

1

INTERDISCIPLINARY DOCTORAL SCHOOL
Faculty of Mathematics and Computer

Delia Elena CUZA (married SPRIDON)

GPU Methods for Increasing Computational
Performance in Graph Theory and Map

Building

SUMMARY

Scientific supervisor
Prof. dr. Nbsjvt Tbcjo UĂCÎSDĂ

CSBƀPW- 3134

2

Contents

INTRODUCTION .. 3

Chapter 1. High-Performance Computing on GPU .. 7

1.1. Generalities .. 7

1.2. Parallel Programming on GPU. Applications. ... 8

1.3. Technologies for Programming on GPU– CUDA ... 9

Chapter 2. Generation of Random Networks ...11

2.1. Graphs - General Information...11

2.2. CUDA in Graph Theory ...12

2.3. Algorithms for Generating Random Graphs ...12

2.4. Results and Discussions ...17

Chapter 3: Finding the Minimum Loss Path in a Big Network...18

3.1. Scientific Context ...18

3.2. The Minimum Loss Path Problem ..19

3.3. Algorithms for Determining the Shortest Path in a Network..21

3.4. Results and Discussions ...23

Chapter 4. Determining the Minimum Loss Flow in a Generalized Network25

4.1. The Traditional Maximum Flow Problem...25

4.2. The Generalized Maximum Flow Problem ..26

4.3. Results and Discussions ...27

Chapter 5. Fast GPU Interpolation for Map Generation...28

5.1. Two-Dimensional Interpolation Methods ...28

5.2. Accelerating Interpolation Methods Using CUDA...29

5.3. Study of Air Pollution Maps for Brașov During the Pandemic ..30

5.4. Study of Geomagnetic Maps of Romania ..32

5.5. CUDA Methods for Generating Geomagnetic Maps ..32

Chapter 6. Conclusions and Future Perspectives...34

Published Works in the Field of the Thesis ...36

Selective bibliography ..37

3

INTRODUCTION

In this thesis, I used CUDA (Compute Unified Device Architecture) technology to optimize and

enhance specific algorithms in various fields. I have structured the main contributions and results into
several major directions, each bringing significant improvements in its application area by using parallel
computing capabilities offered by NVIDIA GPUs (Graphics Processing Units). This work is based on six
papers published in prestigious scientific journals or presented at international conferences, all indexed
in recognized international databases, and one paper accepted for presentation and publication in the
proceedings of a conference indexed by CORE.

The first major contribution was the development and implementation of new algorithms for
generating random networks, which are essential for modeling and simulating various natural and
social phenomena. Random networks are used in numerous applications, from analyzing social
structures to simulating diffusion processes in physics and chemistry. Using CUDA technology allowed
for a significant acceleration in the process of generating these networks. Compared to traditional CPU
(Central Processing Unit)- based methods, the proposed solution reduced execution time by
parallelizing the generation operations, resulting in a significant increase in performance and the ability
to handle large-scale networks.

The second contribution was the proposal and implementation of algorithms for determining
minimum loss paths in generalized networks. These algorithms are critical in various flow optimization
applications, such as logistics, transportation, and telecommunications networks. Implementing them
on the CUDA platform enabled parallel processing of nodes and edges in the network, significantly
reducing computation time. Instead of processing each path sequentially, GPUs allowed simultaneous
calculations, leading to much faster optimal solutions. This increased efficiency was demonstrated
through tests on complex networks, where CUDA algorithms reduced the time required to determine
optimal paths compared to traditional CPU solutions.

As a practical application of the minimum loss path determination algorithms, we proposed a
solution for minimizing flow loss in networks. This problem is particularly relevant in the context of
distribution networks for energy, water, or other types of networks where losses can occur along the
arcs. GPU optimization using CUDA enabled intensive calculations to be performed much faster than
classical approaches. The developed algorithms were tested on large-scale networks and
demonstrated high efficiency in identifying and minimizing losses. The results showed that the use of
GPUs not only accelerates the computation process but also improves overall performance.

Finally, we applied interpolation methods, such as Inverse Distance Weighting (IDW) and
kriging, using CUDA to generate precise and detailed pollution and geomagnetism maps in a short time.
Interpolation is a crucial method for mapping spatial data, used in geography, meteorology, and other
Earth sciences. Implementing these methods on GPUs allowed for the parallelization of distance and
weight calculations, significantly speeding up the interpolation process. This acceleration was
particularly useful for large and complex datasets where traditional calculations would be too slow.

In conclusion, by using CUDA technology, we optimized and enhanced essential algorithms for
various applications, demonstrating that GPUs can bring significant improvements in performance and
scalability of these algorithms. This paper highlights the enormous potential of parallel computing on

4

GPUs in solving complex problems and opens new directions for future research in the field. Thus, the
research presented here is not only based on a solid foundation of studies and experiments published
and validated internationally but also demonstrates extensive practical applicability in multiple
scientific and technological domains.

In summary, this thesis is based on the results obtained and published in journals or
proceedings of internationally recognized conferences. Thus, in the domain of the thesis, I have
published:

- 1 ISI article in an A- list journal
- 2 articles in a Scopus- indexed journal
- 3 articles presented and published in the proceedings of CORE C-classified conferences
- 1 paper accepted for presentation at a CORE C-classified conference

Table 1 presents the classification of these works according to the standards for evaluating
PhD theses in the field of Computer Science, valid at the time of the thesis defense. Furthermore, in
terms of the impact of the results, I highlight that the papers published in the thesis domain have 11
citations (excluding self- citations), of which:

- 4 citations are in ISI- rated journals
- 1 citation in a Scopus- indexed journal
- 2 citations in the proceedings of CORE C-classified conferences
- 3 citations of category D.

Table 1 Published Works and Corresponding Scores, According to PhD Thesis Evaluation

Standards 2018.10.01-Present1, Citations (excluding self- citations)

No. No. of
authors

Artic le Title Journal / Proceeding International
Database

Score 1 Citations

1. 2 Adaptation of
Random Binomial
Graphs for Testing

Network.

Mathematics ISI – A 8p 3

2. 1 Advances in CUDA
for computational

physics

Bulletin of the
Transilvania

University of Brasov.
Series III:

Mathematics and
Computer Science

Scopus 2p 1

1 Standarde de evaluare a tezelor de doctorat: https://www.cs.ubbcluj.ro/invatamant/programe-

academice/doctorat/standarde-evaluare- teze-de-doctorat/

5

3. 3 IDW map builder
and statistics of air
pollution in Brasov

Bulletin of the
Transilvania

University of Brasov.
Series III:

Mathematics and
Computer Science

Scopus 2p 3

4. 3 Fast CUDA
Geomagnetic Map

Builder

ICCSA - Lecture Notes
in Computer Science

CORE C 2p -

5. 3 Finding minimum
loss path in big

networks

ISPDC - IEEE Xplore CORE C 2p 4

6. 4 New approach for
the generalized
maximum flow

problem

IASID – AC CORE C 1p -

Total 17p 11

In Table 2, we have presented the fulfillment of the current national minimum standards for

awarding the title of Doctor in the field of Computer Science. Thus, in the thesis domain, I have
published:

¶ 1 paper in an ISI- rated journal
¶ 2 papers in a Scopus- indexed journal
¶ 4 papers presented at international conferences, of which 3 are in ISI, CORE C, Scopus,

DBLP, IEEE/Springer, etc.

Table 2 Fulfillment of National Minimum Standards for Awarding the Title of Doctor –
Computer Science Committee2

No. Criteria Type of paper
No. of papers
published by the

author

1.

Publication or acceptance for publication
(with proof of acceptance) of at least one

article in ISI- indexed journals from the
UEFISCDI list or in SCOPUS- indexed

journals.

ISI 1

Scopus 2

2. Participation in and presentation of at least
two scientific papers at international 4

6

conferences, as proven by the conference
program.

(of which 3 ISI,
CORE C, Scopus,

DBLP,
IEEE/Springer

etc.) 3.

Recognized conferences are those indexed
in the following databases: SCOPUS, IEEE,

ACM, SPRINGER, DBLP, CiteSeerX,
Zentralblatt, MathSciNet, COPERNICUS,

EBSCO, and ProQuest.

7

Chapter 1. High- Performance Computing on GPU

In this chapter, a literature review published in my work (Spridon, Advances in CUDA for

Computational Physics 2023) is presented. It provides a summary of the most important research
results from recent years regarding GPU programming. Additionally, the most well- known methods of
GPU programming are compared, highlighting the advantages and limitations of GPU programming
using CUDA technology.

1.1. Overviews
High-Performance Computing (HPC) is a field of computer science that focuses on using

systems and technologies to perform complex or computationally intensive calculations at superior
speeds and efficiency. This field often deals with solving difficult problems and handling massive
amounts of data in the shortest possible time. One of the most accessible methods to achieve this is
by using Graphics Processing Units (GPUs).

Table 1.1 provides a comparative overview of CPUs and GPUs. In short, GPU programming
offers many benefits, including parallel processing, energy efficiency, cost-effectiveness, and flexibility.
However, it also requires specialized knowledge and experience, has additional overhead for data
transfer, and does not apply to all types of applications. Additionally, the performance gains of GPU
programming are limited by hardware constraints, and large-scale applications may require specialized
hardware or multiple GPUs to achieve optimal performance.

The efficiency of a GPU can be directly proportional to the number of GPU cores. Due to this,
GPUs can fully benefit from Moore's Law or the constant increase in integration density. GPU
performance continues to improve at a rate of 1.5 times per year. In 2017, the performance gain over
CPUs was 10-100 times, depending on the application. By 2025, this is estimated to be nearly 1,000
times. Thus, while Moore's Law has slowed down for CPUs, and some even say it has ended, the
growth in GPU computing power continues to keep pace (Huang 2023).

