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INTRODUCTION 
 
In this thesis, I used CUDA (Compute Unified Device Architecture) technology to optimize and 

enhance specific algorithms in various fields. I have structured the main contributions and results into 
several major directions, each bringing significant improvements in its application area by using parallel 
computing capabilities offered by NVIDIA GPUs (Graphics Processing Units). This work is based on six 
papers published in prestigious scientific journals or presented at international conferences, all indexed 
in recognized international databases, and one paper accepted for presentation and publication in the 
proceedings of a conference indexed by CORE. 

The first major contribution was the development and implementation of new algorithms for 
generating random networks, which are essential for modeling and simulating various natural and 
social phenomena. Random networks are used in numerous applications, from analyzing social 
structures to simulating diffusion processes in physics and chemistry. Using CUDA technology allowed 
for a significant acceleration in the process of generating these networks. Compared to traditional CPU 
(Central Processing Unit)- based methods, the proposed solution reduced execution time by 
parallelizing the generation operations, resulting in a significant increase in performance and the ability 
to handle large-scale networks. 

The second contribution was the proposal and implementation of algorithms for determining 
minimum loss paths in generalized networks. These algorithms are critical in various flow optimization 
applications, such as logistics, transportation, and telecommunications networks. Implementing them 
on the CUDA platform enabled parallel processing of nodes and edges in the network, significantly 
reducing computation time. Instead of processing each path sequentially, GPUs allowed simultaneous 
calculations, leading to much faster optimal solutions. This increased efficiency was demonstrated 
through tests on complex networks, where CUDA algorithms reduced the time required to determine 
optimal paths compared to traditional CPU solutions. 

As a practical application of the minimum loss path determination algorithms, we proposed a 
solution for minimizing flow loss in networks. This problem is particularly relevant in the context of 
distribution networks for energy, water, or other types of networks where losses can occur along the 
arcs. GPU optimization using CUDA enabled intensive calculations to be performed much faster than 
classical approaches. The developed algorithms were tested on large-scale networks and 
demonstrated high efficiency in identifying and minimizing losses. The results showed that the use of 
GPUs not only accelerates the computation process but also improves overall performance. 

Finally, we applied interpolation methods, such as Inverse Distance Weighting (IDW) and 
kriging, using CUDA to generate precise and detailed pollution and geomagnetism maps in a short time. 
Interpolation is a crucial method for mapping spatial data, used in geography, meteorology, and other 
Earth sciences. Implementing these methods on GPUs allowed for the parallelization of distance and 
weight calculations, significantly speeding up the interpolation process. This acceleration was 
particularly useful for large and complex datasets where traditional calculations would be too slow. 

In conclusion, by using CUDA technology, we optimized and enhanced essential algorithms for 
various applications, demonstrating that GPUs can bring significant improvements in performance and 
scalability of these algorithms. This paper highlights the enormous potential of parallel computing on 
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GPUs in solving complex problems and opens new directions for future research in the field. Thus, the 
research presented here is not only based on a solid foundation of studies and experiments published 
and validated internationally but also demonstrates extensive practical applicability in multiple 
scientific and technological domains. 

In summary, this thesis is based on the results obtained and published in journals or 
proceedings of internationally recognized conferences. Thus, in the domain of the thesis, I have 
published: 

- 1 ISI article in an A- list journal 
- 2 articles in a Scopus- indexed journal 
- 3 articles presented and published in the proceedings of CORE C-classified conferences 
- 1 paper accepted for presentation at a CORE C-classified conference  

Table 1 presents the classification of these works according to the standards for evaluating 
PhD theses in the field of Computer Science, valid at the time of the thesis defense. Furthermore, in 
terms of the impact of the results, I highlight that the papers published in the thesis domain have 11 
citations (excluding self- citations), of which: 

- 4 citations are in ISI- rated journals 
- 1 citation in a Scopus- indexed journal 
- 2 citations in the proceedings of CORE C-classified conferences 
- 3 citations of category D. 

 
Table 1 Published Works and Corresponding Scores, According to PhD Thesis Evaluation 

Standards 2018.10.01-Present1, Citations (excluding self- citations) 

No. No. of 
authors 

Artic le Title Journal / Proceeding International 
Database 

Score 1 Citations 

1. 2 Adaptation of 
Random Binomial 
Graphs for Testing 

Network. 

Mathematics ISI – A 8p 3 

2. 1 Advances in CUDA 
for computational 

physics 

Bulletin of the 
Transilvania 

University of Brasov. 
Series III: 

Mathematics and 
Computer Science 

Scopus 2p 1 

 
1 Standarde de evaluare a tezelor de doctorat: https://www.cs.ubbcluj.ro/invatamant/programe-

academice/doctorat/standarde-evaluare- teze-de-doctorat/  
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3. 3 IDW map builder 
and statistics of air 
pollution in Brasov 

Bulletin of the 
Transilvania 

University of Brasov. 
Series III: 

Mathematics and 
Computer Science 

Scopus 2p 3 

4. 3 Fast CUDA 
Geomagnetic Map 

Builder 

ICCSA -  Lecture Notes 
in Computer Science 

CORE C 2p -  

5. 3 Finding minimum 
loss path in big 

networks 

ISPDC -  IEEE Xplore CORE C 2p 4 

6. 4 New approach for 
the generalized 
maximum flow 

problem 

IASID – AC CORE C 1p -  

Total 17p 11 
 
In Table 2, we have presented the fulfillment of the current national minimum standards for 

awarding the title of Doctor in the field of Computer Science. Thus, in the thesis domain, I have 
published: 

¶ 1 paper in an ISI- rated journal 
¶ 2 papers in a Scopus- indexed journal 
¶ 4 papers presented at international conferences, of which 3 are in ISI, CORE C, Scopus, 

DBLP, IEEE/Springer, etc. 
 

Table 2 Fulfillment of National Minimum Standards for Awarding the Title of Doctor – 
Computer Science Committee2 

No. Criteria Type of paper 
No. of papers 
published by the 

author 

1. 

Publication or acceptance for publication 
(with proof of acceptance) of at least one 

article in ISI- indexed journals from the 
UEFISCDI list or in SCOPUS- indexed 

journals. 

ISI 1 

Scopus 2 

2. Participation in and presentation of at least 
two scientific papers at international  4 
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conferences, as proven by the conference 
program. 

(of which 3 ISI, 
CORE C, Scopus, 

DBLP, 
IEEE/Springer 

etc.) 3. 

Recognized conferences are those indexed 
in the following databases: SCOPUS, IEEE, 

ACM, SPRINGER, DBLP, CiteSeerX, 
Zentralblatt, MathSciNet, COPERNICUS, 

EBSCO, and ProQuest. 
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Chapter 1. High- Performance Computing on GPU 
 
In this chapter, a literature review published in my work (Spridon, Advances in CUDA for 

Computational Physics 2023) is presented. It provides a summary of the most important research 
results from recent years regarding GPU programming. Additionally, the most well- known methods of 
GPU programming are compared, highlighting the advantages and limitations of GPU programming 
using CUDA technology. 

1.1. Overviews 
High-Performance Computing (HPC) is a field of computer science that focuses on using 

systems and technologies to perform complex or computationally intensive calculations at superior 
speeds and efficiency. This field often deals with solving difficult problems and handling massive 
amounts of data in the shortest possible time. One of the most accessible methods to achieve this is 
by using Graphics Processing Units (GPUs). 

Table 1.1 provides a comparative overview of CPUs and GPUs. In short, GPU programming 
offers many benefits, including parallel processing, energy efficiency, cost-effectiveness, and flexibility. 
However, it also requires specialized knowledge and experience, has additional overhead for data 
transfer, and does not apply to all types of applications. Additionally, the performance gains of GPU 
programming are limited by hardware constraints, and large-scale applications may require specialized 
hardware or multiple GPUs to achieve optimal performance. 

The efficiency of a GPU can be directly proportional to the number of GPU cores. Due to this, 
GPUs can fully benefit from Moore's Law or the constant increase in integration density. GPU 
performance continues to improve at a rate of 1.5 times per year. In 2017, the performance gain over 
CPUs was 10-100 times, depending on the application. By 2025, this is estimated to be nearly 1,000 
times. Thus, while Moore's Law has slowed down for CPUs, and some even say it has ended, the 
growth in GPU computing power continues to keep pace (Huang 2023). 

 
Table 1.1. CPU / GPU comparison 

CPU GPU 

  
Up to several dozen very powerful cores Up to several thousand cores optimized for 

parallelism 
Higher frequencies for fast instruction 

execution 
Relatively lower frequencies but efficient 

parallel operations 
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Larger and more efficient cache memory 
for general processing tasks 

Smaller cache memory optimized for large 
datasets specific to graphics, in general 

Ideal for single- thread or lightly multi-
threaded compute tasks 

Optimized for graphics, parallel processing, 
and massively parallel algorithms 

Lower power consumption, ideal for 
portable systems 

Higher power consumption 

Usually more expensive per core, but the 
price can vary based on performance 

 

More affordable per core, but the total cost 
can be higher depending on configuration and 

graphics performance 
Executes instructions for general 

processing 
Executes parallel operations for graphics and 

intensive computation 
 
It is important to emphasize that CPUs and GPUs are designed for different uses, and the 

choice between them depends on the type of tasks that need to be performed. 

