant change was noted in the relative performance of data transfer for OpenCL when transferring
larger amounts of data. CUDA kernel execution was@faster than OpenCL, even though the two
implementations were very similar.

==@=—CUDA - kernel
140 OpenCL - kernel
120 CUDA - end-to-end

100 OpenCL - end-to-end

Timp de executie kernel (s}
00
(=]

Qubits

Figure 1.2Comparison of CUDA vs. OpenCL Execution Times

Thus, it is demonstrated that the CUDA architecture is a better choice for applications requiring
high performance. Otherwise, the choice between CUDA and other GPU programming technologies can
be made by considering factors such as previous familiarityttwiany of the systems, available
development tools for the target GPU hardware, or the portability of the resulting application. In this
work, | choseCUDA architecture for its superior performance previously demonstratedin the literature.
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A schematic of a CUDA workflow protocol is presentedrigure 1.3 Applications begin running
on the CPU, and the host code manages both host and device code. Data to be processed is loaded into
host memory, necessary memory is allocated on the device, and data is loaded into device memory
using CUDA API calls such asdaMalloc() or cudaMemcpy().

Kernel functions are called from the CPU and executed on the GPU, leveraging the GPU's
capability to handle intensive tasks that can be executed in parallel. To launch a kernel function, the
number of threads and blocks to be used must be specified. Thidone using the <<<>>> syntax in
CUDA. Once the kernel is launched, it executes on the GPU. Each thread will execute the same code but
with different data. Data for each thread is accessed using the thread index, which is provided by CUDA.
To ensure thatall threads have completed their work before moving to the next step, threads need to
be synchronized using the _syncthreads() function. After the kernel has finished executing, data must
be transferred back from the GPU to the CPU. Finally, memory allocated on the device must be freed
using cudaFree().

Memoria
ALY

Copierea

datelor@*

Memoria
GPU

Copierea
rezultatelor de
pe GPU

AN

GPU

Figure 1.3CUDA Program Workflow Steps

Memory management plays a crucial role in achieving the best results with CUDA
programming. It is also necessary to understand the GPU memory hierarchy so that it can be utilized
as efficiently as possibleThe GPU memory levels (global memory, constant memory, shared memory,
local memory, and registers) are illustrated in Figure 1.4.

Block (0, 0)

Registri Registri

Block (1, 0)

Registri Registri

Thread(0,0) = Thread(0,1) Thread(0,0) = Thread(0,1)
1 |

Figure 1.4GPU Memory Hierarchy

In the field of parallel computing and applications requiring high computing power, CUDA has
become a popular technology. With CUD#ogrammers can leverage the massive processing power
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of GPUs to accelerate the solving of complex problems and achieve superior performance across
variousdomains.

Chapter 2. Generation of Random Networks

This chapter presents two methods for generating random networks, which are necessary for
studying the efficiency of algorithms in graph theory. The proposed generation methods are
parallelized, and the results regarding execution times and acceleratiomgsCUDA programming are
discussed. This chapter builds on the work by Deaconu &ptidon(2021), to which | am a c@uthor.

2.1. Graphs- Fundamentals

Graphs constitute a significant branch of both mathematics and computer science,
concentrating on the analysis of structures that illustrate relationships between objectiey are used
to model and analyze interconnections between various entities or elements. A graphsists of a
collectionof nodes or vertices, represented by points, and edges or arcs that connect these nodes.
Graph theorystudies the properties, characteristics, and algorithms associated with graphs. Graiph
are widely usedin different fields, including computer science, networks, optimization, artificial
intelligence, and bioinformatics. Graph algorithms are used to solve problems related to search,
traversal, connectivity, scheduling, and many others. By studying and gpm graph theory, we can
understand and analyze complex structures of relationships between objects, find efficient solutions
to various problems, and develop optimized algorithms for different scenarios.

Graph theory is a field that investigates the characteristics and behavior of various types of
graphs, as well as the development of specialized algorithms to solve problems associated with
graphs, being a branch of discrete mathematics.

Definition 2.1A graphis anordered paiiQ O, consisting of a seto of elements called
nodes or vertices and a séD of edges (or arcs) that connect these nodes. The formal definition of a
graph can vary depending on the context in which it is used, but the following presents some basic
elements of graph theory.

Ina grapiO @O the number of elements ifDor the cardinality of the setois called the
order of 'Q and the number of elements i, or the cardinality of the se©, is called the size 6D The
order of a graph is usually denoted k&y; and the size ofOss denoted by . Each elementiis called
node (or vertex), and each element®is callededge. Foranar®  6h) , the noded and nodel are
adjacent nodes; the arédand nodeo (or0) are incident teeach other Foreacharé 6 , the nodes
6 and0 are called terminal nodes. A loop is an aic 6 whose terminal nodes are identical, i.e.,
0 0. Multiple edges are a set of edges that have the same pair of terminal nodes.

Definition 2.2A random graph is a graph where the number of nodes, the number of edges,
and the connections between them are generated randomly through various methods
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sErddéds and Rényi introduced binomial random
1959). These random graphs are generated based on the values of two parameéefttie number of
nodes) and) ¥ Tip - the probability of introducing any edge into the graph. In a network generated
in this way, there is a possibility that the source might poorly communicate with the storage node or
even not communicate at all. An algorithm for generating simple randonaphs with a given degree
sequence was developedin a paper by Bayati et al. (Bayati, Kim, and Saberi 2010). Using this algorithm,
a random uniform graph with a given degree sequence is generated very quickly (in almost linear time).
In 2002, Albert andBarabasi introduced their model (BA), consisting of an algorithm based on the
preferential attachment mechanism for generating scalree random networks (Albert and Barabasi
2002). Networks generated in this way have reakorld applications on the Interet, citation networks,
the World Wide Web, and some social networks. The algorithm starts with a network hadingyiven
nodes. Sequentially, nodes are introduced into the network. Each of these newly added nodes is
connected tod G existing nodes using a given probability, which is proportional to the number of
connections that the previously added nodes already had. The probabilityf connecting a new node
to node “(s:

n 5 (2.1)

Given that existing results in the literature about networks deal with specific graphs that are
not general enough or inadequate for network flow problems, in the w@Bxeaconu an@pridon2021),
we proposed a new idea for generating random networks that has the advantages of being fast and
based on the natural property of flow, which can be decomposed into elementary directed paths and
cycles. Consequently, networks generated in this wayeasuitable for testing the correctness and
efficiency of algorithms for network flow problems, such as minimum cost flow, maximum flow, mult
commodity flow problem, etc.

2.2. CUDA in Graph Theory

GPU programming has shown promising results in accelerating graph theory algorithms in
recent years. Some of the most recent research in GPU programming for graph theory is in the
following directions: Graph Neural Networks (GNN) (Zonghan Wu, 2021) (Tranfeu, 2023), graph
partitioning (Santosh Nage, 2015), triangle counting in a graph (Liu Hu, 2021), algorithms for finding
the shortest path between two nodes in a graph (Carl Yang, 2022).