Table 1.1. CPU / GPU comparison

CPU GPU

Up to several dozen very powerful cores Up to several thousand cores optimized for

parallelism
Higher frequencies for fast instruction

execution
Relatively lower frequencies but efficient

parallel operations

8

Larger and more efficient cache memory
for general processing tasks

Smaller cache memory optimized for large
datasets specific to graphics, in general

Ideal for single- thread or lightly multi-
threaded compute tasks

Optimized for graphics, parallel processing,
and massively parallel algorithms

Lower power consumption, ideal for
portable systems

Higher power consumption

Usually more expensive per core, but the
price can vary based on performance

More affordable per core, but the total cost
can be higher depending on configuration and

graphics performance
Executes instructions for general

processing
Executes parallel operations for graphics and

intensive computation

It is important to emphasize that CPUs and GPUs are designed for different uses, and the

choice between them depends on the type of tasks that need to be performed.

1.2. Parallel Programming on GPU. Applications.
Due to their high parallel processing power, GPU programming has found applications in a wide

range of fields. Some of the areas where GPU programming is used in recent research include artificial
intelligence (AI) and machine learning (ML), big data analysis, scientific simulations, graphics and 3D
rendering, medicine and bioinformatics, or cryptography and security (Figure 1.1).

F igure 1.1 Recent Applications of GPU Programming (Baji 2018)

GPUs enable the rapid transformation and analysis of large datasets (big data) (Chen et al.
2018). This process includes real- time data analysis, data processing and filtering, and the application
of machine learning algorithms to large datasets. Consequently, there is research exploring how GPUs
can be used to accelerate big data processing. For example, various parallelization and optimization
techniques are analyzed to achieve high performance in big data analysis (Wu, Sun et al. 2021) (Kumar
and Mohbey 2022). Algorithms and optimization techniques are also proposed to reduce execution
time and efficiently manage memory in big data analysis operations (Jiang et al. 2015).

9

GPU programming is used in computational sciences to accelerate intensive numerical
computations (Prabhu et al. 2011). This includes simulations in physics, chemistry, biology, and other
fields where complex and iterative calculations are performed. In computational physics, for instance,
process acceleration is of great importance for obtaining the desired results in real time. GPU
programming is a suitable approach for achieving excellent execution times when massive
parallelization is possible (Spridon, Advances in CUDA for Computational Physics 2023). Thus, although
many known algorithms used in computational physics have already been parallelized and some of
them are included in the CUDA library (NVIDIA 2019), new methods of optimization and speed
enhancement are still being sought. Execution time is crucial in many computational physics problems,
and therefore any improvement in this direction is still necessary. Hybrid parallel algorithms (CPU-GPU)
are continuously developed to achieve high-performance computing results with minimal costs
(Spridon, Advances in CUDA for Computational Physics 2023).

1.3. Technologies for Programming on GPU– CUDA
There are several technologies and platforms available for GPU programming. Among these,

the most important are CUDA (Compute Unified Device Architecture), OpenCL (Open Computing
Language), SYCL (Single- source Heterogeneous Programming in C++), and Vulkan.

In the literature, there are several studies comparing GPU programming technologies. For
example, Karimi et al. perform performance tests and compare data transfer times to and from the
GPU, kernel execution times, and end- to-end application execution times for both CUDA and OpenCL
on the same graphics card (Karimi, Dickson, and Hamze 2010). Their results are shown in Figure 1.2.
As observed from these tests, CUDA performed better in data transfer to and from the GPU. No
significant change was noted in the relative performance of data transfer for OpenCL when transferring
larger amounts of data. CUDA kernel execution was also faster than OpenCL, even though the two
implementations were very similar.

Figure 1.2 Comparison of CUDA vs. OpenCL Execution Times

Thus, it is demonstrated that the CUDA architecture is a better choice for applications requiring
high performance. Otherwise, the choice between CUDA and other GPU programming technologies can
be made by considering factors such as previous familiarity with any of the systems, available
development tools for the target GPU hardware, or the portability of the resulting application. In this
work, I chose CUDA architecture for its superior performance previously demonstrated in the literature.

10

A schematic of a CUDA workflow protocol is presented in Figure 1.3. Applications begin running
on the CPU, and the host code manages both host and device code. Data to be processed is loaded into
host memory, necessary memory is allocated on the device, and data is loaded into device memory
using CUDA API calls such as cudaMalloc() or cudaMemcpy().

Kernel functions are called from the CPU and executed on the GPU, leveraging the GPU's
capability to handle intensive tasks that can be executed in parallel. To launch a kernel function, the
number of threads and blocks to be used must be specified. This is done using the <<<>>> syntax in
CUDA. Once the kernel is launched, it executes on the GPU. Each thread will execute the same code but
with different data. Data for each thread is accessed using the thread index, which is provided by CUDA.
To ensure that all threads have completed their work before moving to the next step, threads need to
be synchronized using the __syncthreads() function. After the kernel has finished executing, data must
be transferred back from the GPU to the CPU. Finally, memory allocated on the device must be freed
using cudaFree().

Figure 1.3 CUDA Program Workflow Steps

Memory management plays a crucial role in achieving the best results with CUDA

programming. It is also necessary to understand the GPU memory hierarchy so that it can be utilized
as efficiently as possible. The GPU memory levels (global memory, constant memory, shared memory,
local memory, and registers) are illustrated in Figure 1.4.

Figure 1.4 GPU Memory Hierarchy

In the field of parallel computing and applications requiring high computing power, CUDA has

become a popular technology. With CUDA, programmers can leverage the massive processing power

11

of GPUs to accelerate the solving of complex problems and achieve superior performance across
various domains.

Chapter 2. Generation of Random Networks

This chapter presents two methods for generating random networks, which are necessary for
studying the efficiency of algorithms in graph theory. The proposed generation methods are
parallelized, and the results regarding execution times and acceleration using CUDA programming are
discussed. This chapter builds on the work by Deaconu and Spridon (2021), to which I am a co-author.

2.1. Graphs - Fundamentals
Graphs constitute a significant branch of both mathematics and computer science,

concentrating on the analysis of structures that illustrate relationships between objects. They are used
to model and analyze interconnections between various entities or elements. A graph consists of a
collection of nodes or vertices, represented by points, and edges or arcs that connect these nodes.
Graph theory studies the properties, characteristics, and algorithms associated with graphs. Graphs
are widely used in different fields, including computer science, networks, optimization, artificial
intelligence, and bioinformatics. Graph algorithms are used to solve problems related to search,
traversal, connectivity, scheduling, and many others. By studying and applying graph theory, we can
understand and analyze complex structures of relationships between objects, find efficient solutions
to various problems, and develop optimized algorithms for different scenarios.

Graph theory is a field that investigates the characteristics and behavior of various types of
graphs, as well as the development of specialized algorithms to solve problems associated with
graphs, being a branch of discrete mathematics.

Definition 2.1 A graph is an ordered pair, Ὃ ὠȟὉ, consisting of a set ὠ of elements called
nodes or vertices and a set Ὁ of edges (or arcs) that connect these nodes. The formal definition of a
graph can vary depending on the context in which it is used, but the following presents some basic
elements of graph theory.

In a graph Ὃ ὠȟὉ the number of elements in Ὁ or the cardinality of the set ὠ is called the
order of Ὃ, and the number of elements in Ὁ, or the cardinality of the set Ὁ, is called the size of Ὃ. The
order of a graph is usually denoted by ὲ, and the size of Ὃ is denoted by ά. Each element in ὠ is called
node (or vertex), and each element in Ὁ is called edge. For an arc ὥ όȟὺ, the node ό and node ὺ are
adjacent nodes; the arc ὥ and node ό (or ὺ) are incident to each other. For each arc ὥ όȟὺ, the nodes
ό and ὺ are called terminal nodes. A loop is an arc ὥ όȟὺ whose terminal nodes are identical, i.e.,
ό ὺ. Multiple edges are a set of edges that have the same pair of terminal nodes.

Definition 2.2 A random graph is a graph where the number of nodes, the number of edges,
and the connections between them are generated randomly through various methods.

12

sErdős and Rényi introduced binomial random graphs in their 1959 paper (Erdős and Rényi
1959). These random graphs are generated based on the values of two parameters: ὲ (the number of
nodes) and ὴɴ πȟρ - the probability of introducing any edge into the graph. In a network generated
in this way, there is a possibility that the source might poorly communicate with the storage node or
even not communicate at all. An algorithm for generating simple random graphs with a given degree
sequence was developed in a paper by Bayati et al. (Bayati, Kim, and Saberi 2010). Using this algorithm,
a random uniform graph with a given degree sequence is generated very quickly (in almost linear time).
In 2002, Albert and Barabási introduced their model (BA), consisting of an algorithm based on the
preferential attachment mechanism for generating scale-free random networks (Albert and Barabási
2002). Networks generated in this way have real-world applications on the Internet, citation networks,
the World Wide Web, and some social networks. The algorithm starts with a network having ά given
nodes. Sequentially, nodes are introduced into the network. Each of these newly added nodes is
connected to ά ά existing nodes using a given probability, which is proportional to the number of
connections that the previously added nodes already had. The probability ὴ of connecting a new node
to node Ὥ is:

 ὴ
В

 (2.1)
Given that existing results in the literature about networks deal with specific graphs that are

not general enough or inadequate for network flow problems, in the work (Deaconu and Spridon 2021),
we proposed a new idea for generating random networks that has the advantages of being fast and
based on the natural property of flow, which can be decomposed into elementary directed paths and
cycles. Consequently, networks generated in this way are suitable for testing the correctness and
efficiency of algorithms for network flow problems, such as minimum cost flow, maximum flow, multi-
commodity flow problem, etc.

2.2. CUDA in Graph Theory
GPU programming has shown promising results in accelerating graph theory algorithms in

recent years. Some of the most recent research in GPU programming for graph theory is in the
following directions: Graph Neural Networks (GNN) (Zonghan Wu, 2021) (Tianfeng Liu, 2023), graph
partitioning (Santosh Nage, 2015), triangle counting in a graph (Liu Hu, 2021), algorithms for finding
the shortest path between two nodes in a graph (Carl Yang, 2022).

In general, recent research in GPU programming for graph theory demonstrates the potential
of GPUs to accelerate graph theory algorithms and handle very large graphs. This can lead to improved
performance and scalability for a wide range of applications, from machine learning to social network
analysis or routing problems.