1.2. Parallel Programming on GPU. Applications.  
Due to their high parallel processing power, GPU programming has found applications in a wide 

range of fields. Some of the areas where GPU programming is used in recent research include artificial 
intelligence (AI) and machine learning (ML), big data analysis, scientific simulations, graphics and 3D 
rendering, medicine and bioinformatics, or cryptography and security (Figure 1.1). 

 

 
 

F igure  1.1 Recent Applications of GPU Programming (Baji 2018) 

GPUs enable the rapid transformation and analysis of large datasets (big data) (Chen et al. 
2018). This process includes real- time data analysis, data processing and filtering, and the application 
of machine learning algorithms to large datasets. Consequently, there is research exploring how GPUs 
can be used to accelerate big data processing. For example, various parallelization and optimization 
techniques are analyzed to achieve high performance in big data analysis (Wu, Sun et al. 2021) (Kumar 
and Mohbey 2022). Algorithms and optimization techniques are also proposed to reduce execution 
time and efficiently manage memory in big data analysis operations (Jiang et al. 2015). 
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GPU programming is used in computational sciences to accelerate intensive numerical 
computations (Prabhu et al. 2011). This includes simulations in physics, chemistry, biology, and other 
fields where complex and iterative calculations are performed. In computational physics, for instance, 
process acceleration is of great importance for obtaining the desired results in real time. GPU 
programming is a suitable approach for achieving excellent execution times when massive 
parallelization is possible (Spridon, Advances in CUDA for Computational Physics 2023). Thus, although 
many known algorithms used in computational physics have already been parallelized and some of 
them are included in the CUDA library (NVIDIA 2019), new methods of optimization and speed 
enhancement are still being sought. Execution time is crucial in many computational physics problems, 
and therefore any improvement in this direction is still necessary. Hybrid parallel algorithms (CPU-GPU) 
are continuously developed to achieve high-performance computing results with minimal costs 
(Spridon, Advances in CUDA for Computational Physics 2023). 

1.3. Technologies for Programming on GPU– CUDA  
There are several technologies and platforms available for GPU programming. Among these, 

the most important are CUDA (Compute Unified Device Architecture), OpenCL (Open Computing 
Language), SYCL (Single- source Heterogeneous Programming in C++), and Vulkan. 

In the literature, there are several studies comparing GPU programming technologies. For 
example, Karimi et al. perform performance tests and compare data transfer times to and from the 
GPU, kernel execution times, and end- to-end application execution times for both CUDA and OpenCL 
on the same graphics card (Karimi, Dickson, and Hamze 2010). Their results are shown in Figure 1.2. 
As observed from these tests, CUDA performed better in data transfer to and from the GPU. No 
significant change was noted in the relative performance of data transfer for OpenCL when transferring 
larger amounts of data. CUDA kernel execution was also faster than OpenCL, even though the two 
implementations were very similar. 

 

 
Figure  1.2 Comparison of CUDA vs. OpenCL Execution Times 

Thus, it is demonstrated that the CUDA architecture is a better choice for applications requiring 
high performance. Otherwise, the choice between CUDA and other GPU programming technologies can 
be made by considering factors such as previous familiarity with any of the systems, available 
development tools for the target GPU hardware, or the portability of the resulting application. In this 
work, I chose CUDA architecture for its superior performance previously demonstrated in the literature. 



 
 

10 
 

A schematic of a CUDA workflow protocol is presented in Figure 1.3. Applications begin running 
on the CPU, and the host code manages both host and device code. Data to be processed is loaded into 
host memory, necessary memory is allocated on the device, and data is loaded into device memory 
using CUDA API calls such as cudaMalloc() or cudaMemcpy(). 

Kernel functions are called from the CPU and executed on the GPU, leveraging the GPU's 
capability to handle intensive tasks that can be executed in parallel. To launch a kernel function, the 
number of threads and blocks to be used must be specified. This is done using the <<<>>> syntax in 
CUDA. Once the kernel is launched, it executes on the GPU. Each thread will execute the same code but 
with different data. Data for each thread is accessed using the thread index, which is provided by CUDA. 
To ensure that all threads have completed their work before moving to the next step, threads need to 
be synchronized using the __syncthreads() function. After the kernel has finished executing, data must 
be transferred back from the GPU to the CPU. Finally, memory allocated on the device must be freed 
using cudaFree(). 

 

 
Figure  1.3 CUDA Program Workflow Steps 

 
Memory management plays a crucial role in achieving the best results with CUDA 

programming. It is also necessary to understand the GPU memory hierarchy so that it can be utilized 
as efficiently as possible. The GPU memory levels (global memory, constant memory, shared memory, 
local memory, and registers) are illustrated in Figure 1.4. 

 

 
Figure  1.4 GPU Memory Hierarchy 

 
In the field of parallel computing and applications requiring high computing power, CUDA has 

become a popular technology. With CUDA, programmers can leverage the massive processing power 
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of GPUs to accelerate the solving of complex problems and achieve superior performance across 
various domains. 

 

Chapter 2. Generation of Random Networks 
 

This chapter presents two methods for generating random networks, which are necessary for 
studying the efficiency of algorithms in graph theory. The proposed generation methods are 
parallelized, and the results regarding execution times and acceleration using CUDA programming are 
discussed. This chapter builds on the work by Deaconu and Spridon (2021), to which I am a co-author. 

2.1. Graphs -  Fundamentals 
Graphs constitute a significant branch of both mathematics and computer science, 

concentrating on the analysis of structures that illustrate relationships between objects. They are used 
to model and analyze interconnections between various entities or elements. A graph consists of a 
collection of nodes or vertices, represented by points, and edges or arcs that connect these nodes. 
Graph theory studies the properties, characteristics, and algorithms associated with graphs. Graphs 
are widely used in different fields, including computer science, networks, optimization, artificial 
intelligence, and bioinformatics. Graph algorithms are used to solve problems related to search, 
traversal, connectivity, scheduling, and many others. By studying and applying graph theory, we can 
understand and analyze complex structures of relationships between objects, find efficient solutions 
to various problems, and develop optimized algorithms for different scenarios. 

Graph theory is a field that investigates the characteristics and behavior of various types of 
graphs, as well as the development of specialized algorithms to solve problems associated with 
graphs, being a branch of discrete mathematics. 

Definition 2.1 A graph is an ordered pair, Ὃ  ὠȟὉ, consisting of a set ὠ of elements called 
nodes or vertices and a set Ὁ of edges (or arcs) that connect these nodes. The formal definition of a 
graph can vary depending on the context in which it is used, but the following presents some basic 
elements of graph theory. 

In a graph Ὃ ὠȟὉ the number of elements in Ὁ or the cardinality of the set ὠ is called the 
order of Ὃ, and the number of elements in Ὁ, or the cardinality of the set Ὁ, is called the size of Ὃ. The 
order of a graph is usually denoted by ὲ, and the size of Ὃ is denoted by ά. Each element in ὠ is called 
node (or vertex), and each element in Ὁ is called edge. For an arc ὥ όȟὺ, the node ό and node ὺ are 
adjacent nodes; the arc ὥ and node ό (or ὺ) are incident to each other. For each arc ὥ όȟὺ, the nodes 
ό and ὺ are called terminal nodes. A loop is an arc ὥ όȟὺ whose terminal nodes are identical, i.e., 
ό ὺ. Multiple edges are a set of edges that have the same pair of terminal nodes. 

Definition 2.2 A random graph is a graph where the number of nodes, the number of edges, 
and the connections between them are generated randomly through various methods. 
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sErdős and Rényi introduced binomial random graphs in their 1959 paper (Erdős and Rényi 
1959). These random graphs are generated based on the values of two parameters: ὲ (the number of 
nodes) and ὴɴ πȟρ -  the probability of introducing any edge into the graph. In a network generated 
in this way, there is a possibility that the source might poorly communicate with the storage node or 
even not communicate at all. An algorithm for generating simple random graphs with a given degree 
sequence was developed in a paper by Bayati et al. (Bayati, Kim, and Saberi 2010). Using this algorithm, 
a random uniform graph with a given degree sequence is generated very quickly (in almost linear time). 
In 2002, Albert and Barabási introduced their model (BA), consisting of an algorithm based on the 
preferential attachment mechanism for generating scale-free random networks (Albert and Barabási 
2002). Networks generated in this way have real-world applications on the Internet, citation networks, 
the World Wide Web, and some social networks. The algorithm starts with a network having ά  given 
nodes. Sequentially, nodes are introduced into the network. Each of these newly added nodes is 
connected to ά  ά  existing nodes using a given probability, which is proportional to the number of 
connections that the previously added nodes already had. The probability ὴ of connecting a new node 
to node Ὥ is: 

   ὴ
В

       (2.1) 
Given that existing results in the literature about networks deal with specific graphs that are 

not general enough or inadequate for network flow problems, in the work (Deaconu and Spridon 2021), 
we proposed a new idea for generating random networks that has the advantages of being fast and 
based on the natural property of flow, which can be decomposed into elementary directed paths and 
cycles. Consequently, networks generated in this way are suitable for testing the correctness and 
efficiency of algorithms for network flow problems, such as minimum cost flow, maximum flow, multi-
commodity flow problem, etc. 

2.2. CUDA in Graph Theory 
GPU programming has shown promising results in accelerating graph theory algorithms in 

recent years. Some of the most recent research in GPU programming for graph theory is in the 
following directions: Graph Neural Networks (GNN) (Zonghan Wu, 2021) (Tianfeng Liu, 2023), graph 
partitioning (Santosh Nage, 2015), triangle counting in a graph (Liu Hu, 2021), algorithms for finding 
the shortest path between two nodes in a graph (Carl Yang, 2022). 