In general, recentresearch in GPU programming for graph theory demonstrates the potental
of GPUs to accelerate graph theory algorithms and handle very large graphs. This can lead to improved
performance and scalability for a wide range of applicationgrm machine learning to social network
analysis or routing problems.

2.3. Algorithms for Generating Random Graphs

Let'O  cfiOhi Fohckd be ani o network, where & is a set containingg Tt vertices
(nodes), andis a set ofa Tiso- calledarches(directed edgesEach archid o6hd ~ ‘Oconnects
two nodeso6 andv from w, andi is a special node called the source adé a node called the sink. In
"Q we define the capacity functioagO© 'Y and the cost functiond dO© 'Y . The value® @ is the

12
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maximum flow that carbe transported from noded to nodeb on edge  0fb N ‘Qandd & is the
unit cost of transporting flow on edgeh

Ahuja and ceauthors present the following theorem (Ahuja, Magnanti, and Orlin 1993):

Theorem 2.1Any admissible flow can be decomposed into paths and circuits such that:
(a) Any path with positive flow connects the sourceto the sink nodeo.
(b) Atmosté & paths andcycleshave non zero flow. Of these, at mosét cycleshave
non- zero flow.

The proof of Theorem 2.1 can be found in (Ahuja, Magnanti, and Orlin 1993).

Comparisons of the correctness and efficiency of algorithms for flow problems are important
when developing new methods to solve them. To achieve this, a fast and reliable tool is needed to
generate random networks, starting from simple ones and extenditg large- scale networks. We
devel oped a met h o-dényiamadel dsingtine ideaifreri hearedn@.4o create such
a tool. Since a flow can be decomposed into elementary flows, a natural approach is to generate
randomi  Opaths and elementancycles In the work by Deaconu arfBpridon(2021), algorithms are
presented for generating  opaths and elementancyclesin a network. Thus, a primary algorithm to
generate arandom  Opath in a network withé nodes isAlgorithm 2.1

Deaconu andSpridonproposealgorithms for generating paths and elementary circuits in a
network (Deaconu andSpridon2021). Thus, a primary algorithm for generating a random 0
elementary path in a network witte nodes isAlgorithm 2.1

Algorithm 2.1. Algorithm Random & Directed Elementary Path vl (ARDEP1)

/* source Is considered having the first index, and sinkcnsidered having the last one */
i m
o & p
/*only source is initially part of the path */
for each nodether thani do
na®edR Qougi Q
end for;
nad e dQ oi paQ
/* build the random path */
o i
for'Q pto¢ pdo
/* choose a random index k of the next node to be added to the path */
N 1 oEQElm Qp;
a w
/* find nodeV as the’Q th node out of thenodesnot before chosert/
for each nodebdo
if N X® ¢ WQhen
continue;

end if;
if & Chen
break;

end if;

a a p
end for;
/*add arc oW to the network */
Qe 0 p;

13
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/* mark nodeu as being part of path */
NA®EQAQ o1 pQ
/* if the last nodeV added to the path is sink, then path is completed */
if 0 othen
break;
end if;
/* node 6 becomes) to prepare the adding of another node to the path */
o U
end for;

I n ARDEP1, without restricting the generalit
equal totr, ande  p as the index of the sink nodé. The algorithm builds a path starting frorh. At
each iteration, a new node that was not previously added to the path is randomly selected and pushed
atthe end of the path. Each time a new node v is pushed back to the path, the@inz is added to the
network, i.e., the value of the adjacency matfxdis setto 1 on the positionoh) , whereo is the node
previously added to the path. The algorithm ends when the sink node is added to the path.

For generating a random circuif|gorithm 2.2), the algorithm is presented below

Algorithm 2.2. Algorithm Random Directed Elementary Cycle vl (ARDEC1)

/*choose a random nodém */
om 1 W& Qatl p;
/*only nodeotis initially part of the cycle */
for each node@ther thanomndo
OOOaONE Mbyi Q
end for;
/* build the random cycle */
0 O
for'Q mto¢ pdo
/* choose a random index k of the next node to be added to the cycle */
N i oEQEwm Qp;
a m
/* find nodeV as the’Q th node out of thenodesnot before chosert/
for each nodebdo
if OOoa Qé thern

continue;
end if;
if & Qhen
break
end if;
a a p
end for;
/*if 0 is6 then regenerated. This can only happen whem  omt%/
if 6 Othen
Q Qop
else
/*add arc 60 to the network %/
awo L ol
/* mark nodeu as beingpart of cycle */
OOOaQE £ DA H'Q
end if;

/*If U is the first chosen nodém, then cycle is completed */
if 0 omthen
break;

14
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end if;
/*node 6 becomes\ to prepare the adding of another node to the cycle */
6 U
end for;

In ARDEC1, a cycle is built starting with a randomly chosen node u0. At each iteratioaw
node that is not already part of the cycle is randomly selected and added todiiele. Each time a new
nodeU is introduced into the cycle, the aradh) is also added to thenetwork, whered is the node
previously added to the cycle. The algorithm ends when thede 61tis added again to the cycle.

The algorithms ARDEP1 and ARDECL1 can naturally build directed elemehtagpaths and
cycles. Theirtime complexity is obviously ¢ . These two algorithms could besed together to build
random networks. However, we shall present a faster approach below.

Richard Durstenfeld proposes an algorithm to randomly generate a permutat{burstenfeld
1964). In Algorithm 2.3, we propose a similar but simpler approach to generate a shuffled vector of
nodes having the indexes betweei2i 0 and " @Q §Raconuand Spridon2021).

Algorithm 2.3. Algorithm Shuffled Vector of Nodes (ASVN)
Input: Qi 0,80 Q

/* the vector “nodes” | rnQGitoitdAOkE/D cont ains the indexes fro
for'Q Qi owiRd®
t£ Q0 M
end for;
/* shuffle the vector “nodes” */

forQ Qi oI A®
0 1 W& QRGN Q
U 1 ©E QBB oD H Q
if 6 Uthen

i 0onéé Qe
£EEQ0I £ ¢ 0Q0]
€ QI i 0dn

end if;
end for;

Next, | present two novel methods for randomly generating directed elementary 0 paths
and cycles using ASVN.

Algorithm 2.4. A/gorithm Randomv <Oirected Elementary Path v2 (ARDEPZ2)

/* efficiently generate a shuffledvector of nodes without s and t */

ASVNPRE  ¢);
i
0 &zp

/* randomly generate the length of the path */
antIol W& Qg N
/*add the arcs given by the firsa 1\ tytodes of the shuffled vector to the network */
ani €&Q@i  p;
for Q ptoantxoodo
aot ¢ it £ QO p 0;
end for;
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a0t € QAo o p;

InAlgorithm2.4, first, ARDEP2 randomly generates the length of the pathr) 't 0¢ nodes are
then taken from the shuffled vector ohodes, and together with source and singenerate the path.