2.3. Algorithms for Generating Random Graphs
Let Ὃ ὠȟὉȟίȟὸȟὧȟύ be an ί ὸ network, where ὠ is a set containing ὲ π vertices

(nodes), and Ὁ is a set of ά π so-called arches (directed edges). Each arch ὥ όȟὺ ɴ Ὁ connects
two nodes ό and ὺ from ὠ, and ί is a special node called the source and ὸ is a node called the sink. In
Ὃ, we define the capacity function ὧȡὉᴼὙz and the cost function ύȡὉᴼὙ . The value ὧὥ is the

13

maximum flow that can be transported from node ό to node ὺ on edge ὥ όȟὺᶰὉ, and ύὥ is the
unit cost of transporting flow on edge ὥ.

Ahuja and co-authors present the following theorem (Ahuja, Magnanti, and Orlin 1993):

Theorem 2.1 Any admissible flow can be decomposed into paths and circuits such that:
(a) Any path with positive flow connects the source ί to the sink node ὸ.
(b) At most ὲ ά paths and cycles have non-zero flow. Of these, at most ά cycles have

non-zero flow.

The proof of Theorem 2.1 can be found in (Ahuja, Magnanti, and Orlin 1993).
Comparisons of the correctness and efficiency of algorithms for flow problems are important

when developing new methods to solve them. To achieve this, a fast and reliable tool is needed to
generate random networks, starting from simple ones and extending to large-scale networks. We
developed a method based on the Erdős–Rényi model using the idea from Theorem 2.1 to create such
a tool. Since a flow can be decomposed into elementary flows, a natural approach is to generate
random ί ὸ paths and elementary cycles. In the work by Deaconu and Spridon (2021), algorithms are
presented for generating ί ὸ paths and elementary cycles in a network. Thus, a primary algorithm to
generate a random ί ὸ path in a network with ὲ nodes is Algorithm 2.1.

Deaconu and Spridon propose algorithms for generating paths and elementary circuits in a
network (Deaconu and Spridon 2021). Thus, a primary algorithm for generating a random ί ὸ
elementary path in a network with ὲ nodes is Algorithm 2.1.

Algorithm 2.1. Algorithm Random s- t Directed Elementary Path v1 (ARDEP1)
/* source is considered having the first index, and sink is considered having the last one */
ί π;
ὸ ὲ ρ;
/* only source is initially part of the path */
for each node Ὦ other than ί do
 ὴὥὸὬὲέὨὩὮ ὪὥὰίὩ;
end for;
ὴὥὸὬὲέὨὩί ὸὶόὩ;
/* build the random path */
ό ί;
for Ὦ ρ to ὲ ρ do
 /* choose a random index k of the next node to be added to the path */
 Ὧ ὶὥὲὨέάπȟὲ Ὦ ρ;
 ὰ π;
 /* find node ὺ as the Ὧ- th node out of the nodes not before chosen */
 for each node ὺ do
 if ὴὥὸὬὲέὨὩὺ then
 cont inue;
 end if;
 if ὰ Ὧ then
 break;
 end if;
 ὰ ὰ ρ;
 end for;
 /* add arc όȟὺ to the network */
 άὥόὺ ρ;

14

 /* mark node ὺ as being part of path */
 ὴὥὸὬὲέὨὩὺ ὸὶόὩ;
 /* if the last node ὺ added to the path is sink, then path is completed */
 if ὺ ὸ then
 break;
 end if;
 /* node ό becomes ὺ to prepare the adding of another node to the path */
 ό ὺ;
end for;

In ARDEP1, without restricting the generality of the algorithm, we consider the source’s index

equal to π, and ὲ ρ as the index of the sink node ὸ. The algorithm builds a path starting from ί. At
each iteration, a new node that was not previously added to the path is randomly selected and pushed
at the end of the path. Each time a new node v is pushed back to the path, the arc όȟὺ is added to the
network, i.e., the value of the adjacency matrix άὥ is set to 1 on the position όȟὺ, where ό is the node
previously added to the path. The algorithm ends when the sink node is added to the path.

For generating a random circuit (Algorithm 2.2), the algorithm is presented below.

Algorithm 2.2. Algorithm Random Directed Elementary Cycle v1 (ARDEC1)
/* choose a random node όπ */
όπ ὶὥὲὨέάπȟὲ ρ;
/* only node όπ is initially part of the cycle */
for each node Ὦ other than όπ do
 ὧώὧὰὩὲέὨὩὮ ὪὥὰίὩ;
end for;
/* build the random cycle */
ό όπ;
for Ὦ π to ὲ ρ do
 /* choose a random index k of the next node to be added to the cycle */
 Ὧ ὶὥὲὨέάπȟὲ Ὦ ρ;
 ὰ π;
 /* find node ὺ as the Ὧ- th node out of the nodes not before chosen */
 for each node ὺ do
 if ὧώὧὰὩὲέὨὩὺ then
 cont inue;
 end if;
 if ὰ Ὧ then
 break;
 end if;
 ὰ ὰ ρ;
 end for;
 /* if ὺ is ό then regenerate ὺ. This can only happen when ό όπ */
 if ό ὺ then
 Ὦ Ὦ ɀ ρ;
 e l se
 /* add arc όȟὺ to the network */
 άὥόὺ ρ;
 /* mark node ὺ as being part of cycle */
 ὧώὧὰὩὲέὨὩὺ ὸὶόὩ;
 end if;
 /* if ὺ is the first chosen node όπ, then cycle is completed */
 if ὺ όπ then
 break;

15

 end if;
 /* node ό becomes ὺ to prepare the adding of another node to the cycle */

ό ὺ;
end for ;

In ARDEC1, a cycle is built starting with a randomly chosen node u0. At each iteration, a new

node that is not already part of the cycle is randomly selected and added to the cycle. Each time a new
node ὺ is introduced into the cycle, the arc όȟὺ is also added to the network, where ό is the node
previously added to the cycle. The algorithm ends when the node όπ is added again to the cycle.

The algorithms ARDEP1 and ARDEC1 can naturally build directed elementary ί ὸ paths and
cycles. Their time complexity is obviously ὕὲ . These two algorithms could be used together to build
random networks. However, we shall present a faster approach below.

Richard Durstenfeld proposes an algorithm to randomly generate a permutation (Durstenfeld
1964). In Algorithm 2.3, we propose a similar but simpler approach to generate a shuffled vector of
nodes having the indexes between Ὥίὸὥὶὸ and ὭὩὲὨ (Deaconu and Spridon 2021).

Algorithm 2.3. Algorithm Shuffled Vector of Nodes (ASVN)
Input : Ὥίὸὥὶὸ, ὭὩὲὨ;

/* the vector “nodes” initially contains the indexes from Ὥίὸὥὶὸ to ὭὩὲὨ */
for Ὦ Ὥίὸὥὶὸ to ὭὩὲὨ do
 ὲέὨὩίὮ ὮȠ
end for;
/* shuffle the vector “nodes” */
for Ὧ Ὥίὸὥὶὸ to ὭὩὲὨ do
 ό ὶὥὲὨέάὭίὸὥὶὸȟὭὩὲὨ;
 ὺ ὶὥὲὨέάὭίὸὥὶὸȟὭὩὲὨ;
 if ό ὺ then
 ίύὥὴ ὲέὨὩίό;
 ὲέὨὩίό ὲέὨὩίὺ;
 ὲέὨὩίὺ ίύὥὴ;

end if;
end for;

Next, I present two novel methods for randomly generating directed elementary ί ὸ paths

and cycles using ASVN.

Algorithm 2.4. Algorithm Random ▼ ◄ Directed Elementary Path v2 (ARDEP2)

/* efficiently generate a shuffled vector of nodes without s and t */
ASVN(ρȟὲ ς);
ί π;
ὸ ὲ ɀ ρ;
/* randomly generate the length of the path */
ὰὴὥὸὬ ὶὥὲὨέάςȟὲȠ
/* add the arcs given by the first ὰὴὥὸὬ nodes of the shuffled vector to the network */
άὥίὲέὨὩίρ ρ;
for Ὧ ρ to ὰὴὥὸὬ ɀ σ do
 άὥὲέὨὩίὯ ὲέὨὩίὯ ρ ρ;
end for;

16

άὥὲέὨὩίὰὴὥὸὬ ς ὸ ρ;

In Algorithm 2.4, first, ARDEP2 randomly generates the length of the path. ὰὴὥὸὬ ς nodes are

then taken from the shuffled vector of nodes, and together with source and sink, generate the path.

Algorithm 2.5 Algorithm Random Directed Elementary Cycle v2 (ARDEC2)
/* efficiently generate a shuffled vector of nodes */
ASVN(πȟὲ ρ);
/* randomly generate the length of the cycle */
ὰὧώὧὰὩ ὶὥὲὨέάςȟὲ;
/* add the arcs given by the first lcycle nodes of the shuffled vector to the network */
for Ὧ π to ὰὧώὧὰὩ ɀ ς do
 άὥὲέὨὩίὯ ὲέὨὩίὯ ρ ρ;
end for;
άὥὲέὨὩίὰὧώὧὰὩ ρ ὲέὨὩίπ ρ;

In Algorithm 2.5, ARDEC2 takes lcycle nodes from the shuffled vector of nodes and generates

a cycle.
Below, I introduce Algorithm 2.6 for generating a random flow network.