In general, recent research in GPU programming for graph theory demonstrates the potential 
of GPUs to accelerate graph theory algorithms and handle very large graphs. This can lead to improved 
performance and scalability for a wide range of applications, from machine learning to social network 
analysis or routing problems. 

2.3. Algorithms for Generating Random Graphs 
Let Ὃ  ὠȟὉȟίȟὸȟὧȟύ be an ί ὸ network, where ὠ is a set containing ὲ  π vertices 

(nodes), and Ὁ is a set of ά  π so-called arches (directed edges). Each arch ὥ  όȟὺ ɴ  Ὁ connects 
two nodes ό and ὺ from ὠ, and ί is a special node called the source and ὸ is a node called the sink. In 
Ὃ, we define the capacity function ὧȡὉᴼὙz  and the cost function ύȡὉᴼὙ . The value ὧὥ is the 
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maximum flow that can be transported from node ό to node ὺ on edge ὥ όȟὺᶰὉ, and ύὥ is the 
unit cost of transporting flow on edge ὥ. 

Ahuja and co-authors present the following theorem (Ahuja, Magnanti, and Orlin 1993): 
 

Theorem 2.1 Any admissible flow can be decomposed into paths and circuits such that: 
(a) Any path with positive flow connects the source ί to the sink node ὸ. 
(b) At most ὲ ά paths and cycles have non-zero flow. Of these, at most ά cycles have 

non-zero flow. 

The proof of Theorem 2.1 can be found in (Ahuja, Magnanti, and Orlin 1993). 
Comparisons of the correctness and efficiency of algorithms for flow problems are important 

when developing new methods to solve them. To achieve this, a fast and reliable tool is needed to 
generate random networks, starting from simple ones and extending to large-scale networks. We 
developed a method based on the Erdős–Rényi model using the idea from Theorem 2.1 to create such 
a tool. Since a flow can be decomposed into elementary flows, a natural approach is to generate 
random ί ὸ paths and elementary cycles. In the work by Deaconu and Spridon (2021), algorithms are 
presented for generating ί ὸ paths and elementary cycles in a network. Thus, a primary algorithm to 
generate a random ί ὸ path in a network with ὲ nodes is Algorithm 2.1.  

Deaconu and Spridon propose algorithms for generating paths and elementary circuits in a 
network (Deaconu and Spridon 2021). Thus, a primary algorithm for generating a random ί ὸ 
elementary path in a network with ὲ nodes is Algorithm 2.1. 

 
Algorithm 2.1. Algorithm Random s- t Directed Elementary Path v1 (ARDEP1) 
/* source is considered having the first index, and sink is considered having the last one */  
ί  π;  
ὸ  ὲ  ρ;  
/* only source is initially part of the path */  
for  each node Ὦ other than ί do  
 ὴὥὸὬὲέὨὩὮ  ὪὥὰίὩ;  
end for;  
ὴὥὸὬὲέὨὩί  ὸὶόὩ;  
/* build the random path */  
ό  ί;  
for  Ὦ  ρ to ὲ ρ do  
 /* choose a random index k of the next node to be added to the path */  
 Ὧ  ὶὥὲὨέάπȟὲ Ὦ ρ;  
 ὰ  π;  
 /* find node ὺ as the Ὧ- th node out of the nodes not before chosen */  
 for  each node ὺ do  
  if  ὴὥὸὬὲέὨὩὺ then  
   cont inue;  
  end if;  
  if  ὰ  Ὧ then  
   break;  
  end if;  
  ὰ  ὰ  ρ;  
 end for;  
 /* add arc όȟὺ to the network */  
 άὥόὺ  ρ;  
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 /* mark node ὺ as being part of path */  
 ὴὥὸὬὲέὨὩὺ  ὸὶόὩ;  
 /* if the last node ὺ added to the path is sink, then path is completed */  
 if  ὺ  ὸ then  
  break;  
 end if;  
 /* node ό becomes ὺ to prepare the adding of another node to the path */  
 ό  ὺ;  
end for; 

 
In ARDEP1, without restricting the generality of the algorithm, we consider the source’s index 

equal to π, and ὲ ρ as the index of the sink node ὸ. The algorithm builds a path starting from ί. At 
each iteration, a new node that was not previously added to the path is randomly selected and pushed 
at the end of the path. Each time a new node v is pushed back to the path, the arc όȟὺ is added to the 
network, i.e., the value of the adjacency matrix άὥ is set to 1 on the position όȟὺ, where ό is the node 
previously added to the path. The algorithm ends when the sink node is added to the path. 

For generating a random circuit (Algorithm 2.2), the algorithm is presented below. 
 

Algorithm 2.2. Algorithm Random Directed Elementary Cycle v1 (ARDEC1) 
/* choose a random node όπ */  
όπ  ὶὥὲὨέάπȟὲ ρ;  
/* only node όπ is initially part of the cycle */  
for  each node Ὦ other than όπ do  
 ὧώὧὰὩὲέὨὩὮ  ὪὥὰίὩ;  
end for;  
/* build the random cycle */  
ό  όπ;  
for  Ὦ  π to ὲ ρ do  
 /* choose a random index k of the next node to be added to the cycle */  
 Ὧ  ὶὥὲὨέάπȟὲ Ὦ ρ;  
 ὰ  π;  
 /* find node ὺ as the Ὧ- th node out of the nodes not before chosen */  
 for  each node ὺ do  
  if  ὧώὧὰὩὲέὨὩὺ then  
   cont inue;  
  end if;  
  if  ὰ  Ὧ then  
   break;  
  end if;  
  ὰ  ὰ  ρ;  
 end for;  
 /* if ὺ is ό then regenerate ὺ. This can only happen when ό  όπ */  
 if  ό  ὺ then  
  Ὦ  Ὦ ɀ ρ;  
 e l se   
  /* add arc όȟὺ to the network */  
  άὥόὺ  ρ;  
  /* mark node ὺ as being part of cycle */  
  ὧώὧὰὩὲέὨὩὺ  ὸὶόὩ;  
 end if;  
 /* if ὺ is the first chosen node όπ, then cycle is completed */  
 if  ὺ  όπ then  
  break;  
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 end if;  
 /* node ό becomes ὺ to prepare the adding of another node to the cycle */  

ό  ὺ;  
end for ; 

 
In ARDEC1, a cycle is built starting with a randomly chosen node u0. At each iteration, a new 

node that is not already part of the cycle is randomly selected and added to the cycle. Each time a new 
node ὺ is introduced into the cycle, the arc όȟὺ is also added to the network, where ό is the node 
previously added to the cycle. The algorithm ends when the node όπ is added again to the cycle. 

The algorithms ARDEP1 and ARDEC1 can naturally build directed elementary ί ὸ paths and 
cycles. Their time complexity is obviously ὕὲ . These two algorithms could be used together to build 
random networks. However, we shall present a faster approach below.  

Richard Durstenfeld proposes an algorithm to randomly generate a permutation (Durstenfeld 
1964). In Algorithm 2.3, we propose a similar but simpler approach to generate a shuffled vector of 
nodes having the indexes between Ὥίὸὥὶὸ and ὭὩὲὨ  (Deaconu and Spridon 2021). 

 
Algorithm 2.3. Algorithm Shuffled Vector of Nodes (ASVN) 
Input : Ὥίὸὥὶὸ, ὭὩὲὨ;  
 
/* the vector “nodes” initially contains the indexes from Ὥίὸὥὶὸ to ὭὩὲὨ */  
for  Ὦ  Ὥίὸὥὶὸ to  ὭὩὲὨ do  
 ὲέὨὩίὮ  ὮȠ  
end for;  
/* shuffle the vector “nodes” */  
for  Ὧ  Ὥίὸὥὶὸ to  ὭὩὲὨ do  
 ό  ὶὥὲὨέάὭίὸὥὶὸȟὭὩὲὨ;  
 ὺ  ὶὥὲὨέάὭίὸὥὶὸȟὭὩὲὨ;  
 if  ό  ὺ then  
  ίύὥὴ  ὲέὨὩίό;  
  ὲέὨὩίό  ὲέὨὩίὺ;  
  ὲέὨὩίὺ  ίύὥὴ;  

end if;  
end for; 

 
Next, I present two novel methods for randomly generating directed elementary ί ὸ paths 

and cycles using ASVN.  
 

Algorithm 2.4. Algorithm Random ▼ ◄ Directed Elementary Path v2 (ARDEP2) 

/* efficiently generate a shuffled vector of nodes without s and t */  
ASVN(ρȟὲ ς);  
ί  π;  
ὸ  ὲ ɀ ρ;  
/* randomly generate the length of the path */  
ὰὴὥὸὬ  ὶὥὲὨέάςȟὲȠ  
/* add the arcs given by the first ὰὴὥὸὬ nodes of the shuffled vector to the network */  
άὥίὲέὨὩίρ   ρ;  
for  Ὧ  ρ to ὰὴὥὸὬ ɀ σ do  
 άὥὲέὨὩίὯ ὲέὨὩίὯ  ρ   ρ;  
end for;  
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άὥὲέὨὩίὰὴὥὸὬ  ς ὸ  ρ; 

 
In Algorithm 2.4, first, ARDEP2 randomly generates the length of the path. ὰὴὥὸὬ ς nodes are 

then taken from the shuffled vector of nodes, and together with source and sink, generate the path. 
 