Algorithm 2.5 A/gorithm Random Directed Elementary Cycle v2 (ARDECZ2)

/* efficiently generate a shuffled vector of nodes/*
ASVN(tE  p);
/* randomly generate the lengthof the cycle */
aoOood ®E QR ;
/* add the arcs given by the first Icycle nodes of the shuffled vector to the network */
for Q mto & & wgda
Gt e Qie £ QI p 0;
end for;
G0t EQRLOOPQOE ¢ QRI p;

InAlgorithm 2.5, ARDEC2 takes Icycle nodes from the shuffled vector of nodes gederates
a cycle.
Below, | introduce Algorithm 2.6 for generating a random flow network

Algorithm 2.6. Algorithm Generating Randon¥ <low Network (AGRFN)

/* generate¢ 1 da@andom paths */
for'Q pto¢ n o
ARDEP2;
end for,
/* generate¢ & ¢ addom cycles */
forQ ptoé @ wam Q
ARDEC?;
end for,
/* generate the adjacency lists dsing the adjacency matrix o/
for Q Tto € do
aw@ go6a0a
end for;
/* randomly attach capacities and costs to the arcs when they are addéddb
for'Q mtoe do
for'Q mto¢ do
/* generate arcs according to EsstRényi model */
ifad OQQ mandi O QéG M T /2 p T THhEN
G OQQ  p;

end if;
if 6§ OQQ  pthen
Push back@ & Qé& @O il & Qé DB wyiod o8
end if;
end for;
end for;

Theorem2.3. The time complexity of AGRFNis ¢ & GO @ R kB 7Q.

Usually, it is enough to consider the number of paths and the number of cycles thas the
number of nodes. So, in practice, the time complexity is likely tolbe&

The time complexity fronT heorem2.3can be improved ithe generation of the paths, cycles,
and adjacency lists are parallelized. The computations from the algorithm are elementary and they only
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involve integer values. So, AGRFN can be naturally parallelized on GPUs. Since the speed of generating
of large- scale random networks igssential, time complexity improvement by parallelization can act
an important role. Considering total of ‘QGPUcores,the generation of the paths and cycles can be
divided into & ¢ ¢ph & € 7°Q groups.The generation of the adjacency lists can also be

divided intod & ¢pfe 7'Q groups. So, the time complexity of the parallel implementation on GRifis
AGRFNi$ ¢ aodad R R 7Q

2.4. Results andDiscussions

In Figure2.1, three networks having 6, 20, and 100 nodes, respectively, were generated and
displayed. For the first network, 3 paths and 2 cycles were generated. For the second network, 10
paths and 2 cycles were generated, and for the last network, 20 paths and 10leg were generated.

Different tests were performed to illustrate the generating time of increasing the scale of
random networks having the number of nodes between 10 and 10,000. As expected, and as shown in
Table 1, the number of nodes together with the number of consideredtps and cycles directly
influence the speed of the network generation. An Asus ROG Strix G17 G712LV, Intel C6¥50H
up to 5.10 GHz processor, 16GB RAM, NVIDIA GeForce RTX 2060 6GB GDDR6 with 1920 CUDA cores
was used.

Figure2.1. Networks generated using AGRFN. (a) Network with n = 6, npath = 3, ncycle=2; (b) network with n = 20, npath = 10, ncycle = 2;
(c) network with n = 100, npath = 20, ncycle = 10.

The parallelization was implemented using CUDA programming@mRU Each path and cycle
were created on a different thread. Additionally, the creatiaf adjacency lists from the adjacency
matrix was parallelized, the list for each node beingtained on a different thread. For small networks
(less than 50 nodes) it is better tause the implementation of the algorithm on CPU, but when the
number of the nodes othe networks is more than 50, the CUDA implementation is preferred resulting
in a cleaispeedup,up to 19 times faster than the CPU implementation. The speeg was calculated
as the ratio between CUDA and CPU execution times. The best spep@as obtained fotarge-scale
networks having thousands of nodes

In Figure 22, the speedup evolution for generating networks of different dimensions is
presented.As can be observed, for smabized networks, running on the GPU leads to a decrease in
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execution speed, most likely due to communication times between the CPU and GPU. As the network
size increases, the acceleration factor due to massive parallelization on the GPU also increases,
reaching an execution time 19 times shorter for a network with0,000 nodes when running using

CUDA.

20

15

10 +

Speed-up

10 50 100 500 1,000 5,000 10,000
Number of nodes
Figure 0.2 CPU/ CUDApeed up (DeaconiandSpridon2021)

The analysis of speedup evolution for generating random networks of different sizes when
using CUDA shows how the system's performance varies depending on the problem sizexpescted,
the larger the problem size, the more evident the advantages of parallelization with CUDA become.
This is due to the GPU's ability to process a large amount of data in parallel, which can lead to significant
improvements in execution time comparetb sequential implementations on the CPU.

Chapter 3: Finding the Minimum Loss Path inBig Network

In this chapter, | introduce and solve a practical problem known as the minimum loss path
problem or the maximum delivery rate path. This problem involves finding the path from a source node,
i, to another given nodeg, called the sink, in a generalized network, which has a gain/loss factor
attached to each arc, so that the loss is minimal amongiall 0 paths. This is based on the work by
(DeaconuSpridonand Ciupala 2023)to which | am a ceauthor.

3.1. Scientific Context

The classic maximum flow problem involves finding the maximum flow that can be
transported from asource node to a secalled sink node in a network where each arc has a capaciy
o "@Ch "6 'O. For example, a natural gas supply company may want to maximize the amount of
natural gas sent between two cities through its pipeline network. Each pipeline in the network
obviously has a limited capacity.

In the generalized problem, each arc, in addition to the corresponding capacity, may also have
a loss or gain factor that must be considered when calculating the maximum flow. In other words, the
generalized problem for determining the maximum flow is axtnsion of the classic maximum flow
problem in a network where, to determine the maximum amount of flow, other factors such as costs
or variable capacities of the arcs must also be taken into account.
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The Inverse Generalized Maximum Flow (IGMF) problem was introduced and studied by
(TayyebandDeaconu 2019)In this problem, the goal is to modify the capacities of the arcs so thata
certain admissible flow becomes the maximum flow in the modified network, and the distance
between the initial capacity vector and the modified capacity vector is minimized.

To the best of my knowledge, these two problems are the only optimization problems that
have been analyzed in networks with gains or losses on the arcs.