Algorithm 2.6. Algorithm Generating Random ▼ ◄ Flow Network (AGRFN)
/* generate ὲὴὥὸὬ random paths */

for Ὧ ρ to ὲὴὥὸὬ do
 ARDEP2;

end for;
/* generate ὲὧώὧὰὩ random cycles */
for Ὧ ρ to ὲὧώὧὰὩ do

 ARDEC2;
end for;
/* generate the adjacency lists ὰὥ using the adjacency matrix άὥ */
for Ὥ π to ὲ do
 ὰὥὭ ὲόὰὰ;
end for;
/* randomly attach capacities and costs to the arcs when they are added to ὰὥ */

for Ὥ π to ὲ do
 for Ὦ π to ὲ do
 /* generate arcs according to ErdosςRényi model */

 if άὥὭὮ π and ὶὥὲὨέάπȟρπππ ὴz ρπππ then
 άὥὭὮ ρ;

 end if;
 if άὥὭὮ ρ then
 Push back (ὮȟὶὥὲὨέάάὭὲόȟάὥὼόȟὶὥὲὨέάάὭὲὧȟάὥὼὧ) to ὰὥὭ;

 end if;
 end for;

end for;

Theorem 2.3. The time complexity of AGRFN is ὕὲ άὥὼὲ ȟὲ ȟὲ Ⱦ Ὣ.

Usually, it is enough to consider the number of paths and the number of cycles less than the
number of nodes. So, in practice, the time complexity is likely to be ὕὲ .

The time complexity from Theorem 2.3 can be improved if the generation of the paths, cycles,
and adjacency lists are parallelized. The computations from the algorithm are elementary and they only

17

involve integer values. So, AGRFN can be naturally parallelized on GPUs. Since the speed of generating
of large-scale random networks is essential, time complexity improvement by parallelization can act
an important role. Considering a total of Ὣ GPU cores, the generation of the paths and cycles can be
divided into άὥὼρȟὲ ὲ Ⱦ Ὣ groups. The generation of the adjacency lists can also be
divided into άὥὼρȟὲȾὫ groups. So, the time complexity of the parallel implementation on GPUs of
AGRFN is ὕὲ άὥὼὲ ȟὲ ȟὲ Ⱦ Ὣ.

2.4. Results and Discussions
In Figure 2.1, three networks having 6, 20, and 100 nodes, respectively, were generated and

displayed. For the first network, 3 paths and 2 cycles were generated. For the second network, 10
paths and 2 cycles were generated, and for the last network, 20 paths and 10 cycles were generated.

Different tests were performed to illustrate the generating time of increasing the scale of
random networks having the number of nodes between 10 and 10,000. As expected, and as shown in
Table 1, the number of nodes together with the number of considered paths and cycles directly
influence the speed of the network generation. An Asus ROG Strix G17 G712LV, Intel Core i7-10750H
up to 5.10 GHz processor, 16GB RAM, NVIDIA GeForce RTX 2060 6GB GDDR6 with 1920 CUDA cores
was used.

Figure 2.1. Networks generated using AGRFN. (a) Network with n = 6, npath = 3, ncycle=2; (b) network with n = 20, npath = 10, ncycle = 2;

(c) network with n = 100, npath = 20, ncycle = 10.

The parallelization was implemented using CUDA programming on GPU. Each path and cycle

were created on a different thread. Additionally, the creation of adjacency lists from the adjacency
matrix was parallelized, the list for each node being obtained on a different thread. For small networks
(less than 50 nodes) it is better to use the implementation of the algorithm on CPU, but when the
number of the nodes of the networks is more than 50, the CUDA implementation is preferred resulting
in a clear speed-up, up to 19 times faster than the CPU implementation. The speed-up was calculated
as the ratio between CUDA and CPU execution times. The best speed-up was obtained for large-scale
networks having thousands of nodes.

In Figure 2.2, the speed-up evolution for generating networks of different dimensions is
presented. As can be observed, for small- sized networks, running on the GPU leads to a decrease in

18

execution speed, most likely due to communication times between the CPU and GPU. As the network
size increases, the acceleration factor due to massive parallelization on the GPU also increases,
reaching an execution time 19 times shorter for a network with 10,000 nodes when running using
CUDA.

Figure 0.2 CPU/ CUDA speed-up (Deaconu and Spr idon 2021)

The analysis of speed-up evolution for generating random networks of different sizes when
using CUDA shows how the system's performance varies depending on the problem size. As expected,
the larger the problem size, the more evident the advantages of parallelization with CUDA become.
This is due to the GPU's ability to process a large amount of data in parallel, which can lead to significant
improvements in execution time compared to sequential implementations on the CPU.

Chapter 3: Finding the Minimum Loss Path in a Big Network

In this chapter, I introduce and solve a practical problem known as the minimum loss path

problem or the maximum delivery rate path. This problem involves finding the path from a source node,
ί, to another given node, ὸ, called the sink, in a generalized network, which has a gain/loss factor
attached to each arc, so that the loss is minimal among all ί ὸ paths. This is based on the work by
(Deaconu, Spridon and Ciupala 2023), to which I am a co-author.

3.1. Scientific Context
The classic maximum flow problem involves finding the maximum flow that can be

transported from a source node to a so-called sink node in a network where each arc has a capacity
ὧὭȟὮȟὭȟὮ Ὁ. For example, a natural gas supply company may want to maximize the amount of
natural gas sent between two cities through its pipeline network. Each pipeline in the network
obviously has a limited capacity.

In the generalized problem, each arc, in addition to the corresponding capacity, may also have
a loss or gain factor that must be considered when calculating the maximum flow. In other words, the
generalized problem for determining the maximum flow is an extension of the classic maximum flow
problem in a network where, to determine the maximum amount of flow, other factors such as costs
or variable capacities of the arcs must also be taken into account.

19

The Inverse Generalized Maximum Flow (IGMF) problem was introduced and studied by
(Tayyebi and Deaconu 2019). In this problem, the goal is to modify the capacities of the arcs so that a
certain admissible flow becomes the maximum flow in the modified network, and the distance
between the initial capacity vector and the modified capacity vector is minimized.

To the best of my knowledge, these two problems are the only optimization problems that
have been analyzed in networks with gains or losses on the arcs.

3.2. The Minimum Loss Path Problem
Let ' 6ȟ% be a directed graph, where ὠ is a finite set of elements called vertices or nodes,

and Ὁ is a set of ordered pairs of vertices, called arcs or directed edges (Ὁ Ṗὠ ὠ). We will consider
that graph Ὃ is a mathematical representation of a real- life transportation network (for water, sewage,
gas, electricity, etc.), where the arcs represent the transportation lines, and the nodes represent the
intersections of these lines. In real- life transportation networks, there are usually losses on the arcs
due to various reasons such as evaporation, leaks, energy dissipation, theft, etc. To mathematically
model this, we consider for each arc όȟὺᶰὉ a loss coefficient, or delivery rate, denoted by όȟὺᶰ
πȟρ. Thus, if ὼ units enter from node ό on arc όȟὺ then ὼẗό ȟὺ ὼ units will reach node ὺ.

 In the following, I will present a method for calculating the minimum loss path (MLP) or
maximum delivery rate path (MDP) from a source node, ί, to a sink node, ὸ. We denote this problem as
the Minimum Loss Path Problem (MLPP). To solve the MLPP, we need to identify a path in GGG from ί
to ὸ such that the delivery rate from ί to ὸ is the maximum among all paths in  , that is, we need to
find the solution to the following optimization problem:

άὥὼὺȟὺ Ͻ ὺȟὺ ϽȣϽὺ ȟὺ

ὖ ὺ ίȟὺȟȣȟὺ ᶰ 
 (3.1)

To solve the above problem, we proceed by transforming problem (3.2) into a minimization
problem as follows:

άὭὲÌÏÇ ὺȟὺ Ͻ ὺȟὺ ϽȣϽὺ ȟὺ

ὖ ὺ ίȟὺȟȣȟὺ ᶰ 
 (3.2)

where the base of the logarithm is greater than 1, for example, the base can be Ὡ or 10.
The previous problem can be rewritten in the form:
άὭὲὺȟὺ ὺȟὺ Ễ ὺ ȟὺ

ὖ ὺ ίȟὺȟȣȟὺ ᶰ 
 (3.3)

where:

 ɼÖȟÖ ÌÏÇɻÖȟÖ πȟÉ πȟρȟȢȢȢȟË ρ.

Given that the values attached to the arcs are positive, it is now easy to observe that problem
(3.2) has been reduced to a classic optimization problem for finding the shortest path in the network
Ὃ ὠȟὉȟ. This problem can be efficiently solved using Dijkstra's algorithm with a time complexity
of ὕὲ or ὕάẗὰέὫ ὲ , depending on the implementation (Schrijver 2012) (Fredman and Tarjan
1984), where ὲ denotes the number of nodes (ὲ ȿὠȿ), and ά represents the number of arcs (ά
ȿὉȿ. Consequently, Algorithm 3.1 presented below calculates the MLP in GGG.

Algorithm 3.1. MLP computation in lossy networks

20

Input:
¶ a directed graph Ὃ ὠȟὉ
¶ όȟὺᶰ πȟρȟόȟὺᶰὉ

Output:
¶ MLP of Ὃ

 /* Calculate όȟὺ Ⱦz
For Ὧ πȟά ρ do
 ɼὥ ÌÏÇɻὥ , ὥᶰὉ
end for
I f node ὸ is not reachable from ί then
 MLPP has no solution
e l se
 Apply shortest Path Algorithm starting from ί in Ὃ ὠȟὉȟ
 Let ὖ ί ὺȟὺȟȣȟὺ ὸ be the shortest path from ί to ὸ, then ὖ is MLP of Ὃ ὠȟὉ from ί to ὸ
End if.

We will now investigate the more general case where some arcs may have gains instead of

losses. These gains can be obtained, for example, through injection into the network on certain arcs (a
new gas source, a prosumer in the electrical network, etc.). Thus, instead of setting όȟὺᶰπȟρ, we
could consider όȟὺ as having positive values, with όȟὺ ρ on an arc όȟὺ if and only if there is
a gain on that arc.

This optimization problem has the same mathematical model (3.1) and can also be transformed
into the minimization problem (3.3). However, it is observed that the values of ὥ ὰέὫ ὥ
can be negative (on arcs where όȟὺ ρ). Moreover, if there is a negative cycle in the resulting
network, it corresponds to a circuit with infinite gain (the product of the ɻ\ alphaɻ values on such a
cycle is greater than 1). On an ί ὸ path containing such a circuit, a maximum delivery rate cannot be
found because the flow can be infinitely increased by passing infinitely many times through that circuit.