Algorithm 2.5 Algorithm Random Directed Elementary Cycle v2 (ARDEC2) 
/* efficiently generate a shuffled vector of nodes */  
ASVN(πȟὲ ρ); 
/* randomly generate the length of the cycle */ 
ὰὧώὧὰὩ  ὶὥὲὨέάςȟὲ; 
/* add the arcs given by the first lcycle nodes of the shuffled vector to the network */ 
for  Ὧ  π to  ὰὧώὧὰὩ ɀ ς do 
 άὥὲέὨὩίὯ ὲέὨὩίὯ  ρ   ρ; 
end for; 
άὥὲέὨὩίὰὧώὧὰὩ  ρ ὲέὨὩίπ  ρ; 

 
In Algorithm 2.5, ARDEC2 takes lcycle nodes from the shuffled vector of nodes and generates 

a cycle. 
Below, I introduce Algorithm 2.6 for generating a random flow network. 
 

Algorithm 2.6. Algorithm Generating Random ▼ ◄ Flow Network (AGRFN) 
/* generate ὲὴὥὸὬ random paths */ 

for Ὧ  ρ to ὲὴὥὸὬ do 
 ARDEP2; 

end for; 
/* generate ὲὧώὧὰὩ random cycles */ 
for Ὧ  ρ to ὲὧώὧὰὩ do 

 ARDEC2; 
end for; 
/* generate the adjacency lists ὰὥ using the adjacency matrix άὥ */  
for Ὥ  π to ὲ do 
 ὰὥὭ  ὲόὰὰ; 
end for; 
/* randomly attach capacities and costs to the arcs when they are added to ὰὥ */  

for Ὥ  π to ὲ do 
 for Ὦ  π to ὲ do 
 /* generate arcs according to ErdosςRényi model */ 

  if άὥὭὮ  π and ὶὥὲὨέάπȟρπππ  ὴz ρπππ then 
   άὥὭὮ  ρ; 

  end if; 
  if άὥὭὮ  ρ then 
   Push back (ὮȟὶὥὲὨέάάὭὲόȟάὥὼόȟὶὥὲὨέάάὭὲὧȟάὥὼὧ) to ὰὥὭ; 

  end if; 
 end for; 

end for; 

Theorem 2.3. The time complexity of AGRFN is ὕὲ  άὥὼὲ ȟὲ ȟὲ Ⱦ Ὣ. 

Usually, it is enough to consider the number of paths and the number of cycles less than the 
number of nodes. So, in practice, the time complexity is likely to be ὕὲ . 

The time complexity from Theorem 2.3 can be improved if the generation of the paths, cycles, 
and adjacency lists are parallelized. The computations from the algorithm are elementary and they only 
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involve integer values. So, AGRFN can be naturally parallelized on GPUs. Since the speed of generating 
of large-scale random networks is essential, time complexity improvement by parallelization can act 
an important role. Considering a total of Ὣ GPU cores, the generation of the paths and cycles can be 
divided into άὥὼρȟὲ ὲ  Ⱦ Ὣ  groups. The generation of the adjacency lists can also be 
divided into άὥὼρȟὲȾὫ groups. So, the time complexity of the parallel implementation on GPUs of 
AGRFN is ὕὲ  άὥὼὲ ȟὲ ȟὲ Ⱦ Ὣ. 

2.4. Results and Discussions  
In Figure 2.1, three networks having 6, 20, and 100 nodes, respectively, were generated and 

displayed. For the first network, 3 paths and 2 cycles were generated. For the second network, 10 
paths and 2 cycles were generated, and for the last network, 20 paths and 10 cycles were generated. 

Different tests were performed to illustrate the generating time of increasing the scale of 
random networks having the number of nodes between 10 and 10,000. As expected, and as shown in 
Table 1, the number of nodes together with the number of considered paths and cycles directly 
influence the speed of the network generation. An Asus ROG Strix G17 G712LV, Intel Core i7-10750H 
up to 5.10 GHz processor, 16GB RAM, NVIDIA GeForce RTX 2060 6GB GDDR6 with 1920 CUDA cores 
was used.  

 

 
Figure 2.1. Networks generated using AGRFN. (a) Network with n = 6, npath = 3, ncycle=2; (b) network with n = 20, npath = 10, ncycle = 2; 

(c) network with n = 100, npath = 20, ncycle = 10. 

 
The parallelization was implemented using CUDA programming on GPU. Each path and cycle 

were created on a different thread. Additionally, the creation of adjacency lists from the adjacency 
matrix was parallelized, the list for each node being obtained on a different thread. For small networks 
(less than 50 nodes) it is better to use the implementation of the algorithm on CPU, but when the 
number of the nodes of the networks is more than 50, the CUDA implementation is preferred resulting 
in a clear speed-up, up to 19 times faster than the CPU implementation. The speed-up was calculated 
as the ratio between CUDA and CPU execution times. The best speed-up was obtained for large-scale 
networks having thousands of nodes. 

In Figure 2.2, the speed-up evolution for generating networks of different dimensions is 
presented. As can be observed, for small- sized networks, running on the GPU leads to a decrease in 
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execution speed, most likely due to communication times between the CPU and GPU. As the network 
size increases, the acceleration factor due to massive parallelization on the GPU also increases, 
reaching an execution time 19 times shorter for a network with 10,000 nodes when running using 
CUDA.  

 
Figure 0.2 CPU/ CUDA speed-up (Deaconu and Spr idon 2021) 

The analysis of speed-up evolution for generating random networks of different sizes when 
using CUDA shows how the system's performance varies depending on the problem size. As expected, 
the larger the problem size, the more evident the advantages of parallelization with CUDA become. 
This is due to the GPU's ability to process a large amount of data in parallel, which can lead to significant 
improvements in execution time compared to sequential implementations on the CPU. 

Chapter 3: Finding the Minimum Loss Path in a Big Network 
 
In this chapter, I introduce and solve a practical problem known as the minimum loss path 

problem or the maximum delivery rate path. This problem involves finding the path from a source node, 
ί, to another given node, ὸ, called the sink, in a generalized network, which has a gain/loss factor 
attached to each arc, so that the loss is minimal among all ί ὸ paths. This is based on the work by  
(Deaconu, Spridon and Ciupala 2023), to which I am a co-author. 

3.1. Scientific Context 
The classic maximum flow problem involves finding the maximum flow that can be 

transported from a source node to a so-called sink node in a network where each arc has a capacity 
ὧὭȟὮȟὭȟὮ  Ὁ. For example, a natural gas supply company may want to maximize the amount of 
natural gas sent between two cities through its pipeline network. Each pipeline in the network 
obviously has a limited capacity. 

In the generalized problem, each arc, in addition to the corresponding capacity, may also have 
a loss or gain factor that must be considered when calculating the maximum flow. In other words, the 
generalized problem for determining the maximum flow is an extension of the classic maximum flow 
problem in a network where, to determine the maximum amount of flow, other factors such as costs 
or variable capacities of the arcs must also be taken into account. 
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The Inverse Generalized Maximum Flow (IGMF) problem was introduced and studied by 
(Tayyebi and Deaconu 2019). In this problem, the goal is to modify the capacities of the arcs so that a 
certain admissible flow becomes the maximum flow in the modified network, and the distance 
between the initial capacity vector and the modified capacity vector is minimized.  

To the best of my knowledge, these two problems are the only optimization problems that 
have been analyzed in networks with gains or losses on the arcs. 

3.2. The Minimum Loss Path Problem  
Let ' 6ȟ% be a directed graph, where ὠ is a finite set of elements called vertices or nodes, 

and  Ὁ is a set of ordered pairs of vertices, called arcs or directed edges (Ὁ Ṗὠ  ὠ). We will consider 
that graph Ὃ is a mathematical representation of a real- life transportation network (for water, sewage, 
gas, electricity, etc.), where the arcs represent the transportation lines, and the nodes represent the 
intersections of these lines. In real- life transportation networks, there are usually losses on the arcs 
due to various reasons such as evaporation, leaks, energy dissipation, theft, etc. To mathematically 
model this, we consider for each arc όȟὺᶰὉ a loss coefficient, or delivery rate, denoted by όȟὺᶰ
πȟρ. Thus, if ὼ units enter from node ό on arc όȟὺ then ὼẗό ȟὺ ὼ units will reach node ὺ. 

 In the following, I will present a method for calculating the minimum loss path (MLP) or 
maximum delivery rate path (MDP) from a source node, ί, to a sink node, ὸ. We denote this problem as 
the Minimum Loss Path Problem (MLPP). To solve the MLPP, we need to identify a path in GGG from ί 
to ὸ such that the delivery rate from ί to ὸ is the maximum among all paths in  , that is, we need to 
find the solution to the following optimization problem: 

άὥὼὺȟὺ Ͻ ὺȟὺ ϽȣϽὺ ȟὺ

ὖ   ὺ ίȟὺȟȣȟὺ ᶰ 
      (3.1) 

To solve the above problem, we proceed by transforming problem (3.2) into a minimization 
problem as follows: 

άὭὲÌÏÇ ὺȟὺ Ͻ ὺȟὺ ϽȣϽὺ ȟὺ

ὖ   ὺ ίȟὺȟȣȟὺ ᶰ 
     (3.2) 

where the base of the logarithm is greater than 1, for example, the base can be Ὡ or 10.  
The previous problem can be rewritten in the form: 
άὭὲὺȟὺ  ὺȟὺ Ễ ὺ ȟὺ

ὖ   ὺ ίȟὺȟȣȟὺ ᶰ 
    (3.3) 

where: 

 ɼÖȟÖ ÌÏÇɻÖȟÖ πȟÉ πȟρȟȢȢȢȟË ρ. 