3.2. TheMinimum Loss Path Problem

Let' 6% be a directed graph, wherevis a finite set of elements called vertices or nodes,
and Ois a set of ordered pairs of vertices, called arcs or directed edff@ ®  «).We will consider
that graph"Gs a mathematical representation of a redlfe transportation network (for water, sewage,
gas, electricity, etc.), where the arcs represent the transportation lines, and the nodes represent the
intersections of these lines. In realife transportation networks, there are usually losses on the arcs
due to various reasons such as evaporation, leaks, energy dissipation, theft, etc. To mathematically
model this, we consider foreach aroh) N ‘Oa loss coefficient, or delivery rate, denoted pyohy n

Tip . Thus, iunits enter from nodeod on arc 6 thent| 6 A cunits will reach nodeD.

In the following, | will present a method for calculating the minimum loss path (MLP) or
maximum delivery rate path (MDP) from a source nadleo a sink nodeo. We denote this problem as
the Minimum Loss Path Problem (MLPP). To solve the MLPP, we need to identify a p&i@from i
to 0such that the delivery rate froni to 0is the maximum among all paths in, that is, we need to
find the solution to the following optimization problem:

dd)(bvbﬁ‘) ‘q L?ﬁ)v:?:p o B (32)

0 v B N~

To solve the above problem, we proceed by transforming problem (3.2) into a minimization
problem asfollows:

G Qe '|'~|(;0F1‘) 3 vofbv:}s:p o h

0 o ML

where the base of the logarithm is greater than 1, for example, the base carCoe 10.

The previous problem can be rewritten in the form
aQtoh o E TO0O W
0 i O

(32)

(33)

where;

r O 1 1,coi e nprBEE .

Giventhatthdg values attached to the arcs are positive, itis now easy to observe that problem
(32) has been reduced to a classic optimization problem for finding the shortest path in the network
"O O . This problem can be efficiently solved using Dijkstra's algorithm with a time complexity
of 0 ¢ or0 ataé €, depending on the implementation (Schrijver 2012) (Fredman and Tarjan
1984), where¢ denotes the number of nodest( <), anda represents the number of arcs)(
08 . ConsequentlyAlgorithm 3.1presented below calculates the MLP BGa

Algorithm 3.1. MLP computation in lossy networks

19



Universitatea
Transilvania
din Bragov

Input:
fla directed grapiO  fD
I o v tip how v O
Output:
TMLPof 'O
/* Calculatg  6R) zF
For’'Q nd pdo
[ @ 1T, , 080
end for
If node ois not reachable from then
MLPPhas no solution
else
Apply shortest Path Algorithm starting froni in"0 GO
Letd i UMMM o betheshortest pathfromi to gthen 0is MLP of 'O O fromi to 0
End if.

We will now investigate the more general case where some arcs may have gains instead of
losses. These gains can be obtained, for example, through injection into the network on certain arcs (a
new gas source, a prosumer in the electrical network, etc.). $Hostead of setting 6f) N 1ip , we
could consider 6h as having positive values, with 6hb  p onan arc 6fb if and only if there is
a gain on that arc.

This optimization problem has the same mathematical modellBand can also be transformed
into the minimization problem (). However, it is observed that the valuesiof ® a € Qw
can be negative (on arcs whete 6h)  p). Moreover, if there is a negative cycle in the resulting
network, it corresponds to a circuit with infinite gain (the product of th@ alphay values on such a
cycleis greaterthan 1). On dn opath containing such a circuit, a maximum delivery rate cannot be
found because the flow can be infinitely increased by passing infinitely many times through that circuit.

Algorithm 3.2solves the MLPP in the generalized case (in networks where there can be both
gainsand losses on arcs).

Algorithm 3.2 The Minimum Loss Path Determination Algorithm in a Generalized Netw:

Input:
fla directed grapiO  afD
Il o6 v rip holw ~ O
Output:
TMLP of'O
/* Calculatef  ofy z¥
For'Q nfd pdo
[ o 110 , o080
end for
If node ois not reachable froni then
MLPP has no solution

else
ApplyBellmanFor d’ s al gofroinsim®n <kiCArt i ng
If G has negative cyclthen
MLPP has not solution.
else
Letd {§ UMMM o bethe shortestpath fromi to g then 0 is MLP of 'O  cfD fromi to o
End if
End if
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As with the previous algorithm, in Algorithm 3.2, the function is initially calculated for each
arc of the network. Subsequently, the feasibility test for MLPP is performed. If the sink nade
accessible from the source nodi, the Bellman Ford algorithm is applied to determine the shortest
path in the newly formed networkO  «fidj . If a negative cycle is identified in the network, then
the problem of finding the minimum loss path has no solution; otherwise, the found path is also the
minimum loss path in the initial network

3.3. Algorithms for Determining the Shortest Path in a Network

Algorithms for determining the minimum path are methods used in graph theory and
operational computing to find the shortest path between two points (nodes) in a graph. These
algorithms are essential in various fields such as communication networks, trangption, logistics,
and artificial intelligence.

Dijjkstra’s algorithmis designed to find the shortest path in a graph with only positive arc costs
(Dijkstra, 1959). It is widely used in computer science and engineering to find optimal paths in
transportation networks, internet routing, and many other applications. Howev@ijkstra's algorithm
cannot be applied to networks with negative arc values.

The Bellmarr Ford algorithmcan determine the shortest path in a graph containing arcs with
negative costvalues (Bellman, 1958). Additionally, this algorithm can also decide whether the network
contains negative cycles (with infinite gains). If such cycles are present, the probkeimfeasible.

Considering the size of networks in redife applications, the execution time of the proposed
algorithms is very important. Therefore, a method of parallelization using GPU programming through
CUDA (Compute Unified Device Architecture) wegdfor the proposed algorithms. The Dijkstra and
Bellman-Ford algorithms have previously been implemented on CUDA architecture (Harish and
Narayanan, 2007; OrtegaArranz et al., 2013; Surve and Shah, 2017). Various parallelization
technigues have been used, resulting i significant speed improvements compared to CPU
implementations. We have adapted these approaches for calculating MLPs.

In Dijkstra's algorithm, in each iteratioif2the minimum distance between the source and the
nodes belonging to the set of unset nodes (nodes for which the minimum distance has not yet been
determined),’Y'(s calculated. One of the nodes for which the distance is equal to this minimum value
is set and becomes the node to be analyzed. The outgoing arcs of the analyzed node are traversed to
relax the distances corresponding to adjacent nodes.

To parallelize Dijkstra's algorithm, it is necessary to identify which nodes can be used as
analyzed nodes simultaneously. There are several studies in which the set of analyzed nodes has been
determined in various ways. For example, in the study by Maytirorres, and Gavilanes (2009), it is
proposed to insert all nodes that have a distance equal to the minimum distance into the set of
analyzed nodes. OrtegaArranz et al. propose an improvement by adding nodes that have a distance
greater than the determired minimum distance to the set of analyzed nodes (Ortegfaranz et al.,
2013).