Algorithm 3.2 solves the MLPP in the generalized case (in networks where there can be both
gains and losses on arcs).

Algorithm 3.2 The Minimum Loss Path Determination Algorithm in a General ized Network
Input:

¶ a directed graph Ὃ ὠȟὉ
¶ όȟὺᶰ πȟρȟόȟὺᶰὉ

Output:
¶ MLP of Ὃ

 /* Calculate όȟὺ Ⱦz
For Ὧ πȟά ρ do
 ɼὥ ÌÏÇɻὥ , ὥᶰὉ
end for
I f node ὸ is not reachable from ί then
 MLPP has no solution
e l se

 Apply Bellman-Ford’s algorithm starting from s in Ὃ ὠȟὉȟ
 I f G has negative cycle then
 MLPP has not solution.

 e l se
 Let ὖ ί ὺȟὺȟȣȟὺ ὸ be the shortest path from ί to ὸ, then ὖ is MLP of Ὃ ὠȟὉ from ί to ὸ
 End if
End if

21

As with the previous algorithm, in Algorithm 3.2, the function is initially calculated for each
arc of the network. Subsequently, the feasibility test for MLPP is performed. If the sink node ὸ is
accessible from the source node ί, the Bellman-Ford algorithm is applied to determine the shortest
path in the newly formed network Ὃ ὠȟὉȟ. If a negative cycle is identified in the network, then
the problem of finding the minimum loss path has no solution; otherwise, the found path is also the
minimum loss path in the initial network.

3.3. Algorithms for Determining the Shortest Path in a Network
Algorithms for determining the minimum path are methods used in graph theory and

operational computing to find the shortest path between two points (nodes) in a graph. These
algorithms are essential in various fields such as communication networks, transportation, logistics,
and artificial intelligence.

Dijkstra's algorithm is designed to find the shortest path in a graph with only positive arc costs
(Dijkstra, 1959). It is widely used in computer science and engineering to find optimal paths in
transportation networks, internet routing, and many other applications. However, Dijkstra's algorithm
cannot be applied to networks with negative arc values.

The Bellman-Ford algorithm can determine the shortest path in a graph containing arcs with
negative cost values (Bellman, 1958). Additionally, this algorithm can also decide whether the network
contains negative cycles (with infinite gains). If such cycles are present, the problem is infeasible.

Considering the size of networks in real- life applications, the execution time of the proposed
algorithms is very important. Therefore, a method of parallelization using GPU programming through
CUDA (Compute Unified Device Architecture) was used for the proposed algorithms. The Dijkstra and
Bellman-Ford algorithms have previously been implemented on CUDA architecture (Harish and
Narayanan, 2007; Ortega-Arranz et al., 2013; Surve and Shah, 2017). Various parallelization
techniques have been used, resulting in significant speed improvements compared to CPU
implementations. We have adapted these approaches for calculating MLPs.

In Dijkstra's algorithm, in each iteration Ὥ, the minimum distance between the source and the
nodes belonging to the set of unset nodes (nodes for which the minimum distance has not yet been
determined), ὟὭ, is calculated. One of the nodes for which the distance is equal to this minimum value
is set and becomes the node to be analyzed. The outgoing arcs of the analyzed node are traversed to
relax the distances corresponding to adjacent nodes.

To parallelize Dijkstra's algorithm, it is necessary to identify which nodes can be used as
analyzed nodes simultaneously. There are several studies in which the set of analyzed nodes has been
determined in various ways. For example, in the study by Martin, Torres, and Gavilanes (2009), it is
proposed to insert all nodes that have a distance equal to the minimum distance into the set of
analyzed nodes. Ortega-Arranz et al. propose an improvement by adding nodes that have a distance
greater than the determined minimum distance to the set of analyzed nodes (Ortega-Arranz et al.,
2013).

The algorithm calculates, in each iteration Ὥ, for each node in the set of unset nodes όᶰὟὭ,
the sum of the distance calculated up to that point and the costs of its outgoing arcs. Subsequently,
the minimum of these calculated values is determined. Finally, those nodes whose distance is less than

22

or equal to this minimum value determined in the previous step are set and inserted into the set of
analyzed nodes. ῳὭis defined as the minimum value calculated in each iteration Ὥ, which supports that
any unset node ό with a distance ό ῳὭ can be set. The larger the value of ῳὭ, the more parallelism
is exploited. However, depending on the graph being processed, using a very optimistic ῳὭ can lead to
computations that negate any performance gains over sequential execution.

Algorithm 3.3 represents the pseudocode of the parallelized Bellman-Ford algorithm for GPU
implementation. The first stage is the initialization, which takes place on the GPU. This is followed by
the relaxation stage, in which it is checked whether there is a shorter path from the source node to a
given node. For this stage, the kernel function - Algorithm 3.4 - is called.

By leveraging the parallel processing capabilities of GPUs, both Dijkstra's and Bellman-Ford
algorithms can be significantly accelerated, making them suitable for large-scale network applications.

Algorithm 3. GPU implementation of Bel lman - Ford algorithm
Input: an oriented graph Ὃ ὠȟὉ
Output: MLP în G

<<<initialiation>>>(dist)
steps = 0
Repea t
ÄÉÓÔὨὭίὸ, ὥ Ὁɴ

 ὄὩὰὰάὥὲὊέὶὨ ὯὩὶὲὩὰὋȟὨὭίὸȟὨὭίὸᾥόὼ
 ίὸὩὴί ίὸὩὴί ρ

unt il ὨὭίὸᾥόὼ ὨὭίὸ or ίὸὩὴί ὲ ρ

Each kernel (Algorithm 3.4) executes one GPU thread for each node ὺ with index ὭὨ, calculating

the minimum distance. For this, the previously calculated shortest paths for the predecessors of the
nodes are used. If a new, shorter path is found for ὺȟ the distance is updated for node ὺ. Thus, in each
iteration, a new distance vector is calculated, which replaces the old distance vector at the end of the
iteration. The algorithm stops when the two distance vectors are the same or if a negative cost cycle
is found.

Algorithm 4. Bel lman- Ford kernel
Input:

¶ directed graph G = (V, A),
¶ dist - distances vector
¶ dist_aux – auxiliar distances vector

ὭὨ ὸὬὶὩὥὨὍὨ
//find the shortest distance from source to id node
άὭὲ ὍὔὊ
For all predecessors Ὥ of ὸὭὨ do
 If ύὭȟὸὭὨ ὨὭίὸᾥόὼὭ άὭὲ then
 άὭὲ ύὭȟὸὭὨ ὨὭίὸᾥόὼὭ
 End if
End for
If άὭὲ ὨὭίὸᾥόὼὭὨ then
 ὨὭίὸὭὨ άὭὲ
End if

23

3.4. Results and Discussions
To test the MLPP algorithms, random networks were generated using the method described

in (Deaconu and Spridon, 2021). The tests were conducted on an Intel(R) Core(TM) i7-10750H CPU @
2.60GHz 2.59 system, equipped with an NVIDIA GeForce RTX 2060 GPU and running Windows 10. The
random networks analyzed had between 2,000 and 50,000 nodes and a varying number of arcs,
generated using Algorithm 2.6. Execution times for small networks are very short, and GPU
programming is not necessary. As the number of nodes increases, the execution speed increases up to
390 times for networks with 40,000 nodes and up to 326M arcs, as shown in Figure 3.1.

Figura 0.1 Speed-up on GPU for Algorithm 3.1 on dense networks with varying numbers of nodes

(Deaconu, Spridon and Ciupala 2023)

In the case of implementing Algorithm 3.2, based on the Bellman-Ford algorithm, the
execution time increases with the number of nodes and the density of the network arcs. The highest
speed-up on the GPU is 5.8, achieved for a network with 10,000 nodes and 24M arcs (Figure 3.2).

Figure 3.2 Speed-up on GPU for Algorithm 3.2 on dense networks with varying numbers

of nodes (Deaconu, Spr idon and Ciupala 2023)

Overall, the execution time on the GPU is significantly lower than on the CPU for all network
sizes. This highlights the benefits of CUDA parallelization. Although the GPU execution time increases
with the network size, it does so at a slower rate than the CPU execution time (Figure 3.3).

24

Figure 3.3 Execution time for A lgor ithm 3.2 on dense networks

Additionally, as network density increases, so does the execution time for the sequential
implementation, whereas for the parallel implementation, the increase in execution time with network
density is slower (Figure 3.4).

Figure 3.4 Execution time evolution for Algorithm 3.2 as a function of network density

The speed-up values are significant, indicating the benefits of CUDA parallelization as networks
become larger. The general interpretation of the results shows that CUDA parallelization brings
substantial performance improvements for the Bellman-Ford algorithm, especially for large networks.

In conclusion, the results demonstrate increased execution speed when using GPU
programming for Algorithm 3.1 on large and dense networks. Although not as significant, an
improvement in execution time was also achieved for Algorithm 3.2, using the Bellman-Ford algorithm
in the GPU-based implementation.

Comparing the results of the two algorithms, we can observe differences and similarities in
their performance. Both algorithms exhibit significant speed-up with CUDA parallelization. Both
algorithms benefit from shorter execution times on the GPU compared to the CPU for networks of
varying sizes. However, differences are noticeable in how execution time varies with network size for
each algorithm. For example, the execution time for Algorithm 3.1 on the GPU may increase more
rapidly with network size, while the Bellman-Ford algorithm seems to have a slower increase (Figure

0

2

4

6

8

10

12

E
xe

cu
tio

n
tim

e
(s)

Number of nodes

Algorithm 3.2 - secvential Algorithm 3.2 - CUDA

0

2

4

6

8

10

12

93M 177M 255M 326M

E
xe

cu
tio

n
tim

e
(s

)

Number of arcs

Algorithm 3.2 - secvential Algorithm 3.2 - CUDA

25

3.3). For both algorithms, the benefits of GPU parallelization become more evident as the problem size
grows. The relative performance of the two algorithms may vary depending on network characteristics
and other application-specific considerations. The Dijkstra algorithm is known for its lower complexity
compared to Bellman-Ford, which may influence relative performance based on specific network
features.