Given that the  values attached to the arcs are positive, it is now easy to observe that problem 
(3.2) has been reduced to a classic optimization problem for finding the shortest path in the network 
Ὃ ὠȟὉȟ. This problem can be efficiently solved using Dijkstra's algorithm with a time complexity 
of ὕὲ  or ὕάẗὰέὫ ὲ , depending on the implementation (Schrijver 2012) (Fredman and Tarjan 
1984), where ὲ denotes the number of nodes (ὲ ȿὠȿ), and ά represents the number of arcs (ά
ȿὉȿ. Consequently, Algorithm 3.1 presented below calculates the MLP in GGG. 

 
Algorithm 3.1. MLP computation in lossy networks 
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Input:  
¶ a directed graph Ὃ ὠȟὉ   
¶ όȟὺᶰ πȟρȟόȟὺᶰὉ     

Output:  
¶ MLP of Ὃ 

 /* Calculate όȟὺ Ⱦz 
For  Ὧ πȟά  ρ do 
 ɼὥ ÌÏÇɻὥ ,  ὥᶰὉ 
end for 
I f  node ὸ is not reachable from ί then 
 MLPP has no solution 
e l se 
 Apply shortest Path Algorithm starting from ί in Ὃ ὠȟὉȟ  
 Let ὖ ί ὺȟὺȟȣȟὺ ὸ be the shortest path from ί to ὸ, then  ὖ is MLP of  Ὃ ὠȟὉ from ί to ὸ 
End if. 

 
We will now investigate the more general case where some arcs may have gains instead of 

losses. These gains can be obtained, for example, through injection into the network on certain arcs (a 
new gas source, a prosumer in the electrical network, etc.). Thus, instead of setting όȟὺᶰπȟρ, we 
could consider όȟὺ as having positive values, with όȟὺ ρ on an arc όȟὺ if and only if there is 
a gain on that arc. 

This optimization problem has the same mathematical model (3.1) and can also be transformed 
into the minimization problem (3.3). However, it is observed that the values of ὥ ὰέὫ ὥ  
can be negative (on arcs where όȟὺ ρ). Moreover, if there is a negative cycle in the resulting 
network, it corresponds to a circuit with infinite gain (the product of the ɻ\ alphaɻ values on such a 
cycle is greater than 1). On an ί ὸ path containing such a circuit, a maximum delivery rate cannot be 
found because the flow can be infinitely increased by passing infinitely many times through that circuit. 

Algorithm 3.2 solves the MLPP in the generalized case (in networks where there can be both 
gains and losses on arcs).  
 
Algorithm 3.2 The Minimum Loss Path Determination Algorithm in a General ized Network 
Input:  

¶ a directed graph Ὃ ὠȟὉ   
¶ όȟὺᶰ πȟρȟόȟὺᶰὉ     

Output:  
¶ MLP of Ὃ 

 /* Calculate όȟὺ Ⱦz 
For  Ὧ πȟά  ρ do 
 ɼὥ ÌÏÇɻὥ ,  ὥᶰὉ 
end for 
I f  node ὸ is not reachable from ί then 
 MLPP has no solution 
e l se 

 Apply Bellman-Ford’s algorithm starting from s in Ὃ  ὠȟὉȟ 
 I f  G has negative cycle then 
  MLPP has not solution. 

 e l se   
  Let ὖ ί ὺȟὺȟȣȟὺ ὸ be the shortest path from ί to ὸ, then  ὖ is MLP of  Ὃ ὠȟὉ  from ί to ὸ 
 End if 
End if 
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As with the previous algorithm, in Algorithm 3.2, the  function is initially calculated for each 
arc of the network. Subsequently, the feasibility test for MLPP is performed. If the sink node ὸ is 
accessible from the source node ί, the Bellman-Ford algorithm is applied to determine the shortest 
path in the newly formed network Ὃ ὠȟὉȟ. If a negative cycle is identified in the network, then 
the problem of finding the minimum loss path has no solution; otherwise, the found path is also the 
minimum loss path in the initial network. 

3.3. Algorithms for Determining the Shortest Path in a Network  
Algorithms for determining the minimum path are methods used in graph theory and 

operational computing to find the shortest path between two points (nodes) in a graph. These 
algorithms are essential in various fields such as communication networks, transportation, logistics, 
and artificial intelligence. 

Dijkstra's algorithm is designed to find the shortest path in a graph with only positive arc costs 
(Dijkstra, 1959). It is widely used in computer science and engineering to find optimal paths in 
transportation networks, internet routing, and many other applications. However, Dijkstra's algorithm 
cannot be applied to networks with negative arc values. 

The Bellman-Ford algorithm can determine the shortest path in a graph containing arcs with 
negative cost values (Bellman, 1958). Additionally, this algorithm can also decide whether the network 
contains negative cycles (with infinite gains). If such cycles are present, the problem is infeasible. 

Considering the size of networks in real- life applications, the execution time of the proposed 
algorithms is very important. Therefore, a method of parallelization using GPU programming through 
CUDA (Compute Unified Device Architecture) was used for the proposed algorithms. The Dijkstra and 
Bellman-Ford algorithms have previously been implemented on CUDA architecture (Harish and 
Narayanan, 2007; Ortega-Arranz et al., 2013; Surve and Shah, 2017). Various parallelization 
techniques have been used, resulting in significant speed improvements compared to CPU 
implementations. We have adapted these approaches for calculating MLPs. 

In Dijkstra's algorithm, in each iteration Ὥ, the minimum distance between the source and the 
nodes belonging to the set of unset nodes (nodes for which the minimum distance has not yet been 
determined), ὟὭ, is calculated. One of the nodes for which the distance is equal to this minimum value 
is set and becomes the node to be analyzed. The outgoing arcs of the analyzed node are traversed to 
relax the distances corresponding to adjacent nodes. 

To parallelize Dijkstra's algorithm, it is necessary to identify which nodes can be used as 
analyzed nodes simultaneously. There are several studies in which the set of analyzed nodes has been 
determined in various ways. For example, in the study by Martin, Torres, and Gavilanes (2009), it is 
proposed to insert all nodes that have a distance equal to the minimum distance into the set of 
analyzed nodes. Ortega-Arranz et al. propose an improvement by adding nodes that have a distance 
greater than the determined minimum distance to the set of analyzed nodes (Ortega-Arranz et al., 
2013). 

The algorithm calculates, in each iteration Ὥ, for each node in the set of unset nodes όᶰὟὭ, 
the sum of the distance calculated up to that point and the costs of its outgoing arcs. Subsequently, 
the minimum of these calculated values is determined. Finally, those nodes whose distance is less than 
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or equal to this minimum value determined in the previous step are set and inserted into the set of 
analyzed nodes. ῳὭis defined as the minimum value calculated in each iteration Ὥ, which supports that 
any unset node ό with a distance ό ῳὭ  can be set. The larger the value of ῳὭ, the more parallelism 
is exploited. However, depending on the graph being processed, using a very optimistic ῳὭ  can lead to 
computations that negate any performance gains over sequential execution. 

Algorithm 3.3 represents the pseudocode of the parallelized Bellman-Ford algorithm for GPU 
implementation. The first stage is the initialization, which takes place on the GPU. This is followed by 
the relaxation stage, in which it is checked whether there is a shorter path from the source node to a 
given node. For this stage, the kernel function -  Algorithm 3.4 -  is called. 

By leveraging the parallel processing capabilities of GPUs, both Dijkstra's and Bellman-Ford 
algorithms can be significantly accelerated, making them suitable for large-scale network applications. 

 
Algorithm 3. GPU implementation of Bel lman -  Ford algorithm 
Input: an oriented graph Ὃ ὠȟὉ   
Output:  MLP în G 

 
<<<initialiation>>>(dist) 
steps = 0 
Repea t 
ÄÉÓÔὨὭίὸ,  ὥ Ὁɴ 

 ὄὩὰὰάὥὲὊέὶὨ ὯὩὶὲὩὰὋȟὨὭίὸȟὨὭίὸᾥόὼ 
    ίὸὩὴί  ίὸὩὴί  ρ 

unt il  ὨὭίὸᾥόὼ  ὨὭίὸ or ίὸὩὴί  ὲ ρ 
 
Each kernel (Algorithm 3.4) executes one GPU thread for each node ὺ with index ὭὨ, calculating 

the minimum distance. For this, the previously calculated shortest paths for the predecessors of the 
nodes are used. If a new, shorter path is found for ὺȟ the distance is updated for node ὺ. Thus, in each 
iteration, a new distance vector is calculated, which replaces the old distance vector at the end of the 
iteration. The algorithm stops when the two distance vectors are the same or if a negative cost cycle 
is found. 