The algorithm calculates, in each iteratioQfor each node in the set of unset nodes™ “YQ
the sum of the distance calculated up to that point and the costs of its outgoing arcs. Subsequently,
the minimum of these calculated values is determined. Finally, those nodes whose distance is less than
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or equal to this minimum value determined in the previous step are set and inserted into the set of
analyzed nodesw$® defined as the minimum value calculated in each iterati@which supports that
any unsetnoded witha distancg 0  «(an be set. The larger the value @iQXhe more parallelism

is exploited. However, depending on the graph being processed, using a very optinai&dtan lead to
computations that negate any performance gains over sequential execution.

Algorithm 3.3represents the pseudocode of the parallelized Bellmdford algorithm for GPU
implementation. The first stage is the initialization, which takes place on the GPU. This is followed by
the relaxation stage, in which it is checked whether there is a shortaitip from the source node to a
given node. For this stage, the kernel functienAlgorithm 3.4- is called.

By leveraging the parallel processing capabilities of GPUs, both Dijkstra's and Bellfad
algorithms can be significantlpccelerated, making them suitable for largscale network applications.

Algorithm 3. GPU implementation of Bellman Ford algorithm

Input: an oriented grapfio  cfD
Output: MLP In G

<<<initialiation>>>(dist)
steps=0
Repeat
AEOOQQi@dNO
6'Qaad ®E UM & Qa "OQANIGD
ioQni oQnp
until QQIG® w QQordl 0 QR E p

Each kernelAlgorithm 3.4) executes one GPU thread for each naaleith index"Qalculating
the minimum distance. For this, the previously calculated shortest paths for the predecessors of the
nodes are used. If a new, shorter path is found fokithe distance is updated for nodé. Thus, in each
iteration, a new distance vectoris calculated, which replaces the old distance vector at the end of the

iteration. The algorithm stops when the two distance vectors are the same or if a negative cost cycle
is found.

Algorithm 4.Bellman-Ford kernel

Input:

1 directed graph G = (V, A),

1 dist- distances vector

1 dist_aux— auxiliar distances vector
NQ @ QHQ0Q
//find the shortest distance from source to id node
a Q¢ "00 'O
For all predecessors®f o "@a

Ifo "B QQ QQOd & & Qthen
aE 0 Q0 QGG @

End if
End for
If & Q¢ QQIv® @QAhen
QQO & Q¢
End if
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3.4. Results andDiscussbns

To test the MLPP algorithms, random networks were generated using the method described
in (Deaconu an&pridon 2021). The tests were conducted on an Intel(R) Core(TM)@750H CPU @
2.60GHz 2.59 system, equipped with an NVIDIA GeForce RTX 2060 GPU and running Windows 10. The
random networks analyzed had between 2,000 and 50,000 nodes and a varying number of ,arcs
generated using Algorithm &. Execution times for small networks are very short, and GPU
programming is not necessary. As the number of nodesieases, the execution speedincreases up to
390 times for networks with 40,000 nodes and up to 326M arcs, as shownRigure 3.1

2
B 200
a
a 150
100
R

2000 5000 10000 15000 20000 25000 30000 35000 40000

No of nodes

Figura0.1 Speedup on GPU for Algorithm 3.1 on dense networks with varying numbers of noc
(Deaconu, Spridoand Ciupala 2023)

In the case of implementingAlgorithm 3.2 based on the BellmafFord algorithm, the
execution time increases with the number of nodes and the density of the network arcs. The highest
speed up on the GPU is 5.8, achieved for a network with 10,000 nodes and 24M drigyre 3.2.

Speed-up

7
6
5
4
3
2
1
0

2000 5000 10000 15000 20000 25000 30000 35000 40000

No of nodes

Figure 3.2Speed up on GPU for Algorithm 3.2 on dense networks with varying numbe
of nodes(DeaconuSpridonand Ciupala 2023)

Overall, the execution time on the GPU is significantly lower than on the CPU for all network
sizes. This highlights the benefits of CUDA parallelization. Although the GPU execution time increases
with the network size, it does so at a slower rate than thePU execution timeHigure 3.3.
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Figure 3.3 Execution time foiAlgorithm 3.20n dense networks

Additionally, as network density increases, so does the execution time for the sequential
implementation, whereasfor the parallelimplementation, the increase in execution time with network
density is slower Figure 3.4.

12 . . .
m Algorithm 3.2 - secvential m Algorithm 3.2 - CUDA
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0 -

177M 255M 326M
Number of arcs
Figure 3.4 Execution time evolution for Algorithm 3.2 as a function of network density

The speedup values are significant, indicating the benefits of CUDA parallelization as networks
become larger. The general interpretation of the results shows that CUDA parallelization brings
substantial performance improvements for the Bellmatord algoithm, especially for large networks.

In conclusion, the results demonstrate increased execution speed when using GPU
programming for Algorithm 3.1 on large and dense networks. Although not as significant, an
improvement in execution time was also achieved fAlgorithm 3.2, using the BellmanFord algorithm
in the GPUbased implementation.

Comparing the results of the two algorithms, we can observe differences and similarities in
their performance. Both algorithms exhibit significant speedp with CUDA parallelization. Both
algorithms benefit from shorter execution times on the GPU comparedthe CPU for networks of
varying sizes. However, differences are noticeable in how execution time varies with network size for
each algorithm. For example, the execution time fédgorithm 3.1on the GPU may increase more

rapidly with network size, whilehe Bellman Ford algorithm seems to have a slower increadédure
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3.3). For both algorithms, the benefits of GPU parallelization become more evident as the problem size
grows. The relative performance of the two algorithms may vary depending on network characteristics
and other applicationspecific considerations. The Dijl& algorithm is known for its lower complexity

compared to BellmanFord, which may influence relative performance based on specific network
features.

Chapter 4. Determining the Minimum Loss Flow in a Generalized
Network

Inthis chapter, | present a possible application of algorithms for finding the minimum loss path
to determine the maximum flowin a generalized network (with losses/gains on the edges). The ord
Fulkerson algorithm has been adapted to sequentially fineckpaths with minimum loss. | describe two
possible implementations of the algorithm: sequential and using GPU parallelization. Multiple tests
were conducted for both implementations, comparing execution times. These results were accepted
for presentation & the 21st International Conference on Applied Computing (AC 2028pridon
Deaconu, and Popa, et al. 2024).

4.1. The Traditional Maximum Flow Problem

In the maximum flow problem, the objective is to send as much flow as possible between two
nodes, respecting the capacity limits of the edges. Astance of the maximum flow problem isra
antisymmetric network 'O «iOf Foft, wherei N @ is the source node d N @ is the sink node,
and (s a capacity function.

Theorem 4.1A flow is maximum if and only if there are no augmenting paths in the residual
network.