Chapter 4. Determining the Minimum Loss Flow in a Generalized
Network

In this chapter, I present a possible application of algorithms for finding the minimum loss path

to determine the maximum flow in a generalized network (with losses/gains on the edges). The Ford-
Fulkerson algorithm has been adapted to sequentially find s- t paths with minimum loss. I describe two
possible implementations of the algorithm: sequential and using GPU parallelization. Multiple tests
were conducted for both implementations, comparing execution times. These results were accepted
for presentation at the 21st International Conference on Applied Computing (AC 2024) (Spridon,
Deaconu, and Popa, et al. 2024).

4.1. The Traditional Maximum Flow Problem
In the maximum flow problem, the objective is to send as much flow as possible between two

nodes, respecting the capacity limits of the edges. An instance of the maximum flow problem is an
antisymmetric network Ὃ ὠȟὉȟίȟὸȟὧ, where ίɴ ὠ is the source node, ὸ ɴ ὠ is the sink node,
and ὧ s a capacity function.

Theorem 4.1 A flow is maximum if and only if there are no augmenting paths in the residual
network.

The proof of Theorem 4.1 can be found in the work of Ford and Fulkerson (1956) .
A residual network is a network Ὃ ὠȟὉȟὧ , where ὧȡὉᴼ ᴙ, ὧ όȟὺ ὧόȟὺ Ὢόȟὺ,

is the residual capacity function. For example, if ὧόȟὺ τπ, ὧὺȟό π, and Ὢόȟὺ
 Ὢὺȟό ςω, then the arc όȟὺ has τπ ςω ρρ units of residual capacity, and the arc
ὺȟό has π ςω ςω units of residual capacity.

In short, the maximum flow problem is a classic optimization problem in graph theory,
involving finding the maximum amount of flow that can be sent through a network of pipes, channels,
or other pathways, subject to capacity constraints. The problem can model a wide range of real-world
situations, such as transportation systems, communication networks, or resource allocation.

A common approach for solving the maximum flow problem is the Ford-Fulkerson algorithm
(Ford and Fulkerson 1956), which is based on the concept of augmenting paths. This algorithm has as
input parameters a network, Ὃ ὠȟὉȟὧȟίȟὸ, with source node, ίȟ and sink node, ὸ, and as output
parameter is Ὢ, the maximum flow that can be admitted through the network Ὃ.

26

4.2. The Generalized Maximum Flow Problem
The generalized maximum flow problem extends the traditional maximum flow problem by

allowing the flow to change while being transmitted through the network. As before, each edge όȟὺ
has a capacity ὧόȟὺ that limits the amount of flow sent through that edge. In addition, each edge
όȟὺ is associated with a positive coefficient όȟὺ π, called the gain/loss factor. The gain/loss

factor is a function ȡὉᴼὙ . For each unit of flow entering edge όȟὺ from node ό, only όȟὺ
units reach node ὺ. An edge with losses is one where ρ, and an edge where there is a gain has
ρ. Without loss of generality, we assume that the gain/loss function is symmetric, i.e., όȟὺ
ρȾὺȟό. If this assumption is not satisfied, we can add the symmetric edge and assign it a zero
capacity (Wayne 1999).

To solve the generalized maximum flow problem for determining the minimum loss flow, we
propose an adaptation of the Ford-Fulkerson algorithm (Algorithm 4.1) so that, at each iteration, the
minimum loss path algorithm (Algorithm 3.2) is applied to find a new path in the residual network. The
choice of Algorithm 3.2 is explained by the fact that, both in the case of networks with only losses on
edges and in the case of networks with losses or gains on edges, the resulting residual network
contains both types of edges due to the way the loss factor is calculated in that network. In other
words, if in the initial network an edge όȟὺ has a gain/loss factor όȟὺ, then the gain/loss factor in
the residual network is όȟὺ όȟὺ on the direct edge, and on the reverse edge, we have
 ὺȟό

ȟ
.

Algorithm 4.1 Adaptation of the Ford-Fulkerson Algorithm for Determining Maximum Flow in a
General ized Network
Input:

¶ Network Ὃ ὠȟὉȟίȟὸȟὧȟ
Output:

¶ f – minimul loss flow in Ὃ

Initialize a feasible flow f = 0
Initialize the residual network Gf = G
Foreach όȟὺ ɴ Ὁ do
 όȟὺ όȟὺ
 ὺȟό

ȟ

End foreach
Whil e there exists an augmenting path from s to t in Gf do
 Find an augmenting path ὖ in ὋὪ using A lgor ithm 3.2
 Update the residual network ὋὪ using A lgor ithm 4.2
End whil e

To update the residual network, ὋὪ, along the path, ὖ, found, Algorithm 3.2 is used. This

algorithm involves determining the maximum feasible flow on the augmenting path and then updating
the residual capacities and gain/loss factors in the residual network to reflect this flow. Thus, the
residual network is prepared for subsequent iterations of the flow algorithm.

The proposed algorithm has two stages:
1. Determination of feasible flow on the augmenting path ὖ:

27

¶ Initialize flow Ὢ with the residual capacity of the first arc ίȟό in ὖ.
¶ For each arc όȟὺ in path ὖ while node ό is not the destination ὸ:

Á Update flow f with the minimum of the current flow Ὢ όȟὺand the
residual capacity, ὧ όȟὺ όȟὺȢ

Á Go to the next node ό ὺ on path ὖ.
2. Update residual network, ὋὪ :

¶ Start from the sink nodeȟὺ ὸ.
¶ For each arc όȟὺ on path ὖ while node ὺ is the source ί:

Á Adjust flow f according to the gain/loss factor όȟὺ.
Á On arc όȟὺ, update the residual capacity ὧ όȟὺ ὧ όȟὺ ὪȾ όȟὺ,

and for the reverse arc, add the flow to its residual capacity ὧ ὺȟό ὧ ὺȟό ὪȢ
Á Advance on path ὖ towards the source, to the previous node ὺ ό.

Algorithm 4.2. Updating the Residual Network after Finding a New Augmenting Path in ἑἮ
Input:

¶ Residual network Ὃ ὠȟὉȟίȟὸȟὧȟ
¶ Augmenting path from ί to ὸ found, ὖ in Ὃ

Output:
¶ Updated residual network, Ὃ
¶ Feasible flow, Ὢ

/ / Determine the flow value at node ὸ on path ὖ
Consider a flow, Ὢ ὧίȟό, where ίȟόᶰὖ is the first arc in ὖ
ό ί
whil e ό ὸ do
 Consider the arc όȟὺᶰὖ

Ὢ άὭὲὪϽ όȟὺȟὧ όȟὺϽ όȟὺ
 ό ὺ

End whil e
// Update Ὃ
ὺ ὸ
whil e ὺ ί do

Consider the arc όȟὺ ὖɴ
ὧόȟὺ ὧόȟὺ ὪȾ όȟὺ
ὧὺȟό ὧὺȟό Ὢ

 Ὢ ὪȾ όȟὺ
 ὺ ό
End whil e

4.3. Results and Discussions
When implementing the proposed algorithm, the acceleration results when using GPU

programming are similar to those obtained for Algorithm 3.2, as the efficiency can be achieved by using
the parallel Bellman-Ford algorithm for each determination of a minimum loss path. Thus, as can be
seen in Algorithm 4.1, its complexity is given by the complexity of Algorithm 3.2 multiplied by the
number of iterations in which a path augmentation is determined.

GPU efficiency initially increases with the complexity of the problem but starts to decrease
after a certain point, possibly due to GPU resource saturation. The speed-up varies between 1.04 and
5.72, with maximum values for medium-sized problems. GPU performance is significantly superior to
CPU for most tested configurations, especially for medium and large graph sizes.

28

Figure 4.4 Execution Times for Algorithm 4.1 in Dense Networks

As shown in Figure 4.1, the execution time on the GPU is significantly shorter than on the CPU
for all analyzed dense networks, regardless of the number of nodes. GPU efficiency is particularly
evident for large, dense networks. Thus, the execution time on the GPU increases more slowly
compared to the CPU as the number of nodes grows. The speed-up ratio decreases as the number of
nodes increases. For smaller networks (2000-10000 nodes), the GPU offers considerable speed-up
(2.7-5.7 times). For larger networks (15000-25000 nodes), this ratio slightly decreases but remains
significant (2.98-4.45 times).

Chapter 5.Fast GPU Interpolation for Map Generation

This chapter builds upon the works (Spridon, Deaconu, and Ciupala, ICCSA 2023) and (Ciupala,

Deaconu, and Spridon 2021), to which I am a co-author. In this chapter, I present GPU methods for
generating pollution and geomagnetic maps using interpolation techniques, starting from
measurements taken at various points within a specific geographical area. I have conducted accuracy
analyses of the generated maps and the efficiency of the used GPU methods, with the results
presented below.

5.1. Two- Dimensional Interpolation Methods
The general formulation of the spatial interpolation problem can be defined as follows:
Given ὲ values of a studied phenomenon ὠὮ , with Ὦ ρȟὲ, measured at discrete coordinate

positions ὶ ὼȟώ , in a two-dimensional space, the goal is to find a function Ὂὶ c that satisfies
the conditions:

Ὂὶ ὠȟᶅὮ ρȟὲ (5.1)

Since there are infinitely many functions that satisfy this requirement, additional conditions must
be imposed, which define the nature of different interpolation techniques. Typical examples include
conditions based on geostatistical concepts (kriging), localization (nearest neighbor and finite element
methods), smoothness, and splines or ad-hoc functional forms (polynomials, multi- quadrics). The
choice of additional condition depends on the nature of the modeled phenomenon and the type of
application.