 
Algorithm 4. Bel lman- Ford kernel 
Input:  

¶ directed graph G = (V, A), 
¶ dist -  distances vector 
¶ dist_aux – auxiliar distances vector 

ὭὨ  ὸὬὶὩὥὨὍὨ 
//find the shortest distance from source to id node 
άὭὲ ὍὔὊ 
For all predecessors Ὥ of ὸὭὨ do 
 If  ύὭȟὸὭὨ  ὨὭίὸᾥόὼὭ  άὭὲ then 
  άὭὲ  ύὭȟὸὭὨ  ὨὭίὸᾥόὼὭ 
 End if  
End for 
If  άὭὲ  ὨὭίὸᾥόὼὭὨ then 
 ὨὭίὸὭὨ  άὭὲ 
End if  
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3.4. Results and Discussions 
To test the MLPP algorithms, random networks were generated using the method described 

in (Deaconu and Spridon, 2021). The tests were conducted on an Intel(R) Core(TM) i7-10750H CPU @ 
2.60GHz 2.59 system, equipped with an NVIDIA GeForce RTX 2060 GPU and running Windows 10. The 
random networks analyzed had between 2,000 and 50,000 nodes and a varying number of arcs, 
generated using Algorithm 2.6. Execution times for small networks are very short, and GPU 
programming is not necessary. As the number of nodes increases, the execution speed increases up to 
390 times for networks with 40,000 nodes and up to 326M arcs, as shown in Figure 3.1. 

 

 
Figura 0.1 Speed-up on GPU for Algorithm 3.1 on dense networks with varying numbers of nodes 

(Deaconu, Spridon and Ciupala 2023) 

In the case of implementing Algorithm 3.2, based on the Bellman-Ford algorithm, the 
execution time increases with the number of nodes and the density of the network arcs. The highest 
speed-up on the GPU is 5.8, achieved for a network with 10,000 nodes and 24M arcs (Figure 3.2).  

 

 
Figure 3.2 Speed-up on GPU for Algorithm 3.2 on dense networks with varying numbers 

of nodes (Deaconu, Spr idon and Ciupala 2023) 

Overall, the execution time on the GPU is significantly lower than on the CPU for all network 
sizes. This highlights the benefits of CUDA parallelization. Although the GPU execution time increases 
with the network size, it does so at a slower rate than the CPU execution time (Figure 3.3). 
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Figure 3.3 Execution time for A lgor ithm 3.2 on dense networks 

 

Additionally, as network density increases, so does the execution time for the sequential 
implementation, whereas for the parallel implementation, the increase in execution time with network 
density is slower (Figure 3.4). 

 

 
Figure  3.4 Execution time evolution for Algorithm 3.2 as a function of network density 

The speed-up values are significant, indicating the benefits of CUDA parallelization as networks 
become larger. The general interpretation of the results shows that CUDA parallelization brings 
substantial performance improvements for the Bellman-Ford algorithm, especially for large networks. 

In conclusion, the results demonstrate increased execution speed when using GPU 
programming for Algorithm 3.1 on large and dense networks. Although not as significant, an 
improvement in execution time was also achieved for Algorithm 3.2, using the Bellman-Ford algorithm 
in the GPU-based implementation. 

Comparing the results of the two algorithms, we can observe differences and similarities in 
their performance. Both algorithms exhibit significant speed-up with CUDA parallelization. Both 
algorithms benefit from shorter execution times on the GPU compared to the CPU for networks of 
varying sizes. However, differences are noticeable in how execution time varies with network size for 
each algorithm. For example, the execution time for Algorithm 3.1 on the GPU may increase more 
rapidly with network size, while the Bellman-Ford algorithm seems to have a slower increase (Figure 
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3.3). For both algorithms, the benefits of GPU parallelization become more evident as the problem size 
grows. The relative performance of the two algorithms may vary depending on network characteristics 
and other application-specific considerations. The Dijkstra algorithm is known for its lower complexity 
compared to Bellman-Ford, which may influence relative performance based on specific network 
features. 

Chapter 4. Determining the Minimum Loss Flow in a Generalized 
Network 

 
In this chapter, I present a possible application of algorithms for finding the minimum loss path 

to determine the maximum flow in a generalized network (with losses/gains on the edges). The Ford-
Fulkerson algorithm has been adapted to sequentially find s- t paths with minimum loss. I describe two 
possible implementations of the algorithm: sequential and using GPU parallelization. Multiple tests 
were conducted for both implementations, comparing execution times. These results were accepted 
for presentation at the 21st International Conference on Applied Computing (AC 2024) (Spridon, 
Deaconu, and Popa, et al. 2024).  

4.1. The Traditional Maximum Flow Problem  
In the maximum flow problem, the objective is to send as much flow as possible between two 

nodes, respecting the capacity limits of the edges. An instance of the maximum flow problem is an 
antisymmetric network Ὃ  ὠȟὉȟίȟὸȟὧ, where ίɴ ὠ  is the source node,  ὸ ɴ  ὠ  is the sink node, 
and ὧ s a capacity function. 

Theorem 4.1 A flow is maximum if and only if there are no augmenting paths in the residual 
network. 

The proof of Theorem 4.1 can be found in the work of Ford and Fulkerson (1956)      . 
A residual network is a network Ὃ ὠȟὉȟὧ , where ὧȡὉᴼ ᴙ, ὧ όȟὺ ὧόȟὺ Ὢόȟὺ,  

is the residual capacity function. For example, if ὧόȟὺ  τπ, ὧὺȟό  π, and Ὢόȟὺ 
 Ὢὺȟό  ςω, then the arc όȟὺ has τπ  ςω ρρ units of residual capacity, and the arc 
ὺȟό has π  ςω  ςω units of residual capacity. 

In short, the maximum flow problem is a classic optimization problem in graph theory, 
involving finding the maximum amount of flow that can be sent through a network of pipes, channels, 
or other pathways, subject to capacity constraints. The problem can model a wide range of real-world 
situations, such as transportation systems, communication networks, or resource allocation. 

A common approach for solving the maximum flow problem is the Ford-Fulkerson algorithm 
(Ford and Fulkerson 1956), which is based on the concept of augmenting paths. This algorithm has as 
input parameters a network, Ὃ ὠȟὉȟὧȟίȟὸ, with source node, ίȟ and sink node, ὸ, and as output 
parameter is Ὢ, the maximum flow that can be admitted through the network Ὃ. 
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4.2. The Generalized Maximum Flow Problem  
The generalized maximum flow problem extends the traditional maximum flow problem by 

allowing the flow to change while being transmitted through the network. As before, each edge όȟὺ 
has a capacity ὧόȟὺ that limits the amount of flow sent through that edge. In addition, each edge 
όȟὺ is associated with a positive coefficient όȟὺ π, called the gain/loss factor. The gain/loss 

factor is a function ȡὉᴼὙ  . For each unit of flow entering edge όȟὺ from node ό, only όȟὺ 
units reach node ὺ. An edge with losses is one where  ρ, and an edge where there is a gain has 
ρ. Without loss of generality, we assume that the gain/loss function is symmetric, i.e., όȟὺ
ρȾὺȟό. If this assumption is not satisfied, we can add the symmetric edge and assign it a zero 
capacity (Wayne 1999).  

To solve the generalized maximum flow problem for determining the minimum loss flow, we 
propose an adaptation of the Ford-Fulkerson algorithm (Algorithm 4.1) so that, at each iteration, the 
minimum loss path algorithm (Algorithm 3.2) is applied to find a new path in the residual network. The 
choice of Algorithm 3.2 is explained by the fact that, both in the case of networks with only losses on 
edges and in the case of networks with losses or gains on edges, the resulting residual network 
contains both types of edges due to the way the loss factor is calculated in that network. In other 
words, if in the initial network an edge όȟὺ has a gain/loss factor όȟὺ, then the gain/loss factor in 
the residual network is  όȟὺ όȟὺ on the direct edge, and on the reverse edge, we have 
 ὺȟό

ȟ
. 

 
Algorithm 4.1 Adaptation of the Ford-Fulkerson Algorithm for Determining Maximum Flow in a 
General ized Network 
Input:  

¶ Network  Ὃ ὠȟὉȟίȟὸȟὧȟ  
Output:  

¶ f – minimul loss flow in  Ὃ 
 

Initialize a feasible flow f = 0 
Initialize the residual network Gf = G 
Foreach όȟὺ ɴ  Ὁ do 
  όȟὺ όȟὺ 
  ὺȟό

ȟ
 

End foreach 
Whil e there exists an augmenting path from s to t in Gf do 
 Find an augmenting path ὖ in ὋὪ using A lgor ithm 3.2  
 Update the residual network ὋὪ using A lgor ithm 4.2 
End whil e 

 
To update the residual network, ὋὪ, along the path, ὖ, found, Algorithm 3.2 is used. This 

algorithm involves determining the maximum feasible flow on the augmenting path and then updating 
the residual capacities and gain/loss factors in the residual network to reflect this flow. Thus, the 
residual network is prepared for subsequent iterations of the flow algorithm. 

The proposed algorithm has two stages: 
1. Determination of feasible flow on the augmenting path ὖ: 
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¶ Initialize flow Ὢ with the residual capacity of the first arc ίȟό in ὖ. 
¶ For each arc όȟὺ in path ὖ while node ό is not the destination ὸ:  

Á Update flow f with the minimum of the current flow Ὢ   όȟὺand the 
residual capacity, ὧ όȟὺ   όȟὺȢ 

Á  Go to the next node ό  ὺ on path ὖ. 
2. Update residual network, ὋὪ : 

¶ Start from the sink nodeȟὺ  ὸ. 
¶ For each arc όȟὺ on path ὖ while node ὺ is the source ί: 

Á Adjust flow f according to the gain/loss factor  όȟὺ. 
Á On arc όȟὺ, update the residual capacity ὧ όȟὺ  ὧ όȟὺ  ὪȾ όȟὺ, 

and for the reverse arc, add the flow to its residual capacity ὧ ὺȟό  ὧ ὺȟό  ὪȢ 
Á Advance on path ὖ towards the source, to the previous node ὺ  ό. 
 