The proof of Theorem 4.1 can be found in the work of Ford and Fulkerson (1956)

Aresidual network is a networkD  ¢fiCho ,where®@d° a,0 6l  wol  "Qof
is the residual capacity function. For example, 6 1 1T QLMD m, and "Q6h

"QUho ¢ wthen the arc 6 hast M ¢ w p punits of residual capacity, andhe arc
Oho hasTt ¢ w ¢ wnits of residualcapacity.

In short, the maximum flow problem is a classic optimization problem in graph theory,
involving finding the maximum amount of flow that can be sent through a network of pipes, channels,
or other pathways, subjectto capacity constraints. The problem canaeba wide range of reaworld
situations, such as transportation systems, communication networks, or resource allocation.

A common approach for solving the maximum flow problem is the FeFdilkerson algorithm
(Ford and Fulkerson 1956), which is based on the concept of augmenting paths. This algorithm has as
input parameters a network" O chChGH Fo , with source node| hand sink nodeg, and as output
parameter is"Qthe maximum flow that can be admitted through the networkd
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4.2. The Generalized Maximum Flow Problem

The generalized maximum flow problem extends the traditional maximum flow problem by
allowing the flow to change while being transmitted through the network. As before, each edgja
has a capacityn6fD that limits the amount of flow sent through that edge. In addition, each edge

6hy is associated with a positive coefficiemt 6h0 1t called the gain/loss factor. The gain/loss
factor is a functionf dO© 'Y . For each unit of flow entering edgedhd from nodeo, onlyi  6h

units reach noda. An edge with lossesis one where p, and an edge where there is a gain has

p. Without loss of generality, we assume that the gain/loss function is symmetric, ije. 0

o U . If this assumption is not satisfied, we can add the symmetric edge and assign it a zero
capacity (Wayne 1999).

To solve the generalized maximum flow problem for determining the minimum loss flow, we
propose an adaptation of the Ford-ulkerson algorithm Algorithm 4.1) so that, at each iteration, the
minimum loss path algorithmAlgorithm 3.2) is applied to find a new path in the residual network. The
choice ofAlgorithm 3.2is explained by the fact that, both in the case of networks with only losses on
edges and in the case of networks with losses or gains on edges, the resulting residual network
contains both types of edges due to the way the loss factor is calculated iattmetwork. In other
words, if in the initial network an edgedfd has a gain/loss factor 6h0 , then the gain/loss factor in
the residual network isi o) | 6R on the direct edge, and on the reverse edge, we have
| oo —

Algorithm 4.1 Adaptation of the Fordrulkerson Algorithm for Determining Maximum Flow in
Generalized Network

Input:
1 Network 'O 6¥OR Ffth
Output:
1 f — minimul loss flow in"O

Initialize a feasible flowf=0
Initialize the residual network Gf =G
Foreach 6fb * ‘Odo

| o | oh

| U
End foreach
Whil e there exists an augmenting path from s to t in @lfo

Find an augmenting patl in"0"@singAlgorithm 3.2

Update the residual networkO"@singAlgorithm 4.2
End while

h

To update the residual network}0"Qalong the pathp, found,Algorithm 3.2is used. This
algorithm involvesdetermining the maximum feasible flow on the augmenting path and then updating
the residual capacitiesand gain/loss factors in the residual network to reflect this flow. Thus, the
residual network is prepared fosubsequent iterations of the flow algorithm.

Theproposedalgorithm has two stages:

1. Determination of feasible flow on the augmenting path
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1 Initialize flow"Qwith the residual capacity of the first arci ho in 0.
1 For each arc6hy in path0 while noded is not the destinationé:
A Update flow f with the minimum of the current flowQ | 6h) and the
residual capacityw ofb | o6 8
A Goto the nextnoded 0 on path0.
2. Update residual networkKOQ
1 Start from the sink noddd o
1 Foreacharcol) on path0 while nodev is the sourcei :
A Adjust flow f according to the gain/loss factar  6h .
A Onarc 6h ,update the residual capacitp olb & o6y @ ol ,
and for thereverse arc, add the flow to its residual capacity L © UMD @
A Advance on path) towards the source, to the previous nodé 0.

Algorithm 4.2. Updating the Residual Network after Finding a New Augmenting Path ift

Input:
q Residual networkKO O Pofdh
1 Augmenting path fromi to 6found,0 in"O
Output:
T Updated residual network'O
T Feasible flow™Q
/1 Determine the flow value at nod@éon pathd
Consider a flow}Q & if5 ,where if6 0 isthe first arc inh
o i
while6 odo
Consider the arcofy N 0
Q aQXD o hd o I o
0 U
End while
/I Update™O
v 0O
whilev ido
Consider the arcofy N 0

oo oo o o
o oo 0
T o
v o
End while

4.3. Results andDiscussions

When implementing the proposed algorithm, the acceleration results when using GPU
programming are similar to those obtained faklgorithm 3.2 as the efficiency can be achieved by using
the parallel BellmanFord algorithm for each determination of a minimum loss path. Thus, as can be
seen in Algorithm 4.1, its complexity is given by the complexityAligorithm 3.2multiplied by the
number of iterations in which a path augmentation is determined.

GPU efficiency initially increases with the complexity of the problem but starts to decrease
after a certain point, possibly due to GPU resource saturation. The spaegpdvaries between 1.04 and
5.72, with maximum values for mediursized problems. GPU perfmance is significantly superior to
CPU for most tested configurations, especially for medium and large graph sizes.
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Figure 4.4 Execution Times for Algorithm 4.1 in Dense Networks

As shown inFigure 4.1 the execution time on the GPU is significantly shorter than on the CPU
for all analyzed dense networks, regardless of the number of nodes. GPU efficiency is particularly
evident for large, dense networks. Thus, the execution time on the GPU increasesenstowly
compared to the CPU as the number of nodes grows. The spagaratio decreases as the number of
nodes increases. For smaller networks (20000000 nodes), the GPU offers considerable speap
(2.7-5.7 times). For larger netwdss (15000 25000 nodes), this ratio slightly decreases but remains
significant (2.98 4.45 times).

Chapter 5SFast GPU Interpolation for Map Generation

This chapter builds upon the worksSpridon Deaconu, and Ciupala, ICCSA 2023) and (Ciupala,
Deaconu, an@pridon2021), to which | am a cauthor. In this chapter, | present GPU methods for
generating pollution and geomagnetic maps using interpolation techniques, starting from
measurements taken at various points within a specific geographical area. | have conduztedracy
analyses of the generated maps and the efficiency of the used GPU methods, with the results
presented below.