0

500

1000

1500

2000

2000 5000 10000 15000 20000 25000Ñ
Ŕ
ů
Ɠ
Ш
Ĭ
Ĳ
Ш
Ĳ
ǂ
Ĳ
Ħ
ƨ
Ƨ
Ŕ
Ĳ
Ш
ы
ƚ
ь

 ƨůčƖƨũШĬĲШŰŸĬƨƖŔ

CPU GPU

29

Several interpolation methods are used to generate maps in fields such as cartography, geography,
and spatial data analysis. Below, I will describe two of the most recent methods used for this purpose.
¶ The IDW (Inverse Distance Weighting) method assumes that the estimated value is a function

of the distance between the estimation point and the sample locations, such that measured
values closer to the point of estimation have a greater influence on the estimated value than
those further away.

¶ Kriging involves estimating the unknown value ᾀό at a specific location ό based on a
weighted average of observed values ὠὶ at nearby sample points ὶ . The weights are chosen
to minimize the estimation error and are determined based on the spatial correlation structure
of the data. Kriging weights are obtained by solving a system of linear equations that express
the spatial autocovariance function of the data.

5.2. Accelerating Interpolation Methods Using CUDA
The implemented algorithms were tested on a system with an Intel(R) Core(TM) i7-10750H

@ 2.60GHz processor, 16.0 GB RAM, NVIDIA GeForce RTX 2060 GPU, and Windows 10 Pro operating
system. These interpolation methods have been accelerated using CUDA programming to generate
high- resolution maps in real-time. This tool could be used, for example, for monitoring geomagnetic
changes over large areas to identify changes that may occur in Earth's structure or for identifying
regions with specific magnetic properties or real- time monitoring of pollution maps in various areas.

The pseudocode for the IDW algorithm is presented below (Ciupala, Deaconu, and Spridon).

Algorithm 5.1 IDW algorithm
Input: ὴȟ ὼ ȟὼ ȟώ ȟώ ȟὲȟά;

/* Determine resolution in the x and y directions */Ὠὼ
Ὠώ

ώ ώ

ά

/* Compute the estimated values at each point of the grid */
ώ ώ
For Ὥ ρȟὲ do
 ὼ ὼ

 Pentru Ὦ ρȟά execută
 Ὣ ὺὼȟώ

 ὼ ὼ Ὠὼ
End for

 ώ ώ Ὠώ
End for

where Ὣ are the estimated values on a 2D ά ὲ grid, άȟὲ ɴ ὔz for a rectangular region defined
by the coordinates ὼ , ὼ ȟ ώ , ώ ɴ Ὑ, (ὼ ὼ ȟώ ώ). Thus, Algorithm 5.1
creates a 2D grid over a surface bounded by the coordinates ὼ , ὼ , ώ , ώ . Ὠὼ and Ὠώ are
calculated to determine the distance between grid points along the ὼ and ώ axes, respectively.
ubsequently, all grid points are processed to compute the value Ὣ at each coordinate ὼȟώ using a
weighted average ὠὼȟώ. The distance between two grid points is calculated using the formula for the
distance on Earth between two points with given GPS coordinates.

30

To use CUDA for IDW, we first need to parallelize the algorithm. In IDW, we must calculate the
distance between the estimation points and each of the sample points. This distance calculation can
be parallelized by assigning each GPU thread to a single grid point and calculating distances to all
sample points.

After calculating the distances, we compute the weights for each sample point based on the
distance to the estimation point. This weight calculation can also be parallelized by assigning each GPU
thread to a single sample point and computing its weight for all points where the value is to be
estimated.

Finally, we can use the calculated weights to interpolate values at the grid points. This
interpolation step can also be parallelized by assigning each GPU thread to a single estimation point
and calculating its value based on the weighted average of the sample points' values.

The kriging interpolation algorithm was implemented following 4 steps (Algorithm 5.2).

Algorithm 5.2 Kriging algorithm
Input: ●□░▪ȟ ●□╪●ȟ ◐□░▪ȟ ◐□╪● ȟ ▪ȟ □ȟ Ἶ;

Calculation of Semivariance Points
Calculation of Semivariance Coefficients Using the Least Squares Method
Calculation of Interpolation Weights
Calculation of Interpolated Values

For parallelizing the kriging algorithm using CUDA, several steps are required: calculate the

variogram, compute the kriging matrix, and calculate kriging weights.
The calculation of the variogram involves determining the semivariance between all pairs of

sample points. This step can be parallelized by assigning each GPU thread to a single pair of sample
points and calculating their semivariance.

The calculation of the kriging matrix involves inverting a matrix that depends on the
semivariances between sample points.

Finally, the calculation of kriging weights involves determining the weights for each sample
point based on its distance and spatial correlation with the estimation point. This step can be
parallelized by assigning each GPU thread to a single estimation point and calculating its weights for
all sample points.

5.3. Study of Air Pollution Maps for Brașov During the Pandemic
We used the IDW method to create pollution maps (grids) for the urban area of Brașov and to

draw conclusions about pollution for the year 2020. We also compared air quality during the lockdown
period (when most economic and social activities were halted) due to the Covid-19 pandemic and the
period when the economy was restarted. For this study, concentrations of carbon monoxide (CO), sulfur
dioxide (SO2), nitrogen dioxide (NO2), and particulate matter (PM10) were considered. Data for the four
stations reporting hourly pollution in Brașov were downloaded from the National Air Quality Monitoring
Network 2021 for the first half of 2020 for CO, PM10, SO2, and NO2.

Using the IDW algorithm, we generated maps of hourly pollutant concentrations, 24-hour
average maps for each pollutant, monthly average concentration maps, and average concentration

31

maps for each day of the week to see how pollution differs on weekdays compared to weekends. We
also compared weekly statistics graphically and tracked monthly pollution trends. This was done
separately for each of the four stations and averaged for all stations.

For each pollutant, we created two maps to compare the average concentration in January
(before the lockdown) and May (the last month of lockdown) (see Figure 5.1). Comparing the two
images, it is evident that air quality improved significantly for each pollutant due to reduced industrial
activity and the lower number of vehicles operating during that period.

(a) CO – January (b) CO – May

(c) NO2 – January (d) NO2 – May

(e) SO2 – January (f) SO2 – May

32

(g) PM10 – January (h) PM10 – May

Figure 5.1 Comparison of the average concentrations of major pollutants for January 2020 (a, c, e, g) and May 2020 (b, d, f, h)

The experimental results presented in Table 5.1 showed that CUDA-based implementations
running on GPUs led to increased execution speed depending on the image resolution. IDW
interpolation was used to obtain images ranging in size from 150 x 100 to 4800 x 3200. The
experiments demonstrated that for small images (150 x 100 and 300 x 200), the CPU time was better.
For large images, GPU acceleration was consistent, up to 19 times faster.

Table 5.1 GPU Execution Time Study

Image size CPU Execut ion T ime (s) GPU Execut ion T ime (s) Speed- up
100 x 150 0.017 0.031 0.55
300 x 200 0.065 0.071 0.92
600 x 400 0.268 0.101 2.65
1200 x 800 1.090 0.167 6.52
2400 x 1600 4.415 0.322 13.71
4800 x 3200 17,913 0.942 19.02

5.4. Study of Geomagnetic Maps of Romania
Geomagnetic data and maps are essential tools for understanding the Earth's magnetic field

and its various applications. Geomagnetic data provide insights into the structure and dynamics of the
Earth's interior, while geomagnetic maps are used for navigation, geological mapping, and scientific
research. These maps and data have practical applications in industry and commercial enterprises,
particularly in mineral exploration, energy development, and navigation.

5.5. CUDA Methods for Generating Geomagnetic Maps
Geomagnetic data for generating the geomagnetic map of Romania, using IDW and kriging

interpolation methods, were obtained from Romanian geomagnetic stations and through the Physics
Toolbox Sensor Suite application at over 1300 GPS positions spread across the country. The data were
collected through the Citizen Science initiative of the European Researchers' Night 2018-2019 Handle
with Science project, funded by H2020, AG no. 818795/2018.

The studied region lies between 21° E and 29° E longitude and between 41° N and 49° N
latitude. The grids obtained have resolutions of 400 x 400, 800 x 800, 1200 x 1200, and 1600 x 1600,
so each grid point is approximately 2 km, 1 km, 0.75 km, and 0.5 km, respectively. Figures 5.2 and 5.3
show geomagnetic maps with 1 km resolution for the Romania region obtained using IDW and kriging
interpolation, respectively.

33

Figure 5.2 Geomagnetic map obtained using IDW Figure 5.3 Geomagnetic map obtained using kriging interpolation

The results show better accuracy for the kriging interpolation method across all studied
resolutions. For example, while the median error value for IDW ranges between 4.476 and 4.895 ʈT
depending on resolution, for kriging, this value ranges between 2.871 ʈT and 3.687 ʈT. Furthermore,
Figure 5.4 shows lower average error values for the geomagnetic field with the kriging method.

Figure 5.4 Comparison of average error for the geomagnetic field obtained via IDW and Kriging

In other words, comparing the results, we can see that the kriging interpolation method has
lower error values for all analyzed errors compared to IDW, indicating better performance for this
method in geomagnetic data interpolation. Additionally, in general, as the grid resolution increases, the
error values decrease, indicating improved interpolation accuracy with higher resolution.

The complex calculations involved in the kriging method lead to increased execution time for
all resolutions compared to IDW, as shown in Figure 5.5. The speed achieved for the IDW
implementation is very high and increases with the grid resolution, up to 104 times for the 1600x1600
grid. Although kriging speed is not as high as IDW (Figure 5.6), for the highest resolution studied, GPU
execution time decreased by 10 times compared to CPU. Thus, it is observed that execution time for
both IDW and kriging methods is significantly lower for GPU implementations.

34

Figure 5.5 Execution times for IDW and Kriging on CPU and GPU Figure 5.6 Speed-up for IDW and Kriging

Execution time on the GPU is significantly lower than on the CPU for both interpolation
methods and all grid sizes. This indicates that parallelizing interpolation algorithms using CUDA leads
to significant acceleration of the interpolation process. Specifically, speed-up increases with the grid
size, showing that the benefits of parallelization are more pronounced for larger datasets. Thus,
implementing interpolation algorithms on the GPU using CUDA can be an efficient choice for improving
performance and execution time. Comparing the speed-up for the two methods, it is observed that,
generally, the speed-up for Kriging is lower than for IDW for any grid size analyzed. This suggests that
parallelizing the Kriging interpolation algorithm on the GPU using CUDA brings smaller benefits
compared to IDW. However, both methods can clearly benefit from GPU acceleration, and the
difference in speed-up is influenced by the specific nature of the algorithms and their parallelization.
Nevertheless, considering both execution performance and result accuracy, it can be concluded that
although IDW provides a higher speed-up and shorter execution time, Kriging is a better option when
aiming for high-precision results despite a longer execution time.