Algorithm 4.2. Updating the Residual Network after Finding a New Augmenting Path in ἑἮ 
Input:  

¶ Residual network Ὃ ὠȟὉȟίȟὸȟὧȟ   
¶ Augmenting path from ί to  ὸ found, ὖ in Ὃ 

Output:  
¶ Updated residual network, Ὃ 
¶ Feasible flow, Ὢ 

/ / Determine the flow value at node ὸ on path ὖ  
Consider a flow, Ὢ  ὧίȟό, where ίȟόᶰὖ is the first arc in ὖ 
ό  ί 
whil e  ό ὸ do 
 Consider the arc όȟὺᶰὖ 

Ὢ  άὭὲὪϽ όȟὺȟὧ όȟὺϽ όȟὺ   
 ό ὺ 

End whil e 
// Update Ὃ 
ὺ ὸ 
whil e  ὺ ί do 

Consider the arc όȟὺ ὖɴ 
ὧόȟὺ ὧόȟὺ ὪȾ όȟὺ 
ὧὺȟό ὧὺȟό Ὢ 

 Ὢ  ὪȾ όȟὺ 
 ὺ ό 
End whil e 

4.3. Results and Discussions 
When implementing the proposed algorithm, the acceleration results when using GPU 

programming are similar to those obtained for Algorithm 3.2, as the efficiency can be achieved by using 
the parallel Bellman-Ford algorithm for each determination of a minimum loss path. Thus, as can be 
seen in Algorithm 4.1, its complexity is given by the complexity of Algorithm 3.2 multiplied by the 
number of iterations in which a path augmentation is determined. 

GPU efficiency initially increases with the complexity of the problem but starts to decrease 
after a certain point, possibly due to GPU resource saturation. The speed-up varies between 1.04 and 
5.72, with maximum values for medium-sized problems. GPU performance is significantly superior to 
CPU for most tested configurations, especially for medium and large graph sizes. 
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Figure  4.4 Execution Times for Algorithm 4.1 in Dense Networks 

As shown in Figure 4.1, the execution time on the GPU is significantly shorter than on the CPU 
for all analyzed dense networks, regardless of the number of nodes. GPU efficiency is particularly 
evident for large, dense networks. Thus, the execution time on the GPU increases more slowly 
compared to the CPU as the number of nodes grows. The speed-up ratio decreases as the number of 
nodes increases. For smaller networks (2000-10000 nodes), the GPU offers considerable speed-up 
(2.7-5.7 times). For larger networks (15000-25000 nodes), this ratio slightly decreases but remains 
significant (2.98-4.45 times). 

Chapter 5.Fast GPU Interpolation for Map Generation 
 
This chapter builds upon the works (Spridon, Deaconu, and Ciupala, ICCSA 2023) and (Ciupala, 

Deaconu, and Spridon 2021), to which I am a co-author. In this chapter, I present GPU methods for 
generating pollution and geomagnetic maps using interpolation techniques, starting from 
measurements taken at various points within a specific geographical area. I have conducted accuracy 
analyses of the generated maps and the efficiency of the used GPU methods, with the results 
presented below. 

5.1. Two- Dimensional Interpolation Methods  
The general formulation of the spatial interpolation problem can be defined as follows: 
Given ὲ values of a studied phenomenon ὠὮ , with Ὦ  ρȟὲ, measured at discrete coordinate 

positions  ὶ ὼȟώ , in a two-dimensional space, the goal is to find a function Ὂὶ c that satisfies 
the conditions: 

Ὂὶ ὠȟᶅὮ  ρȟὲ       (5.1) 
      

Since there are infinitely many functions that satisfy this requirement, additional conditions must 
be imposed, which define the nature of different interpolation techniques. Typical examples include 
conditions based on geostatistical concepts (kriging), localization (nearest neighbor and finite element 
methods), smoothness, and splines or ad-hoc functional forms (polynomials, multi- quadrics). The 
choice of additional condition depends on the nature of the modeled phenomenon and the type of 
application.  

0

500

1000

1500

2000

2000 5000 10000 15000 20000 25000Ñ
Ŕ
ů
Ɠ
Ш
Ĭ
Ĳ
Ш
Ĳ
ǂ
Ĳ
Ħ
ƨ
Ƨ
Ŕ
Ĳ
Ш
ы
ƚ
ь

 ƨůčƖƨũШĬĲШŰŸĬƨƖŔ

CPU GPU



 
 

29 
 

Several interpolation methods are used to generate maps in fields such as cartography, geography, 
and spatial data analysis. Below, I will describe two of the most recent methods used for this purpose. 
¶ The IDW (Inverse Distance Weighting) method assumes that the estimated value is a function 

of the distance between the estimation point and the sample locations, such that measured 
values closer to the point of estimation have a greater influence on the estimated value than 
those further away. 

¶ Kriging involves estimating the unknown value ᾀό at a specific location ό based on a 
weighted average of observed values ὠὶ  at nearby sample points ὶ . The weights are chosen 
to minimize the estimation error and are determined based on the spatial correlation structure 
of the data. Kriging weights are obtained by solving a system of linear equations that express 
the spatial autocovariance function of the data.  

5.2. Accelerating Interpolation Methods Using CUDA 
The implemented algorithms were tested on a system with an Intel(R) Core(TM) i7-10750H 

@ 2.60GHz processor, 16.0 GB RAM, NVIDIA GeForce RTX 2060 GPU, and Windows 10 Pro operating 
system. These interpolation methods have been accelerated using CUDA programming to generate 
high- resolution maps in real-time. This tool could be used, for example, for monitoring geomagnetic 
changes over large areas to identify changes that may occur in Earth's structure or for identifying 
regions with specific magnetic properties or real- time monitoring of pollution maps in various areas. 

The pseudocode for the IDW algorithm is presented below (Ciupala, Deaconu, and Spridon). 
 

Algorithm 5.1 IDW algorithm 
Input: ὴȟ ὼ ȟὼ ȟώ ȟώ  ȟὲȟά;  

 
/* Determine resolution in the x and y directions */Ὠὼ  
Ὠώ

ώ ώ

ά
 

/* Compute the estimated values at each point of the grid */ 
ώ ώ  
For Ὥ ρȟὲ do  
 ὼ ὼ  

 Pentru Ὦ ρȟά execută 
   Ὣ ὺὼȟώ 

   ὼ ὼ Ὠὼ 
End for  

 ώ ώ Ὠώ 
End for   

 
where Ὣ  are the estimated values on a 2D ά  ὲ grid, άȟὲ ɴ ὔz   for a rectangular region defined 
by the coordinates ὼ , ὼ ȟ  ώ , ώ  ɴ Ὑ, (ὼ  ὼ ȟώ   ώ ). Thus, Algorithm 5.1 
creates a 2D grid over a surface bounded by the coordinates ὼ , ὼ , ώ  , ώ  . Ὠὼ and Ὠώ are 
calculated to determine the distance between grid points along the ὼ and ώ axes, respectively. 
ubsequently, all grid points are processed to compute the value Ὣ  at each coordinate ὼȟώ using a 
weighted average ὠὼȟώ. The distance between two grid points is calculated using the formula for the 
distance on Earth between two points with given GPS coordinates. 
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To use CUDA for IDW, we first need to parallelize the algorithm. In IDW, we must calculate the 
distance between the estimation points and each of the sample points. This distance calculation can 
be parallelized by assigning each GPU thread to a single grid point and calculating distances to all 
sample points. 

After calculating the distances, we compute the weights for each sample point based on the 
distance to the estimation point. This weight calculation can also be parallelized by assigning each GPU 
thread to a single sample point and computing its weight for all points where the value is to be 
estimated. 

Finally, we can use the calculated weights to interpolate values at the grid points. This 
interpolation step can also be parallelized by assigning each GPU thread to a single estimation point 
and calculating its value based on the weighted average of the sample points' values. 

The kriging interpolation algorithm was implemented following 4 steps (Algorithm 5.2). 
 

Algorithm 5.2 Kriging algorithm 
Input: ●□░▪ȟ ●□╪●ȟ ◐□░▪ȟ ◐□╪● ȟ ▪ȟ □ȟ Ἶ;  

  
Calculation of Semivariance Points 
Calculation of Semivariance Coefficients Using the Least Squares Method 
Calculation of Interpolation Weights 
Calculation of Interpolated Values 

 
For parallelizing the kriging algorithm using CUDA, several steps are required: calculate the 

variogram, compute the kriging matrix, and calculate kriging weights. 
The calculation of the variogram involves determining the semivariance between all pairs of 

sample points. This step can be parallelized by assigning each GPU thread to a single pair of sample 
points and calculating their semivariance. 

The calculation of the kriging matrix involves inverting a matrix that depends on the 
semivariances between sample points. 

Finally, the calculation of kriging weights involves determining the weights for each sample 
point based on its distance and spatial correlation with the estimation point. This step can be 
parallelized by assigning each GPU thread to a single estimation point and calculating its weights for 
all sample points. 