5.1. Two-Dimensional Interpolation Methods

The general formulation of the spatial interpolation problem can be defined as follows:
Giverg values of a studied phenomenot Q,with 'Q pf, measured at discrete coordinate
positions i who , in a two-dimensional space, the goal is to find a functié®i c that satisfies
the conditions
"Oi wh 'Q pke (5.1)

Since there are infinitely many functions that satisfy this requirement, additional conditions must
be imposed, which define the nature of different interpolation techniques. Typical examples include
conditions based on geostatistical concepts (kriging)¢hlization (nearest neighbor and finite element
methods), smoothness, and splines or abloc functional forms (polynomials, mukguadrics). The
choice of additional condition depends on the nature of the modeled phenomenon and the type of
application.
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Several interpolation methods are used to generate maps in fields such as cartography, geography,
and spatial data analysis. Below, | will describe two of the most recent methods used for this purpose.

1 The/DW/nverse Distance Weightingnethod assumes that the estimated value is a function
of the distance between the estimation point and the sample locations, such that measured
values closer to the point of estimation have a greater influence on the estimated value than
those further anay.

1 Kriginginvolves estimating the unknown valugé 6 at a specific locationd based on a
weighted average of observed values i  at nearby sample point$ . The weights are chosen
to minimize the estimation error and are determined based on the spatial correlation structure
of the data. Kriging weights are obtained by solving a system of linear equations that express

the spatial autocovariance function of t data.

5.2. Accelerating Interpolation Methods UsingUDA

The implemented algorithms were tested on a system with an Intel(R) Core(TM)@750H
@ 2.60GHz processor, 16.0 GB RAM, NVIDIA GeForce RTX 2060 GPU, and Windows 10 Pro operating
system. These interpolation methods have been accelerated using CUDA prograigno generate
high- resolution maps in realtime. This tool could be used, for example, for monitoring geomagnetic
changes over large areas to identify changes that may occur in Earth's structure or for identifying
regions with specific magnetic propertgor reattime monitoring of pollution maps in various areas.

The pseudocode for the IDW algorithm is presented below (Ciupala, Deaconu, and Spridon

Algorithm 5.1 IDW dgorithm
Input: fhe Fo Fo R R

/* Determine resolution in the x and y directions ¥

) W
Qw B —
/* Compute the estimated values at each point of the grid */
®w o
ForQ pfedo
O w

PentruQ pfhexecut &

NORVINA A}
O O Qw

End for

End for

where"Q arethe estimated values on 2D & ¢ grid,al& v 07 for a rectangular region defined
by the coordinatesy ,® ho ,® NV, ® o o ® ). Thus,Algorithm 5.1
creates a 2D grid over a surface bounded by the coordinates ,0 ,0 ,®w .QadandQ care
calculated to determine the distance between grid points along thieand w axes, respectively
ubsequently, all grid points are processed to compute the valige at each coordinate ¢fw using a
weighted averagan Gfw . The distance between two grid points is calculated using the formula for the
distance on Earth between two points with given GPS coordinates.
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To use CUDA for IDW, we first need to parallelize the algorithm. In IDW, we must calculate the
distance between the estimation points and each of the sample points. This distance calculation can
be parallelized by assigning each GPU thread to a single goiht and calculating distances to all
sample points.

After calculating thedistances, we compute the weights for each sample point based on the
distance to the estimation point. This weight calculation canalso be parallelized by assigning each GPU
thread to a single sample point and computing its weight for all points where thalue is to be
estimated.

Finally, we can use the calculated weights to interpolate values at the grid points. This
interpolation step can also be parallelized by assigning each GPU thread to a single estimation point
and calculating its value based on the weighted average of trengple points' values.

The kriging interpolation algorithm was implemented following 4 stepAkgorithm 5.2).

Algorithm 5.2 Kriging algorithm
Input: e, he, 1 ey, Aoy fe AORT;

Calculation of Semivariance Points

Calculation of Semivariance Coefficients Using the Least Squares Method
Calculation of Interpolation Weights

Calculation of Interpolated Values

For parallelizing the kriging algorithm using CUDA, several stepsrauired: calculat the
variogram, compue the kriging matrix, and calcula&tkriging weights.

The calculation of the variogram involves determining the semivariance between all pairs of
sample points. This step can be parallelized by assigning each GPU thread to a single pair of sample
points and calculating their semivariance.

The calculation of the kriging matrix involves inverting a matrix that depends on the
semivariances between sample points.

Finally, the calculation of kriging weights involves determining the weights for each sample
point based on its distance and spatial correlation with the estimation point. This step can be
parallelized by assigning each GPU thread to a single estimatiompand calculating its weights for
all sample points.

53. Study of Air Poll ution Maps for

We used the | DW method to create pollution r
draw conclusions about pollution for the year 2020. We also compared air quality during the lockdown
period (when most economic and social activities were halted)edo the Covid19 pandemic and the
period when the economy was restarted. For this study, concentrations of carbon monoxide (CO), sulfur
dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10) were considered. Data for the four
stationsrepot i ng hourly poll ution in Brasov were downl
Network 2021 for the first half of 2020 for CO, PM10, SO2, and NO2.

Using the IDW algorithm, we generated maps of hourly pollutant concentrations; @dur
average maps for each pollutant, monthly average concentration maps, and average concentration
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maps for each day of the week to see how pollution differs on weekdays compared to weekends. We
also compared weekly statistics graphically and tracked monthly pollution trends. This was done
separately for each of the four stations and averaged for albsibns.

For each pollutant, we created two maps to compare the average concentration in January
(before the lockdown) and May (the last month of lockdown) (sEegure 5.3. Comparing the two
images, it is evidentthat air quality improved significantly for each pollutant due to reduced industrial
activity and the lower number of vehicles operating duririgat period.

high

medium

low

(b) CO- May

high

(¢) NG — January (d) NG — May

=

high

medium
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low medium
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(e) SG - January
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(g) PM10- January (h) PM10- May
Figure 5.1 Comparison of the average concentrations of major pollutants for January 2020 (a, c, e, gay2020 (b, a, f, h)

The experimental results presented in Table 5.1 showed that CUb&sed implementations
running on GPUs led to increased execution speed depending on the image resolution. IDW
interpolation was used to obtain images ranging in sizieom 150 x 100 to 4800 x 3200. The
experiments demonstrated that for small images (150 x 100 and 300 x 200), the CPU time was better.
For large images, GPU acceleration was consistent, up to 19 times faster.

Table 5.1GPU Execution Time Study

Image size CPU Execution Time (s)| GPU Execution Time (s) Speedup
100 x 150 0.017 0.031 0.55
300 x 200 0.065 0.071 0.92
600 x 400 0.268 0.101 2.65
1200 x 800 1.090 0.167 6.52

2400 x 1600 4415 0.322 13.71

4800 x 3200 17,913 0.942 19.02

5.4. Study ofGeomagnetic Maps of Romania

Geomagnetic data and maps are essential tools for understanding the Earth's magnetic field
and its various applications. Geomagnetic data provide insights into the structure and dynamics of the
Earth's interior, while geomagnetic maps are used for navigatj geological mapping, and scientific
research. These maps and data have practical applications in industry and commercial enterprises,
particularly in mineral exploration, energy development, and navigation.