 Chapter 6. Conclusions and Future Perspectives

In this work, Chapter 1 presents several advantages and disadvantages of GPU programming

and reviewed some of the most important applications of GPU programming. This information was
published in the paper (Spridon, Advances in CUDA for computational physics, 2023).

The following chapters present some of my personal results published in scientific journals or
presented at international conferences. Chapter 2 introduces a fast and reliable algorithm called
AGRFA for generating random networks. The resulting networks can be used to test the correctness
and efficiency of algorithms developed for network flow problems, such as minimum cost flow,
maximum flow, or multi- commodity flow problems. The CUDA-parallelized version of AGRFA has
proven to be up to 19 times faster for generating large networks. With subsequent developments,
other specific network problems where AGRFA can be adapted could be identified. These results were
published as a co-author in the paper (Deaconu and Spridon 2021).

Chapter 3 introduces and solves a practical problem called the minimum loss path problem or
maximum delivery rate path. This problem involves finding a path from a source node to a given sink
node in a generalized network, where each arc has an associated gain/loss factor, such that the loss is
minimized among all s- t paths. The results show high speed when using GPU programming for

35

Algorithm 3.1 on large and dense networks. Execution time improvement was also achieved for
Algorithm 3.2 using the Bellman-Ford algorithm in the GPU-based implementation. The results were
presented in the paper (Deaconu, Spridon, and Ciupala 2023).

Chapter 4 presents an application for determining the minimum loss path. Thus, the MLPP
algorithm is used in a generalized network to determine the minimum flow. An adaptation of the Ford-
Fulkerson algorithm is proposed, where in each iteration the path with minimum loss is sought. This
results in the minimum loss flow in the network.

In Chapter 5, the generation of georeferenced maps using two-dimensional interpolation
methods based on measured values at discrete points in a given geographical area is described. Thus,
pollution maps of Brașov during the COVID- 19 lockdown were studied. The maps were obtained using
the IDW interpolation method, and for high resolutions, CUDA was used, resulting in significant speed-
up in execution time. Additionally, geomagnetic maps of Romania were studied using IDW and kriging
interpolation methods, investigating both the accuracy of the obtained maps and their generation
speed. The estimation errors in the geomagnetic maps are lower for the kriging interpolation method,
and execution speed was shown to be improved using GPU programming with CUDA. The works
underpinning this chapter are (Ciupala, Deaconu, and Spridon 2021) and (Spridon, Deaconu, and
Ciupala, ICCSA 2023).

As future research perspectives, in the field of two-dimensional interpolation, I aim to study
the GPU parallelization of other interpolation algorithms on irregular, non-uniformly distributed
datasets and obtaining high- resolution maps. Additionally, I want to develop hybrid models that
combine the processing power of GPUs with CPU parallelization methods to increase the execution
speed of algorithms when applied to large networks. This requires studying and evaluating the
performance of parallel algorithms in the context of graph theory on GPUs, and identifying limitations
and optimizing code to fully leverage CUDA architecture. Moreover, I plan to use GPU methods to
accelerate the computation and solve complex problems in computational physics, particularly
focusing on accelerating simulations modeling energy transport, particles, and interactions within
plasmas, and developing GPU algorithms to analyze complex phenomena such as turbulent transport
in plasmas.

36

Published Works in the Field of the Thesis

Works Publ ished in ISI Impact Factor Journals:

1. Deaconu, A.M, Spridon. D., „Adaptation of Random Binomial Graphs for Testing Network.”
Mathematics 9 (2021): 1716.

Works Publ ished in Scopus- Indexed Journals:

1. Spridon, D. 2023. "Advances in CUDA for computational physics", Bulletin of the Transilvania
University of Brașov. Series III: Mathematics and Computer Science, 65 (2): 227-236.

2. Ciupala, L., Deaconu, A., Spridon. D., 2021. "IDW map builder and statistics of air pollution in
Brasov.", Bulletin of the Transilvania University of Brașov. Series III: Mathematics and
Computer Science, 63(1), 247-256.

Papers Presented and Published in Proceedings of International Conferences Indexed by

CORE:
1. Spridon, D., Deaconu, A. M., Ciupala, L. 2023. "Fast CUDA Geomagnetic Map Builder." Lecture

Notes in Computer Science, International Conference on Computational Science and Its
Applications, 126 -138, Athens: Springer.

2. Deaconu, A.M., Spridon, D.E. , Ciupala, L. 2023. "Finding minimum loss path in big networks."
International Symposium on Parallel and Distributed Computing. Bucharest: IEEE. 39-44.

3. Spridon, D., Deaconu, A. M., Popa, I., Tayyebi, J., New approach for the generalized maximum
flow problem, accepted to 21st International Conference on Applied Computing, Zagreb,
Croatia, 2024

37

Selective bibliography

Ahuja, R.K., T.L. Magnanti, and J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and

Applications;. NJ, USA: Prentice Hall: Englewood Cliffs.
Baji, T. 2018. „Evolution of the GPU Device widely used in AI and Massive Parallel Processing.”

IEEE 2nd Electron Devices Technology and Manufacturing Conference. Kobe: IEEE. 7-9.
Bellman, R. 1958. „On a routing problem.” Quarterly of Applied Mathematics 87-90.
Ciupala, L., A. Deaconu, and D. Spridon. 2021. „IDW map builder and statistics of air pollution

in Brasov.” Bulletin of the Transilvania University of Brasov. Series III: Mathematics and Computer
Science, 247-256.

Deaconu, A. 2006. „A Cardinality Inverse Maximum Flow Problem.” Scientific Annals of Cuza
University 16: 51-62.

Deaconu, A., and E. Ciurea. 2012. „The inverse maximum flow problem under Lk norms.”
Carpathian Journal of Mathematics 28: 59–66.

Deaconu, A., and L. Ciupala. 2020. „Inverse Minimum Cut Problem with Lower and Upper
Bounds.” Mathematics 8: 1494.

Deaconu, A.M, and D. Spridon. 2021. „Adaptation of Random Binomial Graphs for Testing
Network.” Mathematics 9: 1716.

Deaconu, A.M., D.E. Spridon, and L. Ciupala. 2023. „Finding minimum loss path in big
networks.” International Symposium on Parallel and Distributed Computing. Bucharest: IEEE. 39-44.

Dijkstra, E.W. 1959. „A note on two problems in connexion with graphs.” Numerische
Mathematik 269-271.

Durstenfeld, R. 1964. „Algorithm 235: Random permutation.” Communications. ACM 7: 420.
Ford, L.R., and D. R. Fulkerson. 1956. „Maximal flow through a network.” Canadian Journal of

Mathematics 399–404.
Fredman, M.L., and R.E. Tarjan. 1984. „Fibonacci heaps and their uses in improved network

optimization algorithms.” 25th Annual Symposium on Foundations of Computer Science. IEEE. 338–
346.

Harish, P., and P. J. Narayanan. 2007. „Accelerating Large Graph Algorithms on the GPU using
CUDA.” Lecture Notes in Computer Science.

Huang, J. 2023. NVIDIA. October.
https://s201.q4cdn.com/141608511/files/doc_presentations/2023/Oct/01/ndr_presentation_oct_
2023_final.pdf.

Marinescu, C., A. Deaconu, E. Ciurea, and D. Marinescu. 2010. „From Microgrids to Smart Grids:
Modeling and Simulating using Graphs. Part II Optimization of Reactive Power Flow.” 12th International
Conference on Optimization of Electrical and Electronic Equipment. Brasov. 1251–1256.

—. 2010. „From microgrids to smart grids: Modeling and simulating using graphs.Part I active
power flow.” 12th International Conference on Optimization of Electrical and Electronic Equipment.
Brasov. 1245–1250.

Martin, P., R Torres, and A. Gavilanes. 2009. „CUDA solutions for the SSSP.” Computational
Science – ICCS. Springer Berlin / Heidelberg. 904-913.

38

Ortega-Arranz, H., Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano. 2013. „A new GPU- based
approach to the Shortest Path problem.” HPCS. Helsinki. 505-511.

Rețeaua Națională de Monitorizare a Calității Aerului. 2021. https://www.calitateaer.ro.
https://www.calitateaer.ro.

Schrijver, A. 2012. „On the history of the shortest path problem.” Documenta Mathematica,
Extra Volume ISMP 155–167.

Spridon, D. 2023. „Advances in CUDA for computational physics.” Bulletin of the Transilvania
University of Brasov . Series III: Mathematics and Computer Science, 3(65) (2): 227-236.

Spridon, D., A. M. Deaconu, I. Popa, and J. Tayyebi. „New approach for the generalized
maximum flow problem.” accepted to 21st International Conference on Applied Computing. Zagreb,
Croatia, 2024.

Spridon, D., A. M. Deaconu, and L. Ciupala. 2023. „Fast CUDA Geomagnetic Map Builder.”
Lecture Notes in Computer Science. Athens: Springer.

Surve, G. G., and M. A. Shah. 2017. „Parallel implementation of Bellman-Ford algorithm using
CUDA architecture.” ICECA. Coimbatore.

Sven, O.K., and C. Zeck. 2013. „Generalized max flow in series-parallel graphs.” Discrete
Optimization 10: 155–162.

Tayyebi, J., and A.M. Deaconu. 2019. „Inverse Generalized Maximum Flow Problems.”
Mathematics 899.

Wayne, K.D. 1999. https://www.cs.princeton.edu/~wayne/papers/thesis.pdf. January.
https://www.cs.princeton.edu/~wayne/papers/thesis.pdf.