5.3. Study of Air Pollution Maps for Brașov During the Pandemic 
We used the IDW method to create pollution maps (grids) for the urban area of Brașov and to 

draw conclusions about pollution for the year 2020. We also compared air quality during the lockdown 
period (when most economic and social activities were halted) due to the Covid-19 pandemic and the 
period when the economy was restarted. For this study, concentrations of carbon monoxide (CO), sulfur 
dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10) were considered. Data for the four 
stations reporting hourly pollution in Brașov were downloaded from the National Air Quality Monitoring 
Network 2021 for the first half of 2020 for CO, PM10, SO2, and NO2. 

Using the IDW algorithm, we generated maps of hourly pollutant concentrations, 24-hour 
average maps for each pollutant, monthly average concentration maps, and average concentration 
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maps for each day of the week to see how pollution differs on weekdays compared to weekends. We 
also compared weekly statistics graphically and tracked monthly pollution trends. This was done 
separately for each of the four stations and averaged for all stations. 

For each pollutant, we created two maps to compare the average concentration in January 
(before the lockdown) and May (the last month of lockdown) (see Figure 5.1). Comparing the two 
images, it is evident that air quality improved significantly for each pollutant due to reduced industrial 
activity and the lower number of vehicles operating during that period. 

 

   
(a) CO – January (b) CO – May  

   
(c) NO2 – January (d) NO2 – May  

   
(e) SO2 – January (f) SO2 – May  
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(g) PM10 – January (h) PM10 – May  

Figure  5.1 Comparison of the average concentrations of major pollutants for January 2020 (a, c, e, g) and May 2020 (b, d, f, h) 

The experimental results presented in Table 5.1 showed that CUDA-based implementations 
running on GPUs led to increased execution speed depending on the image resolution. IDW 
interpolation was used to obtain images ranging in size from 150 x 100 to 4800 x 3200. The 
experiments demonstrated that for small images (150 x 100 and 300 x 200), the CPU time was better. 
For large images, GPU acceleration was consistent, up to 19 times faster. 

Table 5.1 GPU Execution Time Study 

Image  size CPU Execut ion T ime  (s) GPU Execut ion T ime  (s) Speed- up 
100 x 150 0.017 0.031 0.55 
300 x 200 0.065 0.071 0.92 
600 x 400 0.268 0.101 2.65 
1200 x 800 1.090 0.167 6.52 
2400 x 1600 4.415 0.322 13.71 
4800 x 3200 17,913 0.942 19.02 

5.4. Study of Geomagnetic Maps of Romania  
Geomagnetic data and maps are essential tools for understanding the Earth's magnetic field 

and its various applications. Geomagnetic data provide insights into the structure and dynamics of the 
Earth's interior, while geomagnetic maps are used for navigation, geological mapping, and scientific 
research. These maps and data have practical applications in industry and commercial enterprises, 
particularly in mineral exploration, energy development, and navigation. 

5.5. CUDA Methods for Generating Geomagnetic Maps  
Geomagnetic data for generating the geomagnetic map of Romania, using IDW and kriging 

interpolation methods, were obtained from Romanian geomagnetic stations and through the Physics 
Toolbox Sensor Suite application at over 1300 GPS positions spread across the country. The data were 
collected through the Citizen Science initiative of the European Researchers' Night 2018-2019 Handle 
with Science project, funded by H2020, AG no. 818795/2018. 

The studied region lies between 21° E and 29° E longitude and between 41° N and 49° N 
latitude. The grids obtained have resolutions of 400 x 400, 800 x 800, 1200 x 1200, and 1600 x 1600, 
so each grid point is approximately 2 km, 1 km, 0.75 km, and 0.5 km, respectively. Figures 5.2 and 5.3 
show geomagnetic maps with 1 km resolution for the Romania region obtained using IDW and kriging 
interpolation, respectively. 
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Figure  5.2 Geomagnetic map obtained using IDW Figure 5.3 Geomagnetic map obtained using kriging interpolation 

The results show better accuracy for the kriging interpolation method across all studied 
resolutions. For example, while the median error value for IDW ranges between 4.476 and 4.895 ʈT 
depending on resolution, for kriging, this value ranges between 2.871 ʈT and 3.687 ʈT. Furthermore, 
Figure 5.4 shows lower average error values for the geomagnetic field with the kriging method. 

 

 
Figure  5.4 Comparison of average error for the geomagnetic field obtained via IDW and Kriging 

In other words, comparing the results, we can see that the kriging interpolation method has 
lower error values for all analyzed errors compared to IDW, indicating better performance for this 
method in geomagnetic data interpolation. Additionally, in general, as the grid resolution increases, the 
error values decrease, indicating improved interpolation accuracy with higher resolution. 

The complex calculations involved in the kriging method lead to increased execution time for 
all resolutions compared to IDW, as shown in Figure 5.5. The speed achieved for the IDW 
implementation is very high and increases with the grid resolution, up to 104 times for the 1600x1600 
grid. Although kriging speed is not as high as IDW ( Figure 5.6), for the highest resolution studied, GPU 
execution time decreased by 10 times compared to CPU. Thus, it is observed that execution time for 
both IDW and kriging methods is significantly lower for GPU implementations. 
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Figure 5.5 Execution times for IDW and Kriging on CPU and GPU Figure  5.6 Speed-up for IDW and Kriging 

Execution time on the GPU is significantly lower than on the CPU for both interpolation 
methods and all grid sizes. This indicates that parallelizing interpolation algorithms using CUDA leads 
to significant acceleration of the interpolation process. Specifically, speed-up increases with the grid 
size, showing that the benefits of parallelization are more pronounced for larger datasets. Thus, 
implementing interpolation algorithms on the GPU using CUDA can be an efficient choice for improving 
performance and execution time. Comparing the speed-up for the two methods, it is observed that, 
generally, the speed-up for Kriging is lower than for IDW for any grid size analyzed. This suggests that 
parallelizing the Kriging interpolation algorithm on the GPU using CUDA brings smaller benefits 
compared to IDW. However, both methods can clearly benefit from GPU acceleration, and the 
difference in speed-up is influenced by the specific nature of the algorithms and their parallelization. 
Nevertheless, considering both execution performance and result accuracy, it can be concluded that 
although IDW provides a higher speed-up and shorter execution time, Kriging is a better option when 
aiming for high-precision results despite a longer execution time. 

 Chapter 6. Conclusions and Future Perspectives 
 
In this work, Chapter 1 presents several advantages and disadvantages of GPU programming 

and reviewed some of the most important applications of GPU programming. This information was 
published in the paper (Spridon, Advances in CUDA for computational physics, 2023). 

The following chapters present some of my personal results published in scientific journals or 
presented at international conferences. Chapter 2 introduces a fast and reliable algorithm called 
AGRFA for generating random networks. The resulting networks can be used to test the correctness 
and efficiency of algorithms developed for network flow problems, such as minimum cost flow, 
maximum flow, or multi- commodity flow problems. The CUDA-parallelized version of AGRFA has 
proven to be up to 19 times faster for generating large networks. With subsequent developments, 
other specific network problems where AGRFA can be adapted could be identified. These results were 
published as a co-author in the paper (Deaconu and Spridon 2021). 

Chapter 3 introduces and solves a practical problem called the minimum loss path problem or 
maximum delivery rate path. This problem involves finding a path from a source node to a given sink 
node in a generalized network, where each arc has an associated gain/loss factor, such that the loss is 
minimized among all s- t paths. The results show high speed when using GPU programming for 
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Algorithm 3.1 on large and dense networks. Execution time improvement was also achieved for 
Algorithm 3.2 using the Bellman-Ford algorithm in the GPU-based implementation. The results were 
presented in the paper (Deaconu, Spridon, and Ciupala 2023). 

Chapter 4 presents an application for determining the minimum loss path. Thus, the MLPP 
algorithm is used in a generalized network to determine the minimum flow. An adaptation of the Ford-
Fulkerson algorithm is proposed, where in each iteration the path with minimum loss is sought. This 
results in the minimum loss flow in the network. 

In Chapter 5, the generation of georeferenced maps using two-dimensional interpolation 
methods based on measured values at discrete points in a given geographical area is described. Thus, 
pollution maps of Brașov during the COVID- 19 lockdown were studied. The maps were obtained using 
the IDW interpolation method, and for high resolutions, CUDA was used, resulting in significant speed-
up in execution time. Additionally, geomagnetic maps of Romania were studied using IDW and kriging 
interpolation methods, investigating both the accuracy of the obtained maps and their generation 
speed. The estimation errors in the geomagnetic maps are lower for the kriging interpolation method, 
and execution speed was shown to be improved using GPU programming with CUDA. The works 
underpinning this chapter are (Ciupala, Deaconu, and Spridon 2021) and (Spridon, Deaconu, and 
Ciupala, ICCSA 2023). 

As future research perspectives, in the field of two-dimensional interpolation, I aim to study 
the GPU parallelization of other interpolation algorithms on irregular, non-uniformly distributed 
datasets and obtaining high- resolution maps. Additionally, I want to develop hybrid models that 
combine the processing power of GPUs with CPU parallelization methods to increase the execution 
speed of algorithms when applied to large networks. This requires studying and evaluating the 
performance of parallel algorithms in the context of graph theory on GPUs, and identifying limitations 
and optimizing code to fully leverage CUDA architecture. Moreover, I plan to use GPU methods to 
accelerate the computation and solve complex problems in computational physics, particularly 
focusing on accelerating simulations modeling energy transport, particles, and interactions within 
plasmas, and developing GPU algorithms to analyze complex phenomena such as turbulent transport 
in plasmas. 
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