5.5. CUDA Methods for Generating Geomagnetic Maps

Geomagnetic data for generating the geomagnetic map of Romania, using IDW and kriging
interpolation methods, were obtained from Romanian geomagnetic stations and through the Physics
Toolbox Sensor Suitapplication at over 1300 GPS positions spread across the country. The data were
collected through the Citizen Science initiative of the European Researchers' Night 22089 Handle
with Science project, funded by H2020, AG no. 818795/2018.

The studied region lies between 21° E and 29° E longitude and between 41° N and 49° N
latitude. The grids obtained have resolutions of 400 x 400, 800 x 800, 1200 x 1200, and 1600 x 1600,
so each grid point is approximately 2 km, 1 km, 0.75 km, and 0.5 kespectivelyFigures 5.2and5.3
show geomagnetic maps with 1 km resolution for the Romania region obtained using IDW and kriging
interpolation, respectively.
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Figure 5.2 Geomagnetic map obtained using IDW Figure 5.3Geomagnetic map obtained using krigirigterpolation

The results show better accuracy for the kriging interpolation method across all studied
resolutions. For example, while the median error value for IDW ranges between 4.476 and 4895
depending on resolution, for kriging, this value ranges between 2.§7land 3.687t T. Furthermore,
Figure 5.4shows lower average error values for the geomagnetic field with the kriging method.

Mean error (UT)

3
25
2
15
1
0.5
0

400 x 400 800 x 800 1200 x 1200 1600 x 1600

W IDW mkriging
Figure 5.4 Comparison of average error for the geomagnetic field obtained via IDW and Kriging

In other words,comparing the results, we can see that the kriging interpolation method has
lower error values for all analyzed errors compared to IDW, indicating better performance for this
method in geomagnetic data interpolation. Additionally, in general, as the geisalution increases, the
error values decrease, indicating improved interpolation accuracy with higher resolution.

The complex calculations involved in the kriging method lead to increased execution time for
all resolutions compared to IDW, as shown ifigure 5.5 The speed achieved for the IDW
implementation is very high and increases with the grid resolution, up to 104 times for the 1600x1600
grid. Although kriging speed is not as high as IDWigure 5.6, for the highest resolution studied, GPU
execution time decreased by 10 times comparedto CPU. Thus, it is observed that execution time for
both IDW and kriging methods is significantly lower for GPU implementations.
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Execution times (s) GPU speed-up
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= IDW CPU IDW GPU Kriging CPU Kriging GPU DWW mkriging
Figure 5.5 Execution times for IDW and Kriging on CPU and G Figure 5.6 Speed up for IDW and Kriging

Execution time on the GPU is significantly lower than on the CPU for both interpolation
methods and all grid sizes. This indicates that parallelizing interpolation algorithms using CUDA leads
to significantacceleration of the interpolation process. Specifically, speagd increases with the grid
size, showing that the benefits of parallelization are more pronounced for larger datasets. Thus,
implementing interpolation algorithms on the GPU using CUDA can be#icient choice for improving
performance and execution time. Comparing the speeg for the two methods, it is observed that,
generally, the speedup for Kriging is lower than for IDW for any grid size analyzed. This suggests that
parallelizing the Kging interpolation algorithm on the GPU using CUDA brings smaller benefits
compared to IDW. However, both methods can clearly benefit from GPU acceleration, and the
difference in speedup is influenced by the specific nature of the algorithms and their p#elization.
Nevertheless, considering both execution performance and result accuracy, it can be concluded that
although IDW provides a higher speedp and shorter execution time, Kriging is a better option when
aiming for high precision results despite donger execution time.

Chapter 6. Conclusions and Future Perspectives

In this work,Chapter Ipresentsseveral advantages and disadvantages of GPU programming
and reviewed some of the most important applications of GPU programming. This information was
published in the paper§pridon Advances in CUDA for computational physics, 2023).

The following chapters present some of my personal results published in scientific journals or
presented at international conferencesChapter 2introduces a fast and reliable algorithm called
AGREFA for generating random networks. The resulting networks can be used to test the correctness
and efficiency of algorithms developed for network flow problems, such as minimum cost flow,
maximum flow, or multi-commaodity flow problems. The CUDAarallelized version of AGRFA has
proven to be up to 19 times faster fogenerating large networks. With subsequent developments,
other specific network problems where AGRFA can be adapted could be identified. These results were
published as a ceauthor in the paper (Deaconu arepridon2021).

Chapter dntroduces and solves a practical problem called the minimum loss path problem or
maximum delivery rate path. This problem involves finding a path from a source node to a given sink
node in a generalized network, where each arc has an associated gainfiastor, such that the loss is
minimized among all st paths. The results show high speed when using GPU programming for
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Algorithm 3.1 on large and dense networks. Execution time improvement was also achieved for
Algorithm 3.2 using the BellmasFord algorithm in the GPtbased implementation. The results were
presented in the paper (Deacon@pridon and Ciupala 2023).

Chapter 4presents an application for determining the minimum loss path. Thus, the MLPP
algorithm is used in a generalized network to determine the minimum flow. An adaptation of the Ford
Fulkerson algorithm is proposed, where in each iteration the path with minimuoss is sought. This
results in the minimum loss flow in the network.

In Chapter 5 the generation of georeferenced maps using twdimensional interpolation
methods based on measured values at discrete points in a given geographical area is described. Thus,
pol l ution maps of -BYlalkdowwedestudied.§he maps we@lidavhédDdising
the IDW interpolation method, and for high resolutions, CUDA was used, resulting in significant speed
up in execution time. Additionally, geomagnetic maps of Romania were studied using IDW and kriging
interpolation methods, inestigating both the accuracy of the obtained maps and their generation
speed. The estimation errors in the geomagnetic maps are lower for the kriging interpolation method,
and execution speed was shown to be improved using GPU programming with CUDA. Thieswo
underpinning this chapter are (Ciupala, Deaconu, é®pridon2021) and §pridon Deaconu, and
Ciupala, ICCSA 2023).

As future research perspectives, in the field of twdimensional interpolation, | aim to study
the GPU parallelization of othemterpolation algorithms on irregular, noruniformly distributed
datasets and obtaining highresolution maps. Additionally, | want to develop hybrid models that
combine the processing power of GPUs with CPU parallelization methods to increase the execution
speed of algorithms when applied to large networks. This requires studying and evaluating the
performance of parallel algorithms in the context of graph theory on GRuIsd identifying limitations
and optimizing code to fully leverage CUDA architecture. Moreover, | plan to use GPU methods to
accelerate the computation and solve complex problems in computational physics, particulary
focusing on accelerating simulations odeling energy transport, particles, and interactions within
plasmas, and developing GPU algorithms to analyze complex phenomena such as turbulent transport
in plasmas.
